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Abstract— Complex dynamical systems and time series can
often be described by jump models, namely finite collections of
local models where each sub-model is associated to a different
operating condition of the system or segment of the time
series. Learning jump models from data thus requires both
the identification of the local models and the reconstruction of
the sequence of active modes. This paper focuses on maximum-
a-posteriori identification of jump Box-Jenkins models, under
the assumption that the transitions between different modes
are driven by a stochastic Markov chain. The problem is
addressed by embedding prediction error methods (tailored
to Box-Jenkins models with switching coefficients) within a
coordinate ascent algorithm, that iteratively alternates between
the identification of the local Box-Jenkins models and the
reconstruction of the mode sequence.

I. INTRODUCTION

In the last decades the problem of learning jump models,
which are characterized by both discrete and continuous
states, has attracted the attention of researchers from the
system identification and machine learning communities.
By exploiting multiple yet simple sub-models, this class of
models can be effectively used to describe the behavior of
nonlinear and complex systems, even when they are charac-
terized by sudden changes in their operating condition (e.g.,
power electronic circuits, robot grasping objects [10], just to
cite a few). Indeed, the discrete state of the model indicates
the operating condition of the underlying system, while
the local models characterize its behavior at the different
modes. Furthermore, jump models can be used to address
problems on time-series segmentation and clustering, like
segmenting human motion and action [12], as well as speech
recognition [11]. In this case, the discrete state indicates the
cluster which each segment belongs to, and the local models
describe the time-series within each temporal segment.

Depending on the considered class of jump models, the
evolution of the discrete state might be governed by de-
terministic [15] or stochastic rules [6]. In particular, for
Markov jump models, if the continuous dynamics is assumed
to be known or it is neglected, the problem of learning
jump models reduces to hidden Markov Model [2]. However,
local models are often needed to characterize the behavior
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of the true system at the different operating conditions.
Furthermore, local models might enhance the performance
of segmentation approaches. Different methods have been
proposed in the literature to learn both the discrete and
continuous dynamics of a jump model. Examples range
from the identification of piecewise affine autoregressive
models with exogenous inputs (PWARX) [5], [9] to the
estimation of more general switching autoregressive models
with exogenous inputs (SARX) [1], [3], [7].

Although these problems are tackled both in determinis-
tic [1], [3] and Bayesian [7], [9] settings, most of existing
methods to learn jump models rely on the assumption of
autoregressive (AR) local models. Therefore, they usually
exploit the conditional independence of the current output
on past modes, given the current mode and the past noisy
measurements of the output. Only few contributions relax
this assumption and consider local output-error (OE) sub-
models [8], [14] or autoregressive moving average models
with exogenous inputs (ARMAX) [4]. However, most ap-
proaches for the identification of local OE models rely on the
hypothesis that switches are dictated by a polyhedral partition
of the state+input space, thus neglecting any stochastic
information on the discrete state. Analogously, although the
method recently proposed by the authors in [4] is applicable
to more general switching systems, it does not exploit the
stochastic information on the discrete state, which can be
retrieved by formulating the identification problem within a
Bayesian framework.

In this work, we tackle the problem of learning jump Box-
Jenkins (BJ) models from data, under the assumption that
switches between different discrete states are driven by a
first-order Markov Chain. We thus consider quite a general
class of jump models, since both ARX, ARMAX and OE
models are particular instances of BJ models. Nonetheless,
by learning these local models, we exploit the generality
and flexibility of the Box-Jenkins structure, at the price of
missing independence of the outputs given past data. Indeed,
the output observations are not conditionally independent
given the current mode and the regressor containing past
measurements, thus increasing the complexity of the problem
at hand.

The method proposed in this paper relies on the maxi-
mization of the posterior distribution of all the unknowns
characterizing the jump BJ model. Specifically, the proposed
approach allows us to estimate: the parameters Θ of the local
models; the transition matrix M that governs the Markov
chain driving mode switches; the variance σ2

e of the noise
affecting the output measurements and the (hidden) sequence
of active modes ST. The resulting algorithm alternates be-
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tween two main steps: (i) the estimation of the parameters
Θ, σ2

e ,M , and (ii) the inference of the active mode sequence
ST. The parameters Θ are identified through an instance of
the prediction error method (PEM), tailored to BJ models
with switching coefficients, while the discrete state sequence
ST is estimated via a sub-optimal moving-horizon approach.

The paper is organized as follows. The class of jump Box-
Jenkins systems is described in Section II. The addressed
estimation problem is presented in Section III, by introducing
the posterior distribution of the model parameters along
with our assumptions on priors distributions of the unknown
variables. The method proposed to learn jump Box-Jenkins
model is then described in Section IV, and its effectiveness
is shown through simulation results in Section V.

A. Notation

Let R+ be the set of positive real numbers and Rn×m
be the set of real matrices of dimension n × m. Given a
matrix M , Mi,: indicates its i-th row, Mi,j denotes its entry
in position (i, j) and vec(M) ∈ Rnm is the column vector
obtained by stacking the columns of M . Given a random
matrix M ∈ Rn×m, we indicate the probability distribution
of vec(M) as p(M). Given the natural numbers a, b ∈ N,
I[a=b] is the indicator function of the event {a = b}, i.e.,

I[a=b] =

{
1 if a = b,

0 otherwise.
(1)

For ξ ∈ R+, Γ(ξ) denotes the Gamma function, i.e.,

Γ(ξ) =

∫ +∞

0

xξ−1e−x dx. (2)

II. SETTING AND GOAL

Consider a time sequence UT = {ut}Tt=1, constituted
by the inputs ut ∈ R exciting a single-input single-output
jump linear dynamical system with K ∈ N Box-Jenkins
local models. The system returns a sequence of outputs
YT = {yt}Tt=1, with yt ∈ R generated as

yt = yo
t + vt, (3a)

where yo
t is the noise-free output at time t, described by

yo
t : A(q−1, θst)yo

t = B(q−1, θst)ut, (3b)

while vt is a coloured noise affecting the output, given by

vt : D(q−1, θst)vt = C(q−1, θst)et. (3c)

The variable st ∈ K = {1, . . . ,K} in (3b)-(3c) denotes the
(hidden) discrete state at time t, and et in (3c) is a zero-
mean Gaussian random variable, generated by a white noise
process with variance σ2

e ∈ R+. For a fixed mode k ∈ K,
A(q−1, θk), B(q−1, θk), C(q−1, θk) and D(q−1, θk) in (3b)-
(3c) are polynomials in the shift operator q−1 (i.e., q−dut =
ut−d, for d ∈ Z), defined as

A(q−1, θk) = 1 +

na∑
i=1

aki q
−i, (4a)

B(q−1, θk) =

nb∑
i=1

bki q
−i, (4b)

C(q−1, θk) = 1 +

nc∑
i=1

cki q
−i, (4c)

D(q−1, θk) = 1 +

nd∑
i=1

dki q
−i, (4d)

where na, nb, nc and nd indicate the dynamical order of
the local BJ models, and θk is the collection of parameters
characterizing the k-th sub-model, i.e.,

θk=[ak1 · · · akna bk1 · · · bknb ck1 · · · cknc dk1 · · · dknd ]′.
(5)

Switches of the (hidden) discrete state st are supposed to
be driven by a Markov chain with state transition matrix
M . Therefore, for every t ∈ {1, . . . , T} the conditional
probability of state st given the sequence of past modes
St−1 = {sτ}t−1

τ=0 is defined as

p(st|St−1) = p(st|st−1) = [M ]st−1,st , (6)

with

Mi,j ≥ 0,

K∑
j=1

Mi,j = 1, i = 1, . . . ,K, (7)

and s0 ∈ K being the (unknown) initial discrete state.
Given the sets of inputs UT and outputs YT , in this paper

we aim at estimating: the parameters Θ = [ (θ1)
′ ··· (θK)

′ ]
′ ∈

RnΘ of the BJ sub-models; the variance σ2
e ∈ R+ of the

white noise et in (3c); the state transition matrix M ∈ RK×K
and the discrete state sequence ST = {st}Tt=0. This problem
is addressed by assuming that the number and the order of
the local models are known. Nonetheless, this hypothesis can
be relaxed, e.g. by selecting the number K of sub-models via
cross-validation.

III. PROBLEM FORMULATION

The problem of learning jump Box-Jenkins models is
addressed by maximizing the joint posterior distribution
p(Θ, σ2

e ,M,ST |YT ,UT ) of the unknown parameters, given
the datasets YT and UT . By using Bayes’ rule, it is
straightforward to see that the posterior distribution can be
factorized, up to a proportional term, as

p(Θ, σ2
e ,M,ST |YT ,UT ) ∝

∝ p(YT |Θ, σ2
e ,M,ST ,UT )p(Θ, σ2

e ,M,ST |UT ). (8)

The posterior, the joint distribution p(Θ, σ2
e ,M,ST |UT )

and the likelihood p(YT |Θ, σ2
e ,M,ST ,UT ) are defined as

follows. For the mathematical details on the derivation of the
posterior distribution, the reader is referred to [13, Section
3.3].
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A. Priors

The joint probability distribution p(Θ, σ2
e ,M,ST |UT ) is

obtained according to the following priors.
1. The unknown variables Θ, σ2

e ,M,ST are statistically
independent of the inputs UT , i.e.,

p(Θ, σ2
e ,M,ST |UT ) = p(Θ, σ2

e ,M,ST ). (9)

2. The joint prior p(Θ, σ2
e ,M,ST ) factorizes as

p(Θ, σ2
e ,M,ST ) = p(Θ, σ2

e)p(M,ST ). (10)

3. The joint probability distribution p(Θ, σ2
e) is a Gaussian

Inverse-Gamma with parameters λ, α0, β0 > 0, so that

p(Θ|σ2
e) = N (0, σ2

eλ
2InΘ

), (11a)

p(σ2
e) = Γ−1(α0, β0), (11b)

where Γ−1(α0, β0) denotes the Inverse-Gamma distri-
bution with parameters α0 and β0, with probability
density function

p(σ2
e ;α0, β0) =

βα0
0

Γ(α)
(σ2
e)−α0−1e

− β0
σ2
e . (11c)

4. The joint probability distribution p(ST ,M) factorizes
as

p(ST ,M) = p(ST |M)p(M), (12)

with the components of the i-th row of M following a
Dirichlet distribution with parameters α1, . . . , αK and
probability density function

p(Mi,1, . . . ,Mi,K)=
Γ(α1 + . . .+ αK)

Γ(α1) · · ·Γ(αK)

K∏
j=1

M
αj−1
i,j ,

(13)

where p(Mi,1, . . . ,Mi,K) is defined over the simplex
defined by (7). Furthermore, the rows of the transitions
matrix M are assumed to be statistically independent

with each others, i.e., p(M) =
K∏
i=1

p(Mi,1, . . . ,Mi,K),

so that

p(M) =

(
Γ(α1 + . . .+ αK)

Γ(α1) · · ·Γ(αK)

)K K∏
i,j=1

M
αj−1
i,j . (14)

Based on the modelling assumptions in (6), the proba-
bility distribution p(ST |M) is thus equal to

p(ST |M) =p(s0)

T∏
t=1

p(st|st−1) = p(s0)

T∏
t=1

Mst−1,st

=p(s0)

K∏
i,j

T∏
t=1

M
I(st−1=i and st=j)
i,j

=p(s0)

K∏
i,j

M
#(st−1=i,st=j)
i,j , (15)

where # counts the number of times the joint event
st−1 = i and st = j occurs in the sequence ST , i.e.,

#(st−1 = i, st = j) =

T∑
t=1

I(st−1 = i and st = j),

and p(s0) is the probability of the initial state s0. In
order not to complicate the notation, p(s0) is assumed
to be uniform, i.e., p(s0) = 1

K for all s0 = 1, . . . ,K.

B. Likelihood

The likelihood p(YT |Θ, σ2
e ,M,ST ,UT ) is computed by

exploiting ideas taken from prediction-error methods for
LTI systems. Accordingly, the output observation yt can be
factorized into the combination of a predictor ŷt|t−1 and a
prediction error εt, i.e.,

yt = ŷt|t−1 + εt. (16)

The prediction error εt is selected as

εt = et = H−1(q−1, θst)
(
yt −G(q−1, θst)ut

)
, (17a)

and G(q−1, θst) and H(q−1, θst) are the following rational
functions in q−1:

G(q−1, θst) =
B(q−1, θst)

A(q−1, θst)
, (17b)

H(q−1, θst) =
C(q−1, θst)

D(q−1, θst)
. (17c)

Based on the definition of the polynomials in (4), the
predictor ŷt|t−1 depends on past inputs/outputs only, while
it is independent of et. Therefore, the likelihood is given by

p(YT |Θ, σ2
e ,M,ST ,UT ) =

=
1

(2πσ2
e)T/2

e
− 1

2σ2
e

∑T
t=1(H−1(θst )(yt−G(θst )ut))

2

. (18)

C. Posterior

The posterior in (8) thus becomes1

p(Θ, σ2
e ,M,ST |YT ,UT ) ∝ (19a)

∝ e−
1

2σ2
e

∑T
t=1(H−1(θst )(yt−G(θst )ut))

2

(19b)

× 1

(σ2
e)T/2+nΘ/2+α0+1

e
− 1

2λ2σ2
e

Θ′Θ
e
− β0
σ2
e (19c)

×
K∏

i,j=1

M
#(st−1=i,st=j)+αj+1
i,j . (19d)

The maximum-a-posteriori estimation is thus given by the
solution of problem

max
Θ,σ2

e ,M,ST
p(Θ, σ2

e ,M,ST |YT ,UT ), (20)

with p(Θ, σ2
e ,M,ST |YT ,UT ) in (19).

1We have dropped the dependency of G(q−1, θst ) and H(q−1, θst ) on
q−1 to reduce the notational burden.
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Algorithm 1 Maximum-a-posteriori estimation for Jump
Box-Jenkins models.

Input: Training sets UT and YT ; initial guesses on the
mode sequence ST (0) = (s

(0)
0 , . . . , s

(0)
T ); tolerance εJ > 0;

maximum number hmax of iterations.

1. iterate for h = 1, . . .

1.1. Compute Θ(h), σ
2(h)
e ,M (h) as the solution of

arg max
Θ,σ2

e ,M

p(Θ, σ2
e ,M,ST (h−1)|YT ,UT );

1.2. Compute ST (h) as the solution of

arg max
ST

p(Θ(h), σ2(h)
e ,M (h),ST |YT ,UT );

2. until h = hmax or∣∣∣p(Θ(h), σ2(h)
e ,M (h),ST (h)|YT ,UT )

− p(Θ(h−1), σ2(h−1)
e ,M (h−1),ST (h−1)|YT ,UT )

∣∣∣ ≤ εJ
Output: Estimated parameters Θ? = Θ(h), σ2?

e = σ
2(h)
e ,

M? = M (h) and mode sequence ST? = ST (h).

IV. LEARNING JUMP BJ MODELS

Problem (20) is solved as outlined in Algorithm 1. At each
iteration h, the method alternates between: (i) maximization
of the posterior (19) over Θ, σ2

e ,M , for fixed mode sequence
ST (h−1) computed at the previous iteration (Step 1.1); (ii)
maximization with respect to ST (Step 1.2), for fixed pa-
rameters Θ(h), σ

2(h)
e ,M (h) obtained at Step 1.1.

Remark 1: The parameters Θ?, σ2?
e ,M

? and the mode
sequence ST? obtained with Algorithm 1 depend on the
initial guess ST (0) of the mode sequence. Therefore, to
improve the quality of the solution, Algorithm 1 can be
run starting from N different initial sequences, selecting the
outcome corresponding to the maximum posterior. �

The procedure to solve the maximization problems in
Steps 1.1 and 1.2 is described in the following paragraphs.

A. Step 1.1: optimization over Θ, σ2
e and M

For a fixed mode sequence ST (h−1), the posterior distri-
bution p(YT |Θ, σ2

e ,M,ST ,UT ) in (19) can be separately
optimized with respect to the unknowns Θ, σ2

e and M .
Step 1.1 thus requires the solution of three problems, as
described in the following sections2.

1) Estimation of Θ : Based on the definition of the
posterior distribution p(Θ, σ2

e ,M,ST |YT ,UT ) in (19), its
maximization over the parameters Θ (for fixed mode se-
quence ST (h)) can be performed by solving the equivalent
optimization problem

min
Θ

J(Θ) ,
T∑
t=1

εt(Θ,ST )2 +
1

λ2
Θ′Θ. (21)

According to (17), the time evolution of εt(Θ,ST ) is given
by

2To simplify the notation, we have dropped the dependence of ST (h−1)

ands(h−1)
t on the algorithm’s iteration h− 1.

C(θst)εt(Θ,ST ) = D(θst) (yt − yo
t ) , (22)

where yo
t is computed, for fixed parameters θst , as in (3b).

Problem (21) can be solved by means of any unconstrained
nonlinear optimization method, such as Gauss-Newton. The
gradient ∇ΘJ(Θ) of the cost is computed as

∇ΘJ(Θ) = 2

T∑
t=1

εt(Θ,ST )
∂εt(Θ,ST )

∂Θ
+ 2λ−2Θ, (23a)

and its Hessian ∇2
ΘJ(Θ) approximated as

∇2
ΘJ(Θ)≈2

T∑
t=1

∂εt(Θ,ST )

∂Θ

(
∂εt(Θ,ST )

∂Θ

)′
+2λ−2I. (23b)

Based on the time evolution of the prediction error
εt(Θ,ST ) in (22), its partial derivatives with respect to
the parameters cij (with j = 1, . . . , nc) and dij (with j =
1, . . . , nd), for i = 1, . . . ,K, can be computed by simulating
the difference equations:

C(θst)
∂εt(Θ,ST )

∂cij
= −εt−j(Θ,ST )I[st=i], (24a)

C(θst)
∂εtΘ,ST )

∂dij
=
(
yt−j − yo

t−j
)
I[st=i], (24b)

with yo
t simulated according to (3b).

The remaining derivatives, namely ∂εt(Θ)
∂aij

(with j =

1, . . . , na) and ∂εt(Θ)
∂bij

(with j = 1, . . . , nb) are obtained by
simulating the difference equations

C(θst)
∂εt(Θ,ST )

∂aij
= −D(θst)

∂yo
t

∂aij
, (25a)

C(θst)
∂εt(Θ,ST )

∂bij
= −D(θst)

∂yo
t

∂bij
, (25b)

for i = 1, . . . ,K, with ∂yo
t

∂aij
and ∂yo

t

∂bij
given by the difference

equations

A(θst)
∂yo

t

∂aij
= yo

t−jI[st=i], A(θst)
∂yo

t

∂bij
= ut−jI[st=i]. (26)

The reader is referred to [13, Section 4.1.1] for details on
the derivation of eqs. (24), (25) and (26).

2) Estimation of the variance σ2
e : The parameter σ2

e

maximizing the posterior p(Θ, σ2
e ,M,ST |YT ,UT ) can be

computed analytically. Indeed, given Θ(h), the value of σ2
e

maximizing p(Θ, σ2
e ,M,ST |YT ,UT ) is given by:

σ2(h)
e =

β0+ 1
2λ
−2Θ(h)′Θ(h)+ 1

2

T∑
t=1

(
εt(Θ

(h),ST )
)2

T+nΘ

2 + α0 + 1
. (27)

3) Estimation of the transition probabilities: The pos-
terior in (19) can be separately maximized with respect
to each row of the transition matrix M . This problem
is solved by optimizing the log of (19) with the method
of Lagrange multipliers, in order to take into account the
equality constraints in (7). As shown in detail in [13, Section
4.1.2], the following closed-form expression for the transition
matrix M maximizing the posterior is obtained:
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Mi,j =
#(st−1 = i, st = j) + αj − 1∑K
j=1 #(st−1 = i, st = j) + αj − 1

=

=
#(st−1 = i, st = j) + αj − 1∑K

j=1 #(st−1 = i, st = j) +
∑K
j=1(αj − 1)

. (28)

The maximum-a-posterior estimate of the transition proba-
bilities Mi,j is thus given by the sample transition probability
(i.e., the ratio between the number of switches from mode i
to mode j and the number of times mode i is active), up to
the additive term αj − 1 introduced due to the chosen priors
on Mi,j (eq. (13)).

B. Step 1.2: optimization over ST

Once the parameters Θ(h), σ
2(h)
e ,M (h) are updated, the

posterior distribution p(Θ, σ2
e ,M,ST |YT ,UT ) in (19) is

maximized with respect to the mode sequence ST by con-
sidering the log of the posterior and neglecting all the terms
that are independent of ST. This leads to the maximization
of the following objective

QT
(
ST
)

=

T∑
t=1

Lt(St) +

T∑
t=1

Ltrans(st−1, st), (29a)

with

Lt(St) = − 1

2σ
2(h)
e

εt(Θ
(h),St)2, (29b)

Ltrans(st−1, st) =

K∑
i,j=1

I[st−1=i,st=j] logM
(h)
i,j . (29c)

The objective (29a) is maximized w.r.t. the whole sequence
ST through a suboptimal moving-horizon approach, that
allows us to optimize QT

(
ST
)

without the need to consider
all possible past modal histories. By considering a moving
window of Tc time instants, and defining the truncated
objective function

Qt
(
St
)

=

t∑
τ=1

Lτ (Sτ ) +

t∑
τ=1

Ltrans(sτ−1, sτ ), (30)

the proposed suboptimal method consists in the following
steps.

Initially, the optimal initial mode s̃0(STc1 ) for every pos-
sible Tc-length sequence STc1 is computed, i.e.,

s̃0(STc1 ) = arg maxs0 QTc(S
Tc
0 ), (31)

with STc0 denoting the sequence {st}Tct=0.
Then, for t = 1, . . . , T − Tc − 1, the optimal mode s̃t

associated to each possible sequence STc+tt+1 is computed as

s̃t(STc+tt+1 ) = arg maxst QTc+t(S̃
Tc+t
0 (STc+tt )), (32)

where the modes s0, . . . , st−1 are fixed to the optimal modes
computed at previous steps, i.e.,

S̃Tc+t0 (STc+tt ) = {s̃0(S̃Tc1 ), s̃1(S̃Tc+1
2 ), . . . ,

s̃t−1(S̃Tc+t−1
t ), st, st+1, . . . , st+Tc}. (33)

Then, at time t = T −Tc, the optimal sequence (STT−Tc)
?

is computed as

(STT−Tc)
? = arg maxSTT−Tc

QT

(
S̃T−Tc0 (STT−Tc)

)
. (34)

TABLE I
TRUE VS ESTIMATED PARAMETERS

True JBJ JARX

aj1
j = 1 0.60 0.59 0.41
j = 2 -0.50 -0.53 -0.48

aj2
j = 1 0.10 0.09 0.06
j = 2 -0.10 -0.09 -0.19

bj1
j = 1 0.80 0.80 0.80
j = 2 -0.20 -0.19 -0.20

bj2
j = 1 -0.80 -0.82 -0.94
j = 2 0.50 0.50 0.49

cj1
j = 1 0.60 0.63 -
j = 2 0.20 0.15 -

cj2
j = 1 0.20 0.24 -
j = 2 0.20 0.19 -

dj1
j = 1 0.10 0.11 -
j = 2 -0.25 -0.30 -

dj2
j = 1 0.70 0.72 -
j = 2 -0.25 -0.24 -

Finally, starting from (STT−Tc)
?, the rest of the mode

sequence is estimated as

(ST−Tc−1
0 )? = S̃T−Tc0 ((STT−Tc)

?). (35)

Additional details on the proposed suboptimal moving
approach can be found in [13, Section 4.2]. The length of
the horizon Tc is a tuning parameter, that allows us to trade
off between the complexity of the problem to be solved and
the sub-optimality of the estimated mode sequence.

V. SIMULATION EXAMPLE

The proposed approach is tested on a simple simulation
example, where the data are generated by a jump Box-
Jenkins system described as in (3), with K = 2 modes.
For a more exhaustive assessment of the performance of the
proposed approach, the reader is referred to [13, Section 5].
The Box-Jenkins local models are defined by second-order
linear time-invariant systems (i.e., na = nb = nc = nd = 2),
with coefficients reported in Table I. The data available for
testing are obtained by exciting the system with a sequence of
T =10, 000 randomly generated inputs, uniformly distributed
in the interval [−1, 1]. The mode switches every 100 samples
starting from s0 = 2. The output is corrupted by a zero mean
Gaussian noise et with standard deviation σe = 0.3, which
yields the Signal-to-Noise-Ratio (SNR)

SNR = 10 log

∑T̃
t=1 (yt − et)2∑T̃

t=1 e
2
t

= 8.6 dB. (36)

Algorithm 1 is run by setting the parameters of the Gaussian
Inverse-Gamma prior distribution in (11) to λ = 10−8 and
α0 =β0 = 1, while the parameters αk of the Dirichlet prior
distribution (13) are set to αk = 1, for all k = 1, . . . ,K.
The algorithm is executed N = 5 times using different
randomly generated initial guesses ST (0) and, for each initial
guess, it is iterated until either the maximum number of
iterations hmax = 20 is reached or the termination condition
|V (h) − V (h−1)| ≤ εV is verified, with V (h) being the log
of the posterior distribution (19) and εV = 10−8. In recon-
structing the mode sequence with the approach described in
Section IV-B, we consider Tc=max (na, nb, nc, nd) = 2.

The estimated standard deviation σ?e is equal to 0.37, while
the estimated parameters are reported in Table I, along with
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Fig. 1. True ST̃ (black) vs estimated ST,?mode sequence. Estimate with:
jump BJ model (red), ARX model (blue). Black and red lines are overlapped.

the true coefficients Θ, showing that both the characteristics
of the noise and the local models are accurately recon-
structed. The computational time required to run Algorithm 1
for N = 5 is around 30 minutes. The parameters of a jump
ARX (JARX) model, which are identified using the approach
proposed in the paper for C(q−1, θi) = 1 and A(q−1, θi) =
D(q−1, θi), for i= 1, 2, are also reported in Table I. These
estimates clearly show a bias due to the inconsistent noise
model structure. The quality of the estimated sequence ST?
is measured in terms of the accuracy index

LtrueT =
100

T

T∑
t=1

I[s?t=st], (37)

by using the true mode sequence ST as ground-truth. On the
training set, we achieve LtrueT = 99.7% and LtrueT = 99.5%
for the jump BJ and the jump ARX model, respectively.
Therefore, in the considered example, a proper choice of
the sub-models’ structure mainly affects the quality of the
estimated local models. The identified jump models (JBJ and
JARX) are further used to reconstruct the mode sequence
as described in Section IV-B for a validation set of length
T̃ = 5, 000, comprising data generated by a starting mode
s0 = 1, with input and noise sequences different from the
ones used for training. The attained label accuracy indexes
are Ltrue

T̃
= 99.0% and Ltrue

T̃
= 98.7% with the jump BJ and

jump ARX models, respectively. Even if similar results are
achieved, Fig. 1 shows that the use of a jump ARX model
causes slight delays in the detection of mode switches.

The robustness of the learning method is assessed by
performing a Monte Carlo simulation with 30 random real-
izations of the initial state s0∈{1, 2}, the input and the noise
et. The mean values and standard deviations of the estimated
parameters are reported in Table II, showing that the true
parameters lie within the uncertainty intervals defined by the
standard deviation.

VI. CONCLUSIONS

We have described a novel method for the identification of
jump Box-Jenkins models, that relies on the derivation of the
posterior distribution of all the unknown parameters defining
the jump Box-Jenkins model. The posterior distribution is
maximized by combining an extension of the prediction error
method tailored to BJ models with switching coefficients and
a suboptimal moving-horizon approach, used to retrieve the
mode sequence with limited computational complexity.

Extensions of this work include the analysis of the sta-
tistical properties of the estimated models, derivation of the

TABLE II
MONTE CARLO SIMULATION: TRUE VS ESTIMATED PARAMETERS

(MEAN ± STANDARD DEVIATION)
True Estimated (JBJ)

aj1
j = 1 0.60 0.60 ± 0.01
j = 2 -0.50 -0.50 ± 0.01

aj2
j = 1 0.10 0.10 ± 0.01
j = 2 -0.10 -0.09± 0.01

bj1
j = 1 0.80 0.80± 0.01
j = 2 -0.20 -0.20± 0.01

bj2
j = 1 -0.80 -0.80± 0.02
j = 2 0.50 0.50± 0.01

cj1
j = 1 0.60 0.60 ± 0.02
j = 2 0.20 0.21 ± 0.05

cj2
j = 1 0.20 0.20 ± 0.02
j = 2 0.20 0.20 ± 0.03

dj1
j = 1 0.10 0.10 ± 0.02
j = 2 -0.25 -0.24 ± 0.05

dj2
j = 1 0.70 0.70 ± 0.01
j = 2 -0.25 -0.25 ± 0.04

uncertainty intervals of the estimated parameters, and auto-
tuning of the number of possible operating modes.
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