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Abstract— In this paper we consider the problem of energy
disaggregation, commonly referred in the literature as “non-
intrusive load monitoring”. The problem is to estimate the
end-use power consumption profiles of individual household
appliance using only aggregated power measurements. We
propose a two-stage supervised approach. At the first stage,
dynamical models of individual appliances are estimated using
disaggregated training data gathered over a short intrusive
period. The consumption profiles of individual appliances are
described by PieceWise Affine AutoRegressive (PWA-AR) models
with multiple operating modes, which are estimated via a
moving horizon PWA regression algorithm. Once the model of
each appliance is identified, a binary quadratic programming
problem is solved at the second stage to determine the set of
active appliances which contribute to the instantaneous aggre-
gated power, along with their operating modes. A benchmark
dataset is used to assess the performance of the presented
disaggregation approach.

I. INTRODUCTION

Retrieving power consumptions at the single-appliance
level provides useful information to energy suppliers, munic-
ipalities, and consumers to design and assess efficiency of
energy management strategies, increase consumers’ aware-
ness on their habits, detect malfunctioning, etc. One can
acquire this information via hardware, by attaching a smart
meter or a smart plug to every individual appliance. However,
this is not economical when there are many devices to
monitor. Alternatively, a software-based solution can be used
to decompose the aggregate power reading gathered from a
single-point smart meter into the individual consumption of
each appliance. This approach is known as Non-Intrusive
Load Monitoring (NILM) or energy disaggregation. The
advantages of the software-based solution are reduction of
intrusiveness into consumers’ houses and lower costs for
installation, maintenance and replacement of the monitoring
system.

A first energy disaggregation algorithm was proposed by
Hart in [7], where the aggregate power signal is decomposed
to match the individual appliances’ typical power demand
curves (commonly referred to as signatures). The limita-
tion of Hart’s approach is that it cannot detect appliances
with multiple operating modes and it is neither able to
decompose power signals made of simultaneous on/off events
on multiple appliances. Thereafter, the NILM problem has
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been extensively studied in the literature (see [18], [19], [2]
and references therein). The main idea behind most of the
available methods is to characterize the typical consumption
signatures of the appliances using a small set of disaggre-
gated data gathered during a short intrusive period. Once
the appliances’ signatures are available, disaggregation is
performed. Among the available approaches, we mention
the ones based on sparse coding [5], blind identification [3],
pattern recognition [4], [1], hidden Markov models and its
variants [13], [8], [9], deep learning and artificial neural
networks [15], [16], integer programming [17], and convex
optimization [14].

In this contribution, we propose a novel approach for
energy disaggregation that relies on PieceWise Affine AutoRe-
gressive (PWA-AR) dynamical models to describe the behav-
ior of the individual appliances. Using a set of disaggregated
data collected over a short intrusive period, the PWA-AR
models are first estimated off-line using the moving-horizon
PWA regression algorithm recently proposed by the authors
in [12]. Once the appliance models are estimated, energy
disaggregation is formulated as an integer programming
problem. Specifically, based on the measurements of the ag-
gregated power, the active operating mode of each appliance
(and thus its power consumption) is determined at each time
instance in an iterative way. The developed disaggregation
algorithm is tested on a benchmark dataset, using PWA-
AR dynamic models and also static models defined based
on the average power ratings of the devices. The obtained
results show that using dynamic models for the individual
appliances instead of static models significantly improves the
performance.

The paper is organized as follows. In Section II we for-
mally state the problem of energy disaggregation and present
the proposed approach in Section III. Specifically, we briefly
explain the moving-horizon PWA regression algorithm for
estimating individual appliance models in Section III-A, the
binary quadratic programming formulation to perform energy
disaggregation in Section III-B. Tests on benchmark data set
are discussed in Section IV. Finally, concluding remarks are
given in Section V.

II. PROBLEM FORMULATION

Consider a household with n different electric appliances
connected to the power line. The energy consumption of each
appliance is described by PieceWise Affine AutoRegressive
(PWA-AR) model with si ∈ N (with i = 1, . . . , n) operating
modes. Although the appliances may have different operating
modes, to simplify the notation we consider the case in which
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all appliances have equal number of operating modes s ∈ N
described by PWA-AR models having the same dynamical
order na ∈ N. More specifically, the power yi(k) consumed
by the i-th appliance at time k is modeled by

yi(k) =


Θ>i,1

[
1

xi(k)

]
if δi,1(k) = 1,
...

Θ>i,s
[

1
xi(k)

]
if δi,s(k) = 1,

(1)

where δi,j(k) ∈ {0, 1} (with j = 1, . . . , s) is a binary
variable which is used to characterize the active operating
mode of the appliance (i.e., the j-th mode is active if and
only if δi,j(k) = 1), Θi,j is a set of parameters describing
the behavior of the i-th appliance at the j-th operating mode
and xi(k) denotes the regressor vector containing the past
values of the outputs

xi(k) = [yi(k − 1), . . . , yi(k − na)]
>
. (2)

At a given time k, one and only one mode of the appliance is

active, i.e.,
s∑
j=1

δi,j(k) = 1. The measured aggregated power

reading is

y(k) =

n∑
i=1

yi(k) + e(k), (3)

with e(k) taking into account the measurement noise and
unmodeled appliances.

Problem 1 (energy disaggregation problem): Given an
N -length data sequence D = {y(k)}Nk=1 of aggregated
power signals y(k), estimate the end-use power consumption
profiles yi(k) (with, i = 1, . . . , n and k = 1, . . . , N ).

III. ENERGY DISAGGREGATION ALGORITHM

We detail a supervised disaggregation algorithm which
consists of two stages:
S1. The PieceWise Affine AutoRegressive (PWA-AR) model

in (1) describing the behavior of individual appliances
is estimated via the PWA regression algorithm recently
developed by the authors in [12], using disaggregated
training data collected over a short intrusive period. It is
a common practice to use a small set of disaggregated
data to learn the signature of the appliances [14], [18],
[19].

S2. Using the PWA-AR models obtained from stage S1,
an integer programming problem is solved iteratively
to determine the active devices contributing to the in-
stantaneous total power, along with their corresponding
operating modes.

In the following sections, stages S1 and S2 are described
in detail.

A. Stage S1: Training appliance models

In this section, we discuss the identification of PWA-AR
models (1) using the regularized moving-horizon approach
proposed in [12] for piecewise affine regression.

For each appliance, consider a set of training data
of length N̄ consisting of the disaggregated power con-
sumption {yi(k)}N̄k=1. The training regressor/output pairs

{xi(k), yi(k)}, with xi(k) defined in (2), are processed
iteratively. At each time sample k, a moving-horizon window
of length Np � N̄ containing regressor/output pairs from
time k−Np+1 to time k is considered. The model parameters
Θi,j and the binary variables δi,j(k) (for j = 1, . . . , s) at
time k are estimated simultaneously by solving the mixed-
integer quadratic programming problem:

min
Θi,j

δi,j(k−t)

s∑
j=1

Np−1∑
t=0

∥∥(yi(k−t)−Θ>i,j
[

1
xi(k−t)

])
δi,j(k−t)

∥∥2

2
(4a)

+

k−Np∑
t=1

∥∥∥yi(t)−Θ>i,σ(t)

[
1

xi(t)

]∥∥∥2

2
(4b)

s.t. δi,j(k−t)∈{0, 1},
s∑
j=1

δi,j(k−t)=1, t=0, . . . , Np−1.

(4c)

The objective of problem (4) is to determine the optimal
sequence of active modes

σi(k − t) = j∗ ⇔ δi,j∗(k − t) = 1, t = 0, . . . , Np − 1,

within the considered time window, along with the model
parameters Θi,j (for each appliance i and mode j), which
best match the available power consumption up to time k.
The term (4b) is a regularization term on the parameters Θi,j ,
which takes into account the past data outside the considered
horizon. More specifically, in (4b) the active mode sequence
is not optimized from time 1 to k − Np, but it is fixed
to the estimates {σi(t)}

k−Np

t=1 computed from the previous
iterations of the moving-horizon estimation algorithm. In
turn, the sequence of active modes is optimized only within
the considered time horizon in (4a).

At time k, only the active mode σi(k) is kept, and the Np-
length time window is shifted forward to process the next
pair {xi(k + 1), yi(k + 1)} in a moving-horizon fashion.
Increasing Np provides more data to estimate the model
parameters Θi,j and the sequence of active modes σi(k),
which improves the accuracy of the estimates. On the other
hand, increasing Np increases the number of binary decision
variables δi,j . Thus, the parameter Np acts as a tuning knob
to trade off accuracy vs complexity. At the end of the training
phase, the signature of the i-th appliance is captured by the
estimated model parameters Θi,j for all modes j = 1, . . . , s.

B. Stage S2: Energy disaggregation

Energy disaggregation means to determine the operating
mode of each appliance. To this end we solve the following
binary quadratic program

min
{δi,j(k)}n,si,j=1

∥∥∥∥∥∥y(k)−
n∑
i=1

s∑
j=1

Θ>i,j
[

1
x̂i(k)

]
δi,j(k)

∥∥∥∥∥∥
2

2

, (5a)

s.t. δi,j(k)∈{0, 1},
s∑
j=1

δi,j(k) = 1, (5b)
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at each time instance k, where y(k) is the measurement of
the aggregated power, Θi,j are model parameters estimated
at stage S1, x̂i(k) is the estimated regressor vector1 defined
as

x̂i(k) = [ŷi(k − 1), . . . , ŷi(k − na)]
>
,

where ŷi(k) is the estimate of the disaggregated power for
the i-th appliance constructed as follows.

At each time instance k = 1, . . . , N the binary quadratic
program (5) is solved iteratively using an estimate x̂i(k) of
the regressor obtained from the previous iterations. Specif-
ically, at each iteration k the active operating mode j∗ of
each appliance is determined by the solution of problem (5),
namely

j∗ : δi,j∗(k) = 1.

The power of each individual appliance is thus given by

ŷi(k) = Θ>i,j∗
[

1
x̂i(k)

]
,

which is used to construct the regressor x̂i(k + 1).

IV. APPLICATION TO REAL DATA

The proposed disaggregation algorithm is tested on a
benchmark AMPds dataset [11], which consists of power
consumptions of 19 appliances monitored from April 1,
2012 to March 31, 2013 at one minute read intervals in
a house located in Canada. In our analysis we consider
only the aggregate power consumption given by the sum
of the power consumption readings of the following four
electric appliances: 1) fridge (FGE); 2) dish washer (DWE);
3) heat pump (HPE); 4) clothes dryer (CDE). Moreover,
for a realistic scenario the aggregated power is corrupted
by a fictitious white noise e(k) with Gaussian distribution
N (0, σ2

e ) having standard deviation σe = 4 W.
The computations are carried out on an Intel i5 1.7 GHz

running MATLAB R2016b.

A. Performance measures

The quality of the energy disaggregation results is assessed
via the following performance measures [10], [14]:

1. Energy Fraction Index (EFI)
The EFI index

ĥi =

∑N
k=1 ŷi(k)∑n

i=1

∑N
k=1 ŷi(k)

quantifies the estimated fraction of total energy con-
sumed by the i-th appliance. This index provides an
important information to the user for potential savings.
In order to asses the effectiveness of the algorithm the
index ĥi is compared with an analogous index defined
based on the actual disaggregated profiles, namely

hi =

∑N
k=1 yi(k)∑n

i=1

∑N
k=1 yi(k)

.

1The true regressor xi(k) defined in (2) can not be constructed as it
depends on the past values of the individual appliance power yi which are
not available at the stage S2.

We remark that the true disaggregated power profiles yi
are not used in the disaggregation algorithm (stage S2)
but only to evaluate estimation performance.

2. Relative Square Error (RSE) and R2 coefficient
The normalized error between the actual and the es-
timated power consumption is quantified for the i-th
appliance by the RSEi index defined as

RSEi =

∑N
k=1 (yi(k)− ŷi(k))

2∑N
k=1 y

2
i (k)

,

and the R2
i coefficient defined as

R2
i = 1−

∑N
k=1 (yi(k)− ŷi(k))

2∑N
k=1 (yi(k)− ȳi)2

,

with ȳi = 1
N

∑N
k=1 yi(k). Both RSEi and R2

i measure
the match between the actual and the estimated power
profiles over time. Indeed, low values of RSEi (or
equivalently high values of R2

i ) imply an accurate
estimate of the index ĥi.

3. Total Energy Correctly Assigned (TECA)
The TECA index

TECA = 1−
∑N
k=1

∑n
i=1 |ŷi(k)− yi(k)|

2
∑N
k=1 y(k)

,

quantifies the percentage of energy correctly classified.
A precise estimate of the power consumption profiles
gives the information to the consumer about the use
of household appliances over time. This is essential for
potential power savings as well as monetary benefits as
the consumer can differ the use of some appliances to
off-peak hours.

B. Supervised training phase

At stage S1, PieceWise Affine AutoRegressive (PWA-AR)
models (1) describing the behavior for each appliance are
estimated as discussed in Section III-A using only 500 min
data of the day 19 (April 19, 2012) for fridge, dish washer,
heat pump and day 38 (May 8, 2012) for clothes dryer as
an intrusive period. PWA-AR models with s = 3 modes and
order na = 2 are considered. The moving-horizon mixed-
integer quadratic programming problem (4) is solved with
horizon length Np = 5 using Gurobi [6]. The average
computation time to solve (4) is 90 ms.

The results of the training phase are reported in Fig. 1,
which shows that the estimated PWA-AR models accurately
capture the behavior of the individual appliances’ power
consumption profiles.

For comparison, the use of static device models for energy
disaggregation is reported in the next section. Static models
are a special case of PWA-AR models (1) in which the
current output yi(k) does not depend on the past output
values i.e. yi(k) = Θi,j . The parameter Θi,j thus models
the power consumption of the i-th appliance operating at the
j-th mode and is chosen via simple visual inspection of the
training data. The selected values of the parameters Θi,j are

a. fridge: [Θ1,1 Θ1,2 Θ1,3] = [0 128 200] W;
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Fig. 1: Supervised learning: True vs estimated power con-
sumption.

b. dish washer: [Θ2,1 Θ2,2 Θ2,3] = [0 120 800] W;
c. heat pump: [Θ3,1 Θ3,2 Θ3,3] = [0 39 1900] W;
d. clothes dryer: [Θ4,1 Θ4,2 Θ4,3] = [0 260 4700] W.

C. Energy disaggregation

Once the PWA-AR models of individual appliances are
estimated, the power measurements of one month (from
1st to 30th June, 2012) are disaggregated by solving the

TABLE I: Estimated Energy Fraction Index ĥi and Actual
Energy Fraction Index hi. Results obtained using PWA-AR
models and static models.

PWA-AR models static models ground truth
ĥi ĥi hi

Fridge 19.6 % 14.9 % 21.3 %
Dish washer 6.8 % 11.4 % 5.1 %
Heat pump 41.6 % 42.0 % 42.3 %
Clothes dryer 31.9 % 31.6 % 31.3 %

TABLE II: Relative Square Errors and R2 coefficients.
Results obtained using PWA-AR models and static models.

PWA-AR models static models
RSEi R2

i RSEi R2
i

Fridge 15.5 % 76.5 % 35.9 % 45.5 %
Dish washer 12.4 % 87.3 % 38.0 % 61.4 %
Heat pump 0.6 % 99.3 % 4.0 % 95.6 %
Clothes dryer 0.1 % 99.9 % 0.3 % 99.7 %

TABLE III: Total Energy Correctly Assigned (TECA). Re-
sults obtained using PWA-AR models and static models.

PWA-AR models static models
TECA 95.3 % 89.4 %

binary quadratic program (5) iteratively using Gurobi. The
average CPU time taken to solve problem (5) is 8 ms. In the
case of static models (introduced in Section IV-B), iterative
construction of the estimated regressor x̂i(k) is not required
for solving problem (5).

The results obtained by using PWA-AR models (estimated
in stage S1) and by using static models, are reported in
Table I, Table II and Fig. 2. For visualization purpose,
only a portion of the disaggregated power profiles is plotted
in Fig. 2. The proposed algorithm using PWA-AR models
accurately estimates the power consumption trajectories of
each individual appliance over time as shown in Fig. 2. The
efficiency of the method is also reflected in the performance
measures reported in Table I, II and III.

We remark that for fridge and dish washer, the second
operating mode of both the appliances have similar static
models with parameters 128 W and 120 W respectively.
From the obtained results it can be observed that using only
static models it is difficult to distinguish between these two
devices. On the contrary, thanks to their dynamic nature
PWA-AR models are able to resolve such a conflict. Overall,
PWA-AR models outperform static models in the task of
energy disaggregation.

V. CONCLUSIONS

We have proposed a two-stage algorithm for energy dis-
aggregation. In the first stage, a small set of training data
consisting of disaggregated power profiles for individual ap-
pliances is used to estimate PieceWise Affine AutoRegressive
(PWA-AR) models employing a supervised moving horizon
PWA regression algorithm recently proposed in [12]. Once
the model parameters are estimated for each appliance, the
energy disaggregation problem is formulated as a binary
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Fig. 2: Disaggregated power consumption profiles. Results obtained using PWA-AR models (left panels) and static models
(right panels).

quadratic program. The dynamic modeling of the power
profiles of individual appliances leads to better energy disag-
gregation results compared to the same approach relying on
static models. This is due to the fact that the dynamic models
are able to capture the transient behavior, thus providing vital
information to distinguish between the appliances having
similar power signatures.

The proposed method is computationally efficient as the
appliance models can be estimated off-line only once, while
energy disaggregation is performed online with low com-
putational complexity. Thus, the approach proposed in this
paper is promising for embedded implementation in smart

meters.
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