
Learning hybrid models with logical and continuous dynamics via
multiclass linear separation

Valentina Breschi, Dario Piga and Alberto Bemporad

Abstract— Hybrid dynamical models are a powerful tool for
describing the behaviour of many industrial processes and
physical phenomena in which logical (discrete) and analog
(continuous) dynamics exist and interact. Black-box identifi-
cation of hybrid models from input/output observations and
no information on the operating mode of the system is a
challenging problem, as both the logical and the continuous
dynamics must be retrieved.

In this work, we consider the identification of discrete hybrid
automata (DHA), which represent a mathematical abstraction
of hybrid models whose logical dynamics are described by
a finite state machine (FSM) and the continuous dynamics
are represented through affine discrete-time dynamical models.
We propose a two-stage estimation algorithm based on the
joint use of clustering, multi-model recursive least-squares and
linear multicategory discrimination techniques, which allows
us to estimate both the affine models describing the continuous
dynamics and the FSM governing the logical dynamics of the
system.

I. INTRODUCTION

Hybrid models represent a powerful mathematical ab-
straction to describe the behaviour of the real systems
that are characterized by the interaction between logical
and continuous dynamics. Four-stroke engines, switching
electronic circuits and mechanical systems with collisions
are only some of the processes that admit a natural hybrid
representation.
More generally, systems working under changing operating
conditions can be satisfactorily modelled using the hybrid
formalism. An extensive review on theory and applications
of hybrid models can be found in the special issue [4].

The problem of identifying hybrid systems from data
has been studied by both computer scientists and control
theorists, but a well established unified framework for the
identification of hybrid systems is still missing. An exhaus-
tive review of the main results in this field can be found
in [4]. However, most of the papers reviewed therein address
the identification of the number of possible operating regimes
and the conditions leading to transitions of the logical states,
while the identification of the continuous dynamics is not
considered. In [10] the combined use of a prefix tree and
linear regression techniques is employed to estimate both
the discrete and continuous dynamics of timed automata.
However, as timed automata are considered, the approach
accounts only for transitions triggered by time.
Several contributions on the identification of dynamical

The authors are with the IMT School for Advanced
Studies Lucca, Piazza San Francesco 19, 55100 Lucca,
Italy. E-mail: valentina.breschi@imtlucca.it;
dario.piga@imtlucca.it; alberto.bemporad@imtlucca.it.

piecewise affine (PWA) systems with real-valued states are
also available in the literature, among which we mention
the clustering based procedures [3], [6], [9]. However, the
identification of PWA systems do not involve the modelling
of the logical dynamics leading to a change in the operating
condition of the process.

In this paper, the identification of discrete hybrid automata
(DHA) from only a set of input/output data generated by
the system is addressed. DHA models, introduced in [11],
result from the connection of a FSM (which governs the logic
component of the system) with a switched affine discrete-
time dynamical model (which describe the continuous states
of the system). As a model class, DHA are quite general
and include, among others, MLD models, PWA dynamical
models and max-min-plus-scaling systems [8].

Under the hypothesis that the transitions between different
operating condition are due to the crossing of thresholds
by the signal φ ∈ Φ, which is either equal to the output
y ∈ Y or the regressor x ∈ X , we propose a two-stage
algorithm for the identification of the addressed DHA. In
the first stage, the input/output observations are sequentially
processed, simultaneously assigning each of them to the
most compatible mode and updating the parameters of the
corresponding dynamical sub-model. To accomplish this
task, an approach similar to the one presented in [3] is used
and extended to handle DHA with modes sharing the same
continuous dynamics. This first stage leads to the generation
of a set of clusters, each associated to one of the discrete
states of the system. Based on the estimated clusters, the
conditions governing the evolution of the discrete dynamics
are then retrieved, by computing a collection of polyhedral
partitions of space Φ through the multi-class linear separation
(offline) method presented by the authors in [3].
The proposed algorithm extends the approach presented
in [2], [3], as it enables to retrieve a model for the discrete
dynamics of the hybrid system.

The paper is organized as follows. Discrete hybrid au-
tomata are formally introduced in Section II and the ad-
dressed identification problem is formulated in Section III.
The proposed two-stage identification approach is then de-
scribed in Section IV. Two case studies, one of which
involving experimental data, are presented in Section V
to show the effectiveness of the developed identification
method.

A. Notation

Let Rn be the set of real vectors of dimension n. Let
I ⊂ {1, 2, . . . , } be a finite set of integers and denote by

2016 IEEE 55th Conference on Decision and Control (CDC)
ARIA Resort & Casino
December 12-14, 2016, Las Vegas, USA

978-1-5090-1836-9/16/$31.00 ©2016 IEEE 353

|I| the cardinality of I . Denote with {0, 1}n the set of n-
dimensional vectors whose elements take Boolean values.
Given a vector a ∈ Rn, let ai denote its i-th component
and ∥a∥2 be the Euclidean norm of a. Given a matrix A ∈
Rn×m, A′ denotes the transpose of A, tr(A) its trace. In
indicates the identity matrix of size n, 1n and 0n are the n-
dimensional column vector of ones and zeros, respectively.

II. DESCRIPTION OF DISCRETE HYBRID AUTOMATA

In order to frame the considered identification problem,
each element of a DHA is formally defined in this section,
according to the definitions introduced in [11].

A. Switched Affine Systems

A Switched Affine System (SAS), S, is a collection of
affine dynamical systems. Let k ∈ N be the discrete time
index, u(k) ∈ Rnu be the exogenous continuous input and
y(k) ∈ Y ⊆ Rny be the continuous output at time k. For
fixed model orders na and nb, S can be represented in the
autoregressive form:

y(k) = θ′i(k)x̃(k), (1)

where θi(k), with i(k) = 1, . . . , s, are the parameter matrices
describing the affine dynamical submodels and x̃(k) ∈ Rnx̃

is the extended regressor vector defined as x̃(k) = [x(k) 1]
′,

with x(k) ∈ X ⊆ Rnx being the collection of past input and
output measurements, i.e.,

x(k)=[y′(k−1) . . . y′(k−na) u
′(k−1) . . . u′(k−nb)]

′
.

B. Event Generator

An Event Generator (EG) E generates a Boolean vector
δe(k) ∈ D ⊆ {0, 1}ne according to the satisfaction of affine
constraints, i.e.,

δe(k) = fH(φ(k)), (2)

where fH : Φ → D ⊆ {0, 1}ne is a vector of descriptive
functions of a linear hyperplane. Specifically we suppose
that, for a given matrix A ∈ Rne×nφ and vector B ∈ Rne ,
[δie(k) = 1] ↔ [Aiφ(k) ≤ Bi], where φ(k) ∈ Φ ⊆ Rnφ is
either equal to the output y(k) or the regressor x(k).

C. Finite State Machine

A Finite State Machine (FSM) F is a discrete dynamic
process that evolves according to a logic state update function

xb(k + 1) = fB(xb(k), ub(k), δe(k)),

where xb ∈ Xb ⊆ {0, 1}nxb is the discrete (or logic) state,
ub ∈ Ub ⊆ {0, 1}nub is an exogenous Boolean input, δe(k)
is the endogenous input coming from the event generator E ,
and fB : Xb×Ub×D → Xb is a deterministic logic function1.

We suppose that no exogenous Boolean input ub(k) is
present, i.e.,

xb(k + 1) = fB(xb(k), δe(k)). (3)

1Synchronous FSM will be considered, so that the transitions may happen
only at the sampling instants.

D. Mode Selector

The Mode Selector (MS) M is a Boolean function fM :
Xb ×D → {1, . . . , s}:

i(k) = fM (xb(k), δe(k)) (4)

where i(k) is the selected dynamic submodel of the SAS,
called active mode.
In this work, we assume that the mode selectorM is only a
function of the current logic state xb(k). This means that one
and only one mode i(k) is associated to the logic state xb(k),
and the active mode i(k) is driven by the logic state update
function fB in (3). Because of this assumption, with some
abuse of notation, we will use interchangeably the terms
logic/discrete state and active mode in the rest of the paper.

III. PROBLEM STATEMENT

Based on the definitions introduced in Section II, the
identification problem addressed in the paper is formally
stated.

Problem 1: Discrete Hybrid Automaton identification
Consider an unknown data-generating DHA:

H = {S, E ,F ,M}, (5)

where S is the correspondent SAS, E is the Event Generator,
F is the associated FSM and M is the Mode Selector.
Given a set of N input/output pairs {u(k), y(k)}Nk=1 gener-
ated by the “true” underlying system (5), the identification
problem addressed in this work aims at estimating a DHA
model describing the input/output relationship between the
data, under the hypothesis that the measured outputs y(k)
may be noisy and the sequence of active modes i(k) is not
directly observable. �

The DHA identification problem requires one to:
(i) choose the number of local affine submodels s (or,

equivalently, the number of different values of the logic
state xb defining the FSM F). In this work, we assume
that s is fixed by the user. It can be chosen through
cross-validation, with a possible upper-bound dictated
by the maximum tolerable complexity of the estimated
DHA model.

(ii) estimate the parameter matrices {θi}si=1 associated to
each affine dynamical system of S (see eq. (1));

(iii) identify, from the input/output observations
{u(k), y(k)}Nk=1, the transitions between the active
modes (or equivalently, between the discrete states xb)
and derive the conditions leading to such transitions.

IV. DHA IDENTIFICATION ALGORITHM

A two-step algorithm is used to tackle the DHA identi-
fication problem. Specifically, the proposed method consists
of the following stages:
S1. The simultaneous clustering of the data
{x(k), y(k)}Nk=1 and estimation of the parameter
matrices θ1, . . . , θs. This is performed recursively,
by processing the training samples {x(k), y(k)}Nk=1

sequentially. After this stage, each sample pair

354

{x(k), y(k)} is associated to a cluster Ci (i = 1, . . . , s)
that represents the set of data points associated to
the i-th logic state of the system. Therefore, both
the parameter matrices θi and the sequence of active
modes I = {i(k)}Nk=1 are estimated.

S2. The definition of s different partitions {Φj}sj=1 of the
space Φ where the signal φ is defined. Each partition
Φj implicitly represent the function fH(φ(k)) in eq.
(2) describing the event generator E and the logic state
update rule xb(k+1) = fB(xb(k), δe(k)), given that the
active mode i(k) at the current time k is i(k) = j. More
specifically, after estimating the sequence of active
modes I = {i(k)}Nk=1 in stage S1, s different clusters
{Ci+j }si+=1 are constructed for each j = 1, . . . , s. Each
cluster Ci+j contains the samples {φ(k)}N−1

k=1 such that
i(k) = j and i(k + 1) = i+. The j-th partition Φj

of the space Φ is thus obtained by separating the clus-
ters {Ci+j }si+=1 through a multi-class linear separation
method.

As already introduced, φ ∈ Φ is supposed to be either
equal to the regressor or the output. Among the two possible
choices, the signal driving the transitions φ can be selected
through cross-validation procedures or on the basis of the
prior knowledge on the system.

Before providing technical details, it is worth remarking
that the two-stage algorithm described above is based on a
proper extension of the method introduced earlier by the au-
thors in [3] for the identification of PieceWise Affine (PWA)
functions, which represent a subclass of DHA systems. The
main improvement with respect to [3] is that we now take
into account the time evolution of the logic states, through the
construction of s different partitions {Φj}sj=1 of the space
Φ.

A. Iterative clustering and parameter estimation

Stage S1 is carried out as described in Algorithm 1 where,
to recursively update the values of the parameters θi and
to generate the clusters Ci, an approach similar to the one
proposed in [3] is used. Even if Algorithm 1 is suited for
both offline and online learning, only its execution in a batch
(i.e., offline) mode will be considered.

The main idea of Algorithm 1 is to compute, at each time
instant k, the estimation error ei(k) (i ∈ {1, . . . , s}) provided
by all the s local affine submodels, and select the local model
that “best fits” the current output observation y(k) (Steps 3.1
and 3.2). The sequence of active modes I is then updated as
in 3.4 and, at step 3.5, the parameter matrix θi(k) associated
to the selected model is updated using the recursive least-
squares algorithm in [1] based on inverse QR decomposition.

As already pointed out in [3], due to the greedy nature of
Algorithm 1, the estimates of the model parameters θi and
the clusters Ci are influenced by the the initial choice of the
parameters θi. A possible initialization for the matrices θi is
to take θ1, . . . , θs all equal to the best linear model, i.e.

θi ≡ argmin
θ

N∑
k=1

∥y(k)− θ′x(k)∥22, ∀i = 1, . . . , s. (7)

Algorithm 1 Recursive clustering and parameter estimation
algorithm

Input: Sequence of observations {x(k), y(k)}Nk=1, desired
number s of logic states, initial condition for the parameter
matrices θi, i = 1, . . . , s.

1. let I ← 0N ;
2. let Ci ← ∅, i = 1, . . . , s;
3. for k = 1, . . . , N do
3.1. let ei(k)← y(k)− θ′ix̃(k), i = 1, . . . , s;
3.2. let

i(k)← arg min
i=1,...,s

e′i(k)ei(k); (6)

3.3. let Ci(k) ← Ci(k) ∪ {x(k), y(k)};
3.4. let I(k)← i(k);
3.5. update θi(k) using the recursive least-squares Algo-

rithm [1];
4. end for;
5. end.

Output: Estimated matrices θ1, . . . , θs, clusters C1, . . . , Cs
and sequence of active modes I.

Moreover, as suggested in [3], the estimation quality can
be improved by reiterating Algorithm 1 multiple times,
using its output as an initial condition for the following
iteration.

Dealing with logic states with equal continuous dynamics

When Algorithm 1 is used to identify a DHA system with
two or more logic states sharing the same continuous dynam-
ics, the discrete behaviour (estimated at stage S2) may not
be accurately reconstructed since data points originated from
different logic states with the same continuous dynamics may
all be associated with the same cluster. Thus, the function
fH(φ(k)) characterizing the event generator E might not be
correctly retrieved. As a heuristic to overcome this problem,
Algorithm 1 is extended as explained in Algorithm 2.

At step 2, the number c∅ of “almost empty” clusters is
computed, where a cluster is considered “almost empty” if
the percentage of points belonging to it is smaller than a
threshold ε. Algorithm 1 is then run again with the reduced
number of clusters s̄ = s− c∅ (steps 4-5).
However, as the number of logic states s is supposed to
be a priori decided by the user, the parameter matrices
associated with the discarded s − s̄ logic states have to be
retrieved. In order to accomplish this task, given the clusters
C̄i, i = 1, . . . , s̄ resulting from step 5, the trace Σi of the
sample covariance matrices Ri associated with each cluster is
computed in step 7 in order to evaluate their “dispersion”.K-
means [7] is then iteratively applied starting from the cluster
with maximum dispersion (denoted as C̄j⋆ in step 9.3), until
the desired number s of cluster is retrieved. In particular, at
step 9, the chosen cluster C̄j⋆ is partitioned into l subclusters.
The parameter l (computed at stage 9.2) is set as the value
corresponding to clustering solution leading to the smallest

355

Algorithm 2 Splitting clustering algorithm
Input: Sequence of training samples {x(k), y(k)}Nk=1,

desired number s of logic states; parameter matrices θi and
clusters Ci (i = 1, . . . , s) provided by Algorithm 1; threshold
ε ≥ 0.

1. let c∅ ← 0;
2. for i = 1, . . . , s do
2.1. if |Ci|

N ≤ ε let c∅ ← c∅ + 1;
3. end for;
4. let s̄ = s− c∅;
5. compute new clusters C̄i and parameter matrices θi i =

1, . . . , s̄ through Algorithm 1;
6. compute the clusters’ sample covariance matrices

Ri, i = 1, . . . , s̄;
7. let Σi ← tr(Ri), i = 1 : . . . , s̄;
8. let µ← s̄ and β ← s̄;
9. while µ < s do
9.1. let j⋆ ← argmaxj∈{1,...,β} Σj;
9.2. let l← argminq∈{1,...,(s−µ+1)} DB(q);
9.3. divide C̄j⋆ into l clusters through K-means [7];
9.4. associate the parameter vector θj⋆ to the obtained

clusters;
9.5. let β ← β−1 and remove C̄j⋆ from the set of clusters

that can be partitioned;
9.6. update µ← µ+ (l − 1);
9.7. let Ci, i = 1, . . . , µ be the new collection of clusters

and θi the associated parameter matrices;
10. end while;

Output: Estimated parameter matrices θ1, . . . , θs, clusters
C1, . . . , Cs and updated sequence of active modes I.

value of the Davies-Bouldin index [5] defined as

DB(q) =
1

q

q∑
i=1

max
j ̸=i

(
d̄i + d̄j
dij

)
. (8)

where q corresponds to the number of created subclusters,
d̄i is the within-cluster distance of cluster i and dij is the
distance between the centroids of the i-th and the j-th cluster.
Once the j⋆-th cluster C̄j⋆ is partitioned, the parameter
vector θj⋆ is associated with all the computed subclusters,
at step 9.4. Moreover, in step 9.5, C̄j⋆ is removed from the
set of clusters that can further be divided and the number
of clusters still to be retrieved is updated (step 9.6). At the
end of Algorithm 2, s clusters are obtained, along with the
corresponding parameter matrices {θi}si=1 and the resulting
sequence of active modes I.

B. Identification of the dynamics of logic states

Stage S1 provides the identified parameter matrices θi,
i = 1, . . . , s, along with the sequence of active modes
I = {i(k)}Nk=1 obtained through recursive clustering of the
training samples {x(k), y(k)}Nk=1. Although, Stage S1 does
not yield to a direct estimation of the law driving the discrete
state, this information can be retrieved from the estimated

sequence of active modes I. Indeed, given the sample φ(k),
the sequence I provides an estimation of both the current
mode i(k) and the one-step ahead logic state i(k + 1). It is
worth remarking that the signal φ(k) is supposed to be either
equal to the system output y(k) or to the regressor x(k).

Algorithm 3 presents a procedure to reconstruct the logic
state dynamics. Specifically, s different polyhedral partitions
Φj of the space Φ are defined. The partitions Φj are
computed independently for each mode j, j = 1, . . . , s.
At step 2.1, s different clusters {Ci+j }si+=1 are constructed
for each j = 1, . . . , s. Each cluster Ci+j contains the samples
{φ(k)}N−1

k=1 such that i(k) = j and i(k + 1) = i+. The j-th
partition Φj of the space Φ is thus obtained by separating the
clusters {Ci+j }si+=1 through the multi-class linear separation
method in [3] (step 2.3). It is worth pointing out that each
of computed partitions Φj (j = 1, . . . , s) is defined by a
set of s polyhedra. Such a set of polyhedra is described by
a piecewise affine separator obtained as the maximum of s
affine functions of φ(k). The reader is referred to [3] for
further details on the employed (offline) multi-class linear
separation method.

Algorithm 3 Logic state dynamics identification algorithm
Input: Samples of {φ(k)}Nk=1; identified sequence of logic

states I = {i(k)}Nk=1.

1. let Ci+j ← ∅, j, i+ = 1, . . . , s;
2. for j = 1, . . . , s do
2.1. for i+ = 1, . . . , s do

2.1.1. for k = 1, . . . , N − 1 do
2.1.1.1. if i(k) = j and i(k + 1) = i+

2.1.1.2. let Ci+j ← Ci
+

j ∪ {φ(k)};
2.1.1.3. end if;

2.1.2. end for;
2.2. end for;
2.3. for all j = 1, . . . , s, compute the polyhedral partition

Φj of the space Φ by separating the clusters Ci+j
(with i+ = 1, . . . , s) through the multi-class linear
separation method in [3].

3. end for;

Output: Polyhedral partitions Φj , j = 1, . . . , s.

V. CASE STUDIES

In order to show the effectiveness of the proposed identifi-
cation technique, two examples are considered in this section:
a simulation example and a simple experimental case study.
All computations are carried out on a 2.8-GHz Intel Core i7
with 16 GB of RAM running MATLAB R2015a.

In both the examples it is supposed to be known a priori
that {φ(k)}Nk=1 is set equal to {y(k)}Nk=1. The trained
models are validated through the comparison of the simulated
results with an actual output sequence not used for training.
The initial logic state of the system is supposed to be
available in validation.

356

The quality of the estimated models is assessed on a
validation dataset not used for training, through the Best Fit
Rate (BFR) indicator defined as:

BFR = max

{
1− ||ŷ − y||2
||y − ȳ||2

, 0

}
· 100% (9)

where y and ŷ denote the vector stacking the actual and
(open-loop) simulated outputs, respectively, and ȳ is the
sample mean of y. The time evolution of the logic state is
simulated, in open-loop, through the polyhedral partitions
computed by Algorithm 3.

A. Example 1: Identification of a 4 modes DHA

As a first example, we consider the identification of the
DHA depicted in Fig. 1, where the SAS is constituted by 4
affine subsystems, two of which share the same dynamical
behaviour. Each subsystem is described by the following
first-order difference equation with no exogenous input sig-
nal:

y(k) = θi(k),1y(k − 1) + θi(k),2. (10)

The output is supposed to be corrupted by a noise eo(k),
which is taken as a realization of an additive zero-mean
white noise stochastic process with Gaussian distribution and
variance Λe = 1. The true values of the parameters θj,1 and
θj,2 (with j = 1, . . . , 4) are reported in Table I. The system is
estimated based on a set of N = 5000 output observations.
Note that, in this example, the regressor x(k) is given by
y(k − 1), and the space Φ = Y coincides with R. In order
to assess the effect of the noise eo(k), the Signal-to-Noise
Ratio (SNR), defined as:

SNR = 10 log

∑N
k=1 (y(k)− eo(k))

2∑N
k=1 e

2
o(k)

, (11)

is computed, and it is equal to 34.9 dB.
Both Algorithm 1 and 2 are executed. As expected, only the
second one leads to an accurate estimate of the system as
mode S1 and S3 share the same continuous dynamics (see the
true parameters θ1 and θ3 in Table I). Algorithm 2 is run 10
times, until convergence of the estimated model parameters
is achieved. The threshold ε is calibrated through cross-
validation, using a set of 500 noisy samples not employed
in the training phase, and it is set equal to 0.05. This means
that the clusters that are graded as “almost empty” are all
the ones constituted by less than 250 = Nε samples. This
value allows us to recognise that at least two modes share
the same continuous dynamics.

Based on the results obtained from Algorithm 2, s = 4
partitions Φj (j = 1, . . . , 4) of the space Φ are computed
through Algorithm 3 in order to estimate the discrete state
dynamics. The CPU time required to compute each partition
Φj (j = 1, . . . , s) is, in average, 0.018 s, while the entire
identification procedure takes 1.215 s to train the model.

The oriented graph describing the estimated DHA model
is depicted in Fig. 2 and the identified parameters {θi}4i=1

defining each affine dynamical model are reported in Table I.
The estimated partitions are shown in Fig. 3 and, from their

S1

S2

S4

S3

y(k) ≥ 50 y(k) ≥ 85

y(k) ≤ 70y(k) ≤ 10

Fig. 1. Example 1: Oriented graph schematizing the data generating system.
If the conditions on the edges are not satisfied, the system remains in the
same logical state.

Ŝ1

Ŝ2

Ŝ4

Ŝ3

ŷ(k) ≥ 49.9841 ŷ(k) ≥ 84.5521

ŷ(k) ≤ 70.0478ŷ(k) ≤ 9.9934

Fig. 2. Example 1: Oriented graph representing the identified model,
outlining the estimated switching conditions.

definition, the switching conditions presented in Fig. 2 are
retrieved. Note that, in Fig. 3, each partition is characterized
by only two polytopes. This is conformed to the true DHA
system, where each logic state can be followed only by two
other states (including itself).

Finally, the identified model is validated on a noiseless
dataset of length NV = 200. The obtained BFR is 99.51%,
showing the effectiveness of the proposed identification
method even in the challenging situation of two modes
sharing the same continuous dynamics.

B. Example 2: Modelling of switching RC circuit

The proposed algorithm is also tested on an experimental
case study consisting on the modelling of an RC circuit with
switching load, whose schematic and switching pattern are
represented in Fig. 4.

A 10 µF capacitor C and three 10 kΩ resistors R1, R2

and R3 are used. The ON/OFF switches are implemented
using MOSFETs. An Arduino UNO board is used for: (i)

(a) Active mode: i(k) = 1; blue:
i+ = 1, red: i+ = 2.

(b) Active mode: i(k) = 2; blue:
i+ = 2, red: i+ = 3.

(c) Active mode: i(k) = 3; blue:
i+ = 3, red: i+ = 4.

(d) Active mode: i(k) = 4; blue:
i+ = 4, red: i+ = 1.

Fig. 3. Example 1: polyhedral partitions computed through Algorithm 3,
with i(k + 1) = i+.

357

TABLE I
EXAMPLE 1: TRUE AND ESTIMATED PARAMETERS FOR EACH MODE OF THE SAS.

S1 S2 S3 S4

θ1,1 θ1,2 θ2,1 θ2,2 θ3,1 θ3,2 θ4,1 θ4,2
true 0.9 6 0.8 20 0.9 6 0.7 0

estimated 0.9003 5.9628 0.7911 20.6345 0.9003 5.9628 0.6996 0.0451

+
−Vin

R1

+

−

VoutC

R2

S1

R3

S2

(a) Schematic of the switching RC circuit.

S1 = ON
S2 = ON

S1 = OFF
S2 = OFF

S1 = ON
S2 = OFF

Vout(k) ≤ 1 V Vout(k) ≥ 4 V

Vout(k) ≤ 2 V

(b) Oriented graph representing the discrete state
dynamics of the system.

Fig. 4. Example 2: considered RC circuit and representation of its logic
behaviour.

measuring the output voltage y(k) = Vout(k); (ii) generating
the input voltage u(k) = Vin(k); (iii) driving the switches
according to the logic behaviour represented in Fig. 4(b). A
piecewise-constant signal is applied as input voltage Vin(k)
to generate the training and the validation datasets. Both of
these sets have length 2000. The output voltage Vout(k) is
measured, at a sampling time of Ts = 100 ms, with an analog-
to-digital (A/D) converter available on the Arduino board2.

The number of logic states is set to s = 3. Each dynamical
local model, identified through Algorithm 1, is described
by a linear difference equation of order 1, relating y(k)
to the regressor x(k) = [y(k − 1) u(k − 1)]

′. Algorithm 1
is iterated 10 times, and s = 3 partitions of the space
Φ = Y are computed through Algorithm 3. The overall
computational time required to identify a DHA model of
the circuit is 0.078 s, of which 0.033 s are taken to compute
the 3 partitions.

In order to assess the quality of the estimated model,
the (open-loop) simulated output ŷ of the identified DHA
is computed, and plotted in Fig. 5, along with the actual
output y composing the validation set. A BFR of 98.64 %
is achieved and, of the 2000-length sequence of logic states,
only 8 are not correctly recognized. From Fig. 5, it can be
noticed that the difference between the simulated and the
actual output is negligible.

VI. CONCLUSIONS

This paper has proposed a numerically efficient two-stage
algorithm for black-box identification of discrete hybrid au-

2The A/D converter used in the experiment has an input rage of 0-5 V
and a resolution of 10 bits.

Samples
0 500 1000 1500 2000

y
,ŷ

[V
]

0

1

2

3

4

5

Fig. 5. Example 2: actual (black) and simulated (red) output.

tomata (DHA). The approach consists of two stages: simul-
taneous clustering of the observations and estimation of the
submodel associated to each mode of the DHA; computation
of a set of polyhedral partitions of the space Φ used to
describe the logical state dynamics. A simulation and an
experimental example are reported to show the effectiveness
of the proposed approach.
Future research activities include the extension of the pre-
sented approach to the identification of hybrid systems with
stochastic switching (e.g., Markov processes with hidden
states) and its use in challenging real-world applications.

REFERENCES

[1] S.T. Alexander and A.L. Ghirnikar. A method for recursive least
squares filtering based upon an inverse QR decomposition. IEEE
Trans. Signal Processing, 41(1):20–30, 1993.

[2] V. Breschi, A. Bemporad, and D. Piga. Identification of hybrid
and linear parameter varying models via recursive piecewise affine
regression and discrimination. In Proc. of the 15th European Control
Conference, pages 2632–2637, 2016.

[3] V. Breschi, D. Piga, and A. Bemporad. Piecewise affine regression
via recursive multiple least squares and multicategory discrimination.
Automatica, 73:155–162, 2016.

[4] M.P. Cabasino, P. Darondeau, M.P. Fanti, and C. Seatzu. Model
Identification and Synthesis of Discrete-Event Systems. John Wiley
and Sons, Inc., 2015.

[5] D.L. Davies and D.W. Bouldin. A cluster separation measure. IEEE
Trans. Pattern Anal. Mach. Intell., 1(2):224–227, February 1979.

[6] G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari. A
clustering technique for the identification of piecewise affine systems.
Automatica, 39(2):205–217, 2003.

[7] J.A. Hartigan and M.A. Wong. Algorithm AS 136: A K-means
clustering algorithm. Applied Statistics, pages 100–108, 1979.

[8] W.P.M.H. Heemels, B. De Schutter, and A. Bemporad. Equivalence
of hybrid dynamical models. Automatica, 37(7):1085–1091, 2001.

[9] H. Nakada, K. Takaba, and T. Katayama. Identification of piecewise
affine systems based on statistical clustering technique. Automatica,
41(5):905–913, 2005.

[10] O. Niggemann, B. Stein, A. Vodencarevic, A. Maier, and H.K. Büning.
Learning behavior models for hybrid timed systems. AAAI, 2:1083–
1090, 2012.

[11] F.D. Torrisi and A. Bemporad. HYSDEL-a tool for generating
computational hybrid models for analysis and synthesis problems.
IEEE Transactions on Control Systems Technology, 12(2):235–249,
2004.

358

