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Abstract— This paper introduces a fast and simple model
predictive control (MPC) approach for multivariable discrete-
time linear systems described by input/output models subject to
bound constraints on inputs and outputs. The proposed method
employs a relaxation of the dynamic equality constraints by
means of a quadratic penalty function so that the resulting real-
time optimization becomes a (sparse), always feasible, bounded-
variable least-squares (BVLS) problem. Criteria for guarantee-
ing closed-loop stability in spite of relaxing the dynamic equality
constraints are provided. The approach is not only very simple
to formulate, but also leads to a fast way of both constructing
and solving the MPC problem in real time, a feature that is
especially attractive when the linear model changes on line,
such as when the model is obtained by linearizing a nonlinear
model, by evaluating a linear parameter-varying model, or
by recursive system identification. A comparison with the
conventional state-space based MPC approach is shown in
an example, demonstrating the effectiveness of the proposed
method.

I. INTRODUCTION

The early formulations of Model Predictive Control (MPC),

such as Dynamic Matrix Control (DMC) and Generalized

Predictive Control (GPC) were based on linear input/ouput

models, such as impulse or step response models and trans-

fer functions [1]. On the other hand, most modern MPC

algorithms for multivariable systems are formulated based

on state-space models. However, black-box models are often

identified from input/output (I/O) data, such as via recursive

least squares in an adaptive control setting, and therefore

require a state-space realization before they can be used

by MPC [4]. When the model changes in real time, for

example in case of linear parameter-varying (LPV) systems,

converting the black-box model to state-space form and

constructing the corresponding quadratic programming (QP)

matrices might be computationally demanding, sometimes

even more time-consuming than solving the QP problem.

Moreover, dealing directly with I/O models avoids imple-

menting a state estimator, that also requires some numerical

burden and memory occupancy.

In MPC based on I/O models two main approaches are

possible for constructing the QP problem. In the “condensed”

approach the output variables are eliminated by substitution,

exploiting the linear difference equations of the model. As
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a result, the optimization vector is restricted to the sequence

of input moves and the resulting QP problem is dense from

a numerical linear algebra perspective. In the non-condensed

approach, the output variables are also kept as optimization

variables, which results in a larger, but sparse, QP problem

subject to linear equality and inequality constraints.

In this paper we keep the sparse formulation but also

eliminate equality constraints by using a quadratic penalty

function that relaxes them. The resulting optimization prob-

lem, being only subject to lower and upper bounds on vari-

ables, is always feasible. Not only this approach simplifies

the resulting optimization problem, but it can be interpreted

as an alternative way of softening the output constraints,

as the error term in satisfying the output equation can

be equivalently treated as a relaxation term of the output

constraint.

In fact, in practical MPC algorithms feasibility is com-

monly guaranteed by softening output constraints by intro-

ducing slack variables [2, Sect. 13.5]. A disadvantage of

this approach is that even though the output variables are

only subject to box constraints, with the introduction of

slack variable(s) the constraints become general (non-box)

inequality constraints. This restricts the class of QP solvers

that can be used to solve the optimization problem. Instead,

the proposed method is similar to the quadratic penalty

method with single iteration [5, Sect. 17.1], which guarantees

feasibility of the optimization problem without introducing

slack variables, and can be solved by Bounded-Variable Least

Squares (BVLS), for which simple and efficient algorithms

exist [6], [7].

Results for guaranteeing stability when using I/O models

in MPC have existed in the literature for a long time, see, e.g.,

[8], [9]. For the unconstrained case, we show in this paper

that an existing stabilizing MPC controller based on an I/O

model, such as one obtained in [9], is guaranteed to remain

stable in the relaxed BVLS formulation if the penalty on

violating the equality constraints is chosen to be sufficiently

large.

Finally, the practical advantages of the approach are

demonstrated with an example. The proposed method based

on I/O models, which we refer to as the “BVLS approach”,

is compared on a multivariable application example in terms

of speed of execution against the standard MPC approach

based on state-space models.

The paper is organized as follows. We first introduce the

BVLS approach based on multivariable discrete-time linear

I/O models without stability considerations in Section II.

Infeasibility handling is discussed in Section III, where the
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performance of the proposed formulation is also compared

with the soft-constrained MPC approach. In Section IV we

analyze the theoretical optimality and closed-loop stability

properties of the BVLS approach. Numerical results are

presented in Section V. Final conclusions are drawn in

Section VI on the potential benefits and drawbacks of the

proposed method.

Notation. A ∈ R
m×n denotes a real matrix with m

rows and n columns; A�, A−1 (if A is square) and A†

denote its transpose, inverse (if it exists) and pseudo-inverse,

respectively. Rm denotes the set of real vectors of dimension

m. For a vector a ∈ R
m, ‖a‖2 denotes its Euclidean norm,

‖a‖22= a�a. The notation |·| represents the absolute value.

Matrix I denotes the identity matrix, and 0 denotes a matrix

of all zeros.

II. LINEAR MPC BASED ON I/O MODELS

A. Linear prediction model

We refer to the time-invariant input/output model typically

used in ARX system identification [3], consisting of a noise-

free MIMO ARX model with ny outputs (vector y) and nu

inputs (vector u) described by the difference equations

yl(k) =

ny∑
i=1

na∑
j=1

a
(l)
i,jyi(k − j) +

nu∑
i=1

nb∑
j=1

b
(l)
i,jui(k − j) (1)

where yl is the lth output and ul is the lth input, na =

max(n
(p)
i,j ), nb = 1 + max(n

(z)
i,j ), and n

(p)
i,j , n

(z)
i,j are the

number of poles and zeros, respectively, of the transfer

function between the ith output and the jth input for all

i ∈ {1, 2, . . . , ny}, j ∈ {1, 2, . . . , nu}. The coefficients

a
(l)
i,j denote the dependence of the ith output delayed by

j samples and the lth output at time instant k, while b
(l)
i,j

denotes the model coefficient between the ith input delayed

by j samples and the lth output at time instant k. Note that (1)

also includes the case of input delays by simply setting the

leading coefficients b
(l)
i,j equal to zero. In matrix notation, (1)

can be written as

y(k) =

na∑
j=1

Ajy(k − j) +

nb∑
j=1

Bju(k − j) (2)

B. MPC problem formulation

1) Performance index: We consider a finite prediction

horizon of Np time steps and take u(k + j), y(k + j + 1)
as the optimization variables, ∀j ∈ {0, 1, . . . , (Np − 1)}.
To possibly reduce computational effort, we consider a

control horizon of Nu steps, Nu ≤ Np, which replaces

variables u(k+Nu), u(k+Nu+1), . . . , u(k+Np−1) with

u(k+Nu−1). The following convex quadratic cost function

is used

min
u(·),y(·)

J(k) = min
u(·),y(·)

Np∑
j=1

1

2
‖Wy(y(k + j)− yr)‖22

+

Nu−2∑
j=0

1

2
‖Wu(u(k + j)− ur)‖22

+
1

2
(Np −Nu + 1)‖Wu(u(k +Nu − 1)− ur)‖22 (3)

where Wy ∈ R
ny×ny and Wu ∈ R

nu×nu are positive

semidefinite tuning weights, and yr, ur are the steady-state

references for outputs and inputs, respectively. The latter

are usually computed by static optimization of higher-level

performance objectives.

2) Constraints: The prediction model (2) defines the

following equality constraints on the output variables.

y(k + l) =

na∑
j=1

Ajy(k − j + l) +

nb∑
j=1

Bju(k − j + l)

∀l ∈ {1, 2, . . . , Np} (4)

In order to have a sparse formulation and avoid substituting

variables via (4) in the cost function, we keep the dynamic

constraints (4) in the following implicit form

Gz(k) = g(k) (5)

where, G ∈ R
Np·ny×(Nu·nu+Np·ny), g ∈ R

Np·ny , and

z(k) ∈ R
(Nu·nu+Np·ny) denotes the vector of decision

variables. In addition, we want to impose the following box

constraints

¯
u(k + j) ≤ u(k + j) ≤ ū(k + j), ∀j ∈ {0, 1, . . . , Nu − 1}

(6a)

¯
y(k + j) ≤ y(k + j) ≤ ȳ(k + j), ∀j ∈ {1, 2, . . . , Np}

(6b)

where we assume
¯
u(k) ≤ ū(k),

¯
y(k) ≤ ȳ(k), and that

¯
u(k),

ū(k),
¯
y(k), ȳ(k) may also take infinite values.

Note that bounds on the first input increment Δumin ≤
u(k) − u(k − 1) ≤ Δumax can be imposed by replacing

¯
u(k) with max{

¯
u(k), u(k − 1) + Δumin} and ū(k) with

min{ū(k), u(k − 1) + Δumax}.
For receding horizon control, we need to solve the follow-

ing convex quadratic programming (QP) problem

min
z(k)

1

2
‖Wz(z(k)− zr)‖22 (7)

s.t. Gz(k)− g(k) = 0

¯
z(k) ≤ z(k) ≤ z̄(k)

at each time step k, where Wz ∈
R

(Nu·nu+Np·ny)×(Nu·nu+Np·ny) is a block diagonal

matrix constructed by diagonally stacking the weights on

inputs and outputs according to the arrangement of elements

in z. Vector zr contains the steady-state references for the

decision variables and
¯
z, z̄ denote the lower and upper

bounds, respectively, obtained from (6).
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By using a quadratic penalty function to relax the equality

constraints in (7), we reformulate problem (7) as the follow-

ing BVLS problem

min
¯
z(k)≤z(k)≤z̄(k)

1

2
‖Wz(z(k)− zr)‖22+

ρ

2
‖Gz(k)− g(k)‖22

or, equivalently,

min
¯
z(k)≤z(k)≤z̄(k)

1

2

∥∥∥∥
[
Wz√
ρG

]
z(k)−

[
Wzzr√
ρg(k)

]∥∥∥∥
2

2

(8)

where the penalty parameter ρ > 0 is a large weight. This

reformulation is done for the following reasons:

(i) Penalizing the equality constraints makes problem (8)

always feasible;

(ii) No dual variables need to be optimized to handle the

equality constraints;

(iii) No additional slack decision variables are introduced for

softening output constraints, which would lead to linear

inequalities of general type (cf. Section III-A);

(iv) The BVLS problem (8) may be simpler and computation-

ally cheaper to solve than the constrained QP (7).

Relaxing the equality constraints as in (8) also has an

engineering justification: As the prediction model (1) is only

an approximate representation of the real system dynamics,

(opportunistic) violations of the linear dynamic model equa-

tions will only affect the quality of predictions, depending

on the magnitude of the violation. As shown in the next

toy example, we can make the violation small enough by

appropriately tuning ρ, so that the violation is negligible

when problem (7) is feasible, and performance is comparable

to that of the soft-constrained MPC approach in case of

infeasibilities (cf. Section III).

C. Example

m
κ

c

F

y

Fig. 1: Mass-spring-damper system

Figure 1 shows a SISO Linear Time-Invariant (LTI) system

in which the position y of a sliding mass m = 1.5 kg is

controlled by an external input force F against the action of

a spring with stiffness κ = 1.5 N/m and a damper with

damping coefficient c = 0.4 N·s/m. The continuous-time

model

m
d2y

dt2
+ c

dy

dt
+ κy(t) = F (t) (9)

can be converted to the following ARX form (2) with

sampling time of 0.1 s

y(k + 1) = 1.9638y(k)− 0.9737y(k − 1) + 0.0033(u(k) + u(k − 1))

(10)
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Fig. 2: Closed-loop simulation: controller performance

where the input variable u = F . For MPC we set Np = 10,

Nu = 5, Wy = 10, Wu = 1,
√
ρ = 103. The maximum

magnitude of the input force is 2 N, while the mass is

constrained to move within 0.4 m to the right and 0.1 m

to the left. The output set-point yr is 0.2 m to the right

which implies that the steady-state input reference ur is 0.3

N. The initial condition is y(k) = 0.1 m, y(k − 1) = 0 and

u(k − 1) = 0.

Figure 2 shows that offset-free tracking is achieved while

satisfying the constraints, and that the controller performance

is not compromised by relaxing the dynamic constraints. The

bottom plot in Figure 2 shows that the violation of equality

constraints is minimal during transient and zero at steady-

state, when there is no incentive in violating the equality

constraints. Finally, Figure 3 analyzes the effect of ρ on the

resulting error introduced in the model equations.

III. INFEASIBILITY HANDLING

This section investigates the way infeasibility is handled

by the BVLS approach as compared to a more standard soft-

constraint approach applied to the MPC formulation based

on an I/O model.

A. Soft-constrained MPC

We call “standard approach” when an exact penalty function

is used in the formulation to penalize slack variables which

1921



10−1 101 103 105 107
0

0.2

0.4

0.6

0.8

1
·10−2

ρ

m
a
x
(‖
G
z
�
−
g
‖2 2
)

Fig. 3: Maximum perturbation introduced in the linear dy-

namics as a function of the penalty ρ

relax the output constraints [2, Sect. 13.5], therefore getting

the following QP

min
u(·),y(·),ε

J(k) + σ1 · ε+ σ2 · ε2 (11)

s.t. y(k + l) =

na∑
j=1

Ajy(k − j + l) +

nb∑
j=1

Bju(k − j + l),

¯
y(k + l)− ε

¯
V ≤ y(k + l) ≤ ȳ(k + l) + εV̄,

∀l ∈ {1, 2, . . . , Np};

¯
u(k + l) ≤ u(k + l) ≤ ū(k + l), ∀l ∈ {0, 1, . . . , Nu − 1};
ε ≥ 0

where ε denotes the scalar slack variable,
¯
V and V̄ are

vectors with all elements > 0, and J(k) as defined in (3). The

penalties σ1 and σ2 are chosen such that σ1 is greater than the

infinity norm of the vector of optimal Lagrange multipliers

of (11), and σ2 is a small penalty included in order to have

a smooth function. This ensures that the output constraints

are relaxed only when no feasible solution exists.

B. Comparison of BVLS and soft-constrained MPC formu-
lations

The BVLS approach takes a different philosophy in per-

turbing the MPC problem formulation to handle infeasibility:

instead of allowing a violation of output constraints as

in (11), the linear model (2) is perturbed as little as possible

to make them satisfiable.

We compare the two formulations (8) and (11) on the

mass-spring-damper system example of Section II-C. In

order to test infeasibility handling, harder constraints are

imposed such that the problem (7) is infeasible, with the

same remaining MPC tuning parameters: the maximum

input force magnitude is constrained to be 1.2 N and the

spring cannot extend more than 0.2 m. Figures 4 and 5

demonstrate the analogy between the two formulations in

handling infeasibility. From Figure 4 it is clear that the

BVLS approach relaxes the equality constraints only when

the problem is infeasible, the same way the soft-constraint

approach activates a nonzero slack variable. As a result,

even though the two problem formulations are different, the

trajectories are almost indistinguishable for this example, as

shown in Figure 5.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

Time (s)

V
al

u
e

‖y(k + 1)− ŷ(k + 1)‖2
ε

Fig. 4: Value of slack variable ε on solving the soft con-

strained problem (11) and violation of the equality constraint

(10) at each time step where ŷ is obtained from z by solving

problem (8). ε > 0 indicates time instants with output

constraint relaxation
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Fig. 5: Closed-loop simulation with soft-constrained MPC

and BVLS formulations

IV. OPTIMALITY AND STABILITY ANALYSIS

We analyze the effects of introducing the quadratic penalty

function for softening the dynamic constraints (4). First,

we explore the analogy between the QP and the BVLS

problem formulations described earlier. Then, we derive the

conditions for closed-loop stability of the BVLS formulation.

For simplicity, we consider a regulation problem without

inequality constraints, that is we analyze local stability

around zero when
¯
y(k) < 0 < ȳ(k) and

¯
u(k) < 0 < ū(k).

Problem (7) becomes

min
z

1

2
‖Wzz‖22 (12a)

s.t. Gz − g = 0 (12b)
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(the parentheses indicating the time step have been dropped

for simplicity of notation).

By moving the equality constraints (12b) in the cost

function, we obtain the following unconstrained least-squares

problem

min
z

1

2

∥∥∥∥
[√

ρG
Wz

]
z −

[√
ρg
0

]∥∥∥∥
2

2

(13)

Next Theorem 1 proves that (12) and (13) coincide when

ρ→ +∞, as one would expect.

Theorem 1: Let z� and z�ρ denote the solutions of problem

(12) and (13) respectively. Then as ρ→ +∞, z�ρ → z�

Proof: Since G has fewer rows than columns, the

equality constraint (12b) can be eliminated using the singular

value decomposition (SVD)

G = U
[
Σ 0

] [V �1
V �2

]
︸ ︷︷ ︸
V �

(14)

where U and V are orthogonal matrices and hence V �1 V2 =
V �2 V1 = 0. Using this, one can analytically obtain expres-

sions for z� and z�ρ in terms of U , V1, V2, Σ, g, ρ and W ,

where W = W�
z Wz . Comparing the two proves Theorem 1.

The details have been omitted here for brevity.

Next Theorem 2 proves the existence of a lower bound on

the penalty parameter ρ such that, if the MPC controller

is stabilizing under dynamic equality constraints, it remains

stable under the relaxation via a quadratic penalty function

reformulation as in (12).

Theorem 2: Consider the regulation problem (12) and let

ζ(k + 1) = Aζ(k) + Bu(k) (15)

be a state-space realization of (2), which we assume

to be stabilizable, such that ζ(k) � [(y�(k − n +
1) · · · y�(k)) (u�(k − n + 1) · · ·u�(k − 1))]� ∈ R

nζ and

n = max(na, nb−1), nζ = n·ny+(n−1)·nu. The receding

horizon control law can then be described as

u(k) = Λz�(k)

= Λ[I − V2(V
�
2 WV2)

−1V �2 W ]V1Σ
−1U�S︸ ︷︷ ︸

K

ζ(k)

(16)

where Λ =
[
I 0 · · · 0

] ∈ R
nu×(Nu·nu+Np·nζ), g(k) =

Sζ(k) such that S =
[A� 0

]� ∈ R
Np·nζ×nζ , and K ∈

R
nu×nζ is the feedback gain. Similarly, for problem (13),

the control law is

uρ(k) = Λz�ρ(k) = Λ(W +G�ρG)−1G�ρS︸ ︷︷ ︸
Kρ

ζ(k) (17)

Assuming that the control law (16) is asymptotically stabi-

lizing, there exists a finite value ρ∗ such that the control law

(17) is also asymptotically stabilizing ∀ρ > ρ�.

Proof: Let m � max(|eig(A+ BK)|). By the asymp-

totic closed-loop stability property of the control law (16)

we have that

0 ≤ m < 1 (18)

Let σ = 1
ρ . The continuous dependence of the roots of a

polynomial on its coefficients implies that the eigenvalues of

a matrix depend continuously on its entries. The continuity

property of linear, absolute value, and max functions implies

that max(|eig(A+ BK 1
σ
)|) is also a continuous function of

σ and is equal to m for σ = 0. Therefore,

∀γ > 0 ∃δ > 0 :
∣∣∣max(|eig(A+ BK 1

σ
)|)−m

∣∣∣ ≤ γ

∀0 ≤ σ ≤ δ (19)

In particular, for any γ such that 0 < γ < 1 −m we have

that max(|eig(A+ BK 1
σ
)|) < 1. Let for example γ = 1−m

2

and define ρ∗ = 1
δ for any δ satisfying (19). Then for any

ρ > ρ∗ the corresponding MPC controller is asymptotically

stabilizing.

A way to start with an asymptotically stabilizing (non-

relaxed) MPC controller is to adopt the approach described

in [9]. As proved in [9], including the following terminal

constraint

ζ(Np + n− 1) = 0χ = ζr (20)

guarantees closed-loop stability, where ζr =
[(y�r · · · y�r )︸ ︷︷ ︸

n times

(u�r · · ·u�r )︸ ︷︷ ︸
n−1 times

]� ∈ R
nζ and provided that

Np ≥ n. For the regulation problem, 0χ = 0. By

substituting (2) in the above terminal constraint (20), n · ny

equality constraints of the form G1z = g1 are obtained

which can be included in (5). Theorem 2 allows us to relax

such equality constraints by penalizing their violation and

still guarantee closed-loop asymptotic stability, provided

that ρ is a sufficiently large penalty as in Theorem 2.

V. COMPARISON WITH STATE-SPACE BASED APPROACH

We compare our BVLS-based approach (8) against the

conventional condensed QP approach [10, Sect. III] based on

a state-space realization of the ARX model and condensed

QP problem

min
ξ

1

2
ξ�Hξ + f�ξ (21)

s.t. Φξ ≤ θ (22)

where ξ ∈ R
nξ is the vector of decision variables (i.e.,

predicted inputs and slack variable for soft constraints),

nξ = Np · nu + 1,Φ ∈ R
(2Np·(nu+ny)+1×nξ), and θ ∈

R
2Np·(nu+ny)+1 are such that (22) imposes box constraints

on the input and output variables, and non-negativity con-

straint on the slack variable.

We consider the open-loop unstable discrete-time transfer

function and state-space model of the AFTI-F16 aircraft [11]

under the settings of the demo afti16.m in [12]. The

system under consideration has 4 states, 2 inputs and 2

outputs. The tuning parameters are the same for both MPC

formulations (8) and (21) in order to compare the resulting

performances. As the main purpose here is to compare the

BVLS versus the condensed QP form based on state-space

models (QPss), we use MATLAB’s interior-point method
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(c) Comparison of the worst-case CPU time required to update the MPC
problem before passing to the solver at each step.

Fig. 6: Simulation results of the AFTI-F16 aircraft control

problem

for QP in quadprog to solve the QPss (21), and its box

constrained version to solve BVLS (8)1.

Figure 6a shows that even though the BVLS problem

has almost twice the number of primal variables to be

1The MPC problems have been formulated and solved in MATLAB
R2015b using sparse matrix operations where applicable for both cases in
order to compare most efficient implementations. The code has been run on
a Macbook Pro 2.6 GHz Intel Core i5 with 8GB RAM.

optimized, it is solved faster due to simpler constraints. Less

computations are involved in constructing the BVLS problem

(these are online computations in case of linear models that

change in real time) as compared to the condensed QP,

as shown in Figure 6b. This makes the BVLS approach

a better option in the LPV setting, where the problem is

constructed on line. Moreover, even in the LTI case one has

to update matrices θ, g on line. Figure 6c shows that the

BVLS approach requires fewer computations for such a type

of update. Note also that the computations required for state

estimation (including constructing the observer matrices in

the LPV case) that is needed by the condensed QP approach

have not been taken into account, which would make the

BVLS approach even more favorable.

VI. CONCLUSIONS

In this paper we have proposed an MPC approach based

on linear I/O models and BVLS optimization. The obtained

results suggest that the BVLS approach may be favorable

in both the LTI and adaptive (or LPV) case, and especially

for the latter case it may considerably reduce the online

computations required to construct the optimization problem.

A potential drawback of the BVLS approach is the risk of

numerical ill-conditioning due to the use of large penalty val-

ues, an issue that could appear also in soft-constrained MPC

formulated based on state-space models. Current research is

devoted to develop a numerically robust BVLS solver that

exploits structure of the proposed MPC problem formulation

and is efficient in terms of both memory and computations.
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