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Abstract— In the “consensus problem” on multi-agent sys-

tems, in which the states of the agents are “opinions”, the

agents aim at reaching a common opinion (or “consensus

state”) through local exchange of information. An important

design problem is to choose the degree of interconnection of

the subsystems so as to achieve a good trade-off between a

small number of interconnections and a fast convergence to

the consensus state, which is the average of the initial opinions

under mild conditions. This paper addresses this problem

through l1-norm regularized versions of the well-known fastest

mixing Markov-chain problem, which are investigated theo-

retically. In particular, it is shown that such versions can be

interpreted as “robust” forms of the fastest mixing Markov-

chain problem. Theoretical results useful to guide the choice of

the regularization parameters are also provided, together with

a numerical example.

I. INTRODUCTION

Many dynamical systems (e.g., wireless sensor networks,
robotic teams, social networks) can be decomposed into a
large number of subsystems (or “agents”), whose interac-
tions are local and can be modeled by weighted edges in
a “communication” graph, in which the vertices are the
subsystems. Control problems on such multi-agent systems
enjoy properties related to the structure of the communication
graph, described, e.g., by weighted/unweighted adjacency
and graph-Laplacian matrices [1], [2]. A paradigmatic ex-
ample of such control problems is the “consensus problem”
[3], in which the states of the subsystems are “opinions”,
and the agents aim at reaching a common opinion (or
“consensus state”) through local exchange of information,
without any form of centralization. A typical example is
distributed estimation in wireless sensor networks [4]. Under
mild conditions, one can prove that the consensus state is
the average of the initial opinions, and the problem is called
the “average consensus problem” [3]. In both problems, the
variables to be chosen are the weights to be assigned to the
edges of the communication graph. Such weights define a
weighted adjacency matrix and, in the case of undirected
communication graphs, also a weighted Laplacian matrix,
whose spectral properties (i.e., properties expressed in terms
of the eigenvalues/eigenvectors of such matrices) determine
the rate of convergence to the consensus state [3], [5].
Interestingly, in the undirected case, determining the weights
that optimize such spectral properties can be formulated as
a convex optimization problem [5] (specifically, as a semi-
definite program (SDP)), which is known as the Fastest Mix-
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ing Markov-Chain (FMMC) problem and can be solved ef-
ficiently, e.g., using interior-point methods. In several cases,
one may be interested to find a suitable compromise between
the desired spectral properties of the graph and the number
of non-zero weights of the edges, thus obtaining sparse
solutions to the consensus/average consensus problems with
satisfactory rate of convergence. This is motivated, e.g., in
the case of a high cost of communication associated with
each edge. In this context, some recent results towards such
sparse solutions are provided in [6], that investigates sparse
graphs with certain symmetries, for which one has closed-
form expressions for the Laplacian eigenvalues. However,
the results are restricted to specific kinds of graphs. Another
recent result in this direction is provided by [7], which shows
that every Laplacian matrix associated with a symmetric
graph can be “well-approximated” by the Laplacian matrix
of a sparse subgraph, thus keeping the desired spectral
properties but with a small number of edges. In principle,
such a property could be exploited to find a good sparse
solution to the average consensus problem, starting from a
dense graph with good spectral properties, then sparsifying
it, trying to preserve such spectral properties.

The present work focuses on the average consensus prob-
lem and, in the case of undirected graphs, proposes a differ-
ent trade-off between good spectral properties of the commu-
nication graph and its sparsity, using an approach based on
an l

1

-norm regularized version of the FMMC problem. This
is motivated by the fact that, due to geometrical properties
of the l

1

norm [8], the introduction of such a regularization
term in the objective of a convex optimization problem often
enforces the sparsity of an optimal solution of the regularized
version of that problem. We also consider another variation
of FMMC in which, besides the introduction of the l

1

-norm
regularization term, the weights of some edges are fixed.
Then, we provide both a theoretical analysis of the two
variations of FMMC and a numerical example modeling
a wireless sensor network, comparing their solutions with
the one obtained by solving FMMC. Related approaches
were proposed in [9, Section 7.2] and in [10]; the novel
contributions of the present work are highlighted in Section
VI.

The paper is organized as follows. Section II summarizes
the FMMC problem and introduces its equivalent formula-
tion. Then, Section III presents two modifications of such a
formulation (both obtained adding an l

1

-norm regularization
term to enforce sparsity, and fixing also some weights in the
second one), which are investigated in Section IV from a
theoretical point of view. Section V shows their application
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to the design of a wireless sensor network. Finally, Section
VI discusses possible extensions of the work.

II. THE FASTEST MIXING MARKOV-CHAIN PROBLEM

The consensus problem consists in determining the
strengths of the interconnections among the subsystems of
a multi-agent system, so that their states converge to a
common state, subject to given constraints on the admissible
connections. In the simplest case, the subsystems are linear,
their states xi 2 R are scalar-valued, and the evolution
of each subsystem i is determined by the discrete-time
dynamics

xi(t+ 1) =

nX

i=1

Pijxj(t) , t = 0, 1, . . . , (1)

where P 2 Rn⇥n is a matrix of interconnections with non-
negative entries, satisfying the conditions P1n = 1n (here,
1n 2 Rn denotes a column vector of dimension n whose
components are all equal to 1) and

Pij = 0, if i 6= j and (i, j) /2 E , (2)

where E is a given set of admissible interconnections. In a
design phase, the elements of the matrix P can be chosen
arbitrarily, provided that the conditions above on P are
satisfied.

The non-negativity assumption on P , together with the
condition P1n = 1n, implies that 1 is the eigenvalue of the
matrix P with maximum absolute value (this is proved, e.g.,
by an application of Gersghorin’s theorem), and that the state
xi(t+1) at time t+1 is a convex combination of the states
xj(t) at time t. Note that the diagonal elements of P may be
different from 0, so, when Pii > 0, this means that xi(t+1)

is influenced by xi(t).
It is well known (see, e.g., [3]) that, when the eigenvalue

1 has algebraic multiplicity equal to 1, and all the other
eigenvalues of P have absolute value smaller than 1, the
states of the subsystems converge to the same “consensus”
state xc, when t ! 1:

xi(t)
t!1�! xc :=

nX

j=1

↵jxj(0) for all i 2 {1, . . . , n} , (3)

where the ↵j’s are suitable non-negative constants such that
nX

j=1

↵j = 1 . (4)

In the particular case in which the matrix P is symmetric,
one can show [3] that

↵j =
1

n

, 8j 2 {1, . . . , n} , (5)

and the consensus state is simply the average of the initial
states (in such case, the problem is called “average consen-
sus problem”). In the following, we will focus on such a
situation, therefore assuming P = P

T .

A particularly important aspect of the average consensus
problem is the rate of convergence to the average consen-
sus state, which is related to the second-largest eigenvalue
modulus of P [3]:

µ(P ) := max

j=2,...,n
|�j{P}| , (6)

where the eigenvalues �j{P}, j = 1, . . . , n, have been
ordered with their multiplicity in a nonincreasing order (i.e.,
1 = �

1

{P} � �

2

{P} � . . .�j(P ) � . . . � �n{P} > �1).
In particular, the smaller µ(P ), the faster the convergence to
the consensus state.

In addition, a related quantity is the mixing time [5]

⌧(P ) :=

1

log

⇣
1

µ(P )

⌘
, (7)

which is an asymptotic measure of the number of steps
required for reducing by the factor e (i.e., the Euler’s number)
a suitable distance (the “total variation distance”) between
the global state vector and the vector whose components are
equal to the average consensus state.

Since the symmetric matrix P has non-negative elements
and satisfies P1n = 1n, its generic element Pij can be
interpreted as a “transition probability” from the vertex i

to the vertex j of a graph (including self-loops), whose
vertices are the subsystems. This interpretation is useful
since also the rate of convergence of the Markov chain
with transition probabilities Pij to its stationary distribution
depends on µ(P ) (and again, the smaller the second-largest
eigenvalue modulus µ(P ), the faster the convergence to the
stationary distribution [5]). So, the problem of determining
the coefficients Pij that minimize µ(P ) subject to a given
topology of the graph is called the “Fastest Mixing Markov-
Chain” problem (Problem FMMC, in the following). In this
context, the elements Pij with i 6= j are interpreted as
weights of edges in the graph between the two different
vertices i and j, whereas Pii is the weight of a self-loop
edge. In [5], the problem is formulated as

Problem FMMC (first formulation) :

minimize µ(P )

subject to P1n = 1n, P = P

T
,

Pij � 0, 8i, j 2 {1, . . . , n} ,
Pij = 0, if (i, j) /2 E .

(8)

Interestingly, this is a convex optimization problem, since

µ(P ) = �

max

⇢
P � 1

n

1n1
T
n

�
(9)

(see [5] for a proof). Moreover, it can also be written as a
semi-definite program [5, Section 2.3].

A. An equivalent formulation of Problem FMMC

Now, we introduce an equivalent version of Problem
FMMC, using a notation suitable for its sparse extensions
presented in Section III and for their theoretical investigation
in Section IV.
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In the following, we denote by w 2 Rm the column
vector of weights associated with the m edges joining
different vertices, and by w

sl

2 Rn the column vector of
weights associated with the n self-loop edges. Hence, we
can represent the weighted adjacency matrix P as a linear
function P (w,w

sl

) of such weights. For instance, for n = 3

and m = n(n � 1)/2 (the case of a complete graph), one
obtains the symmetric matrix

P (w,w

sl

) =

2

4
w

sl,1 w

1

w

2

w

1

w

sl,2 w

3

w

2

w

3

w

sl,3

3

5
. (10)

Moreover, setting

w

sl

:= 1n �Mw , (11)

and introducing the vertex-edge incidence matrix M 2
Rn⇥m, whose elements are defined as follows:

Mij =

8
><

>:

1 , if the vertex i is an endpoint of
the (non-self-loop) edge j ,

0 , otherwise ,
(12)

the constraints

Pij � 0 for any i, j 2 {1, . . . , n} and P1n = 1n (13)

are equivalent to

wi � 0 for any i 2 {1, . . . ,m} and Mw  1n . (14)

Using (11), the matrix P becomes an affine function P (w)

of the weight vector w, and the second-largest eigenvalue
modulus of P becomes a convex function - denoted by µ(w)

- of the weight vector w, since convexity is preserved by
affine mappings [11, Section 3.2]. With the notations just
introduced, Problem (8) can be compactly rewritten as

Problem FMMC (second formulation) :

minimizew2Rm
µ(w)

subject to w � 0m,

Mw 6 1n .

(15)

III. TWO SPARSE VARIATIONS OF THE FASTEST MIXING
MARKOV-CHAIN PROBLEM

We now consider the following sparse variations of Prob-
lem FMMC.

A. Problem FMMC with an l

1

-norm regularization term

In order to find a good compromise between sparsity of w
and a small value of the second-largest eigenvalue modulus
of the weighted adjacency matrix P (w), we consider, for any
⌘ > 0, the following variation of Problem FMMC, in which
an l

1

-regularization term with regularization parameter ⌘ is
added to the objective (here, kwk

1

:=

Pm
i=1

|wi|):

Problem FMMC-l
1

(⌘):

minimizew2Rm
(µ(w) + ⌘kwk

1

)

subject to w � 0m,

Mw 6 1n .

(16)

The main motivation for the inclusion of ⌘kwk
1

in Prob-
lem FMMC-l

1

(⌘) is that, due to geometrical properties of
the l

1

norm, adding such a term to a convex optimization
problem often induces sparsity of a resulting optimal solution
w

�
(⌘) [8], that is many components of w�

(⌘) will be usually
equal to 0.

Remark 1: In general, the l

0

“pseudo-norm”

kwk
0

:= number of non-zero components of w , (17)

would be a more natural way to enforce sparsity than
the l

1

norm. However, it is a nonconvex function, which
would make the resulting optimization problem difficult to
solve. Nevertheless, as pointed out in several references (e.g.,
[12]), in optimization problems where sparsity is desired,
a common approach is to relax the l

0

pseudo-norm by
the l

1

norm, which is a convex function, thus making the
optimization problem a tractable one.

B. Problem FMMC with fixed edges and an l

1

-norm regu-
larization term

An interesting variation of Problem FMMC-l
1

(⌘) consists
in fixing some components of the weight vector w. This is
motivated, e.g., when one is interested in imposing some
additional structure on the topology of the graph resulting
from the optimization of the weight vector (e.g., enforcing
the presence of given subgraphs, such as trees connecting
important “backbone” vertices). Without loss of generality, in
the following we assume (up to a permutation of the indices)
that the fixed weights are the first m

fixed

ones (where 1 
m

fixed

< m), whereas the last m
free

: m � m

fixed

weights
are not fixed. We then decompose the column vector w as

w = col(w

fixed

, w

free

) (18)

and the vertex-edge incidence matrix M as

M = [M

fixed

|M
free

] , (19)

and we express µ as a function µ(w

free

) of the unfixed
weights only. Then, for a given choice of the weight vector
w

fixed

, we consider the following optimization problem:

Problem FMMC

constr

-l
1

(⌘):

minimizewfree2Rmfree (µ(w

free

) + ⌘kw
free

k
1

)

subject to w

free

� 0mfree
,

M

free

w

free

6 1n �M

fixed

w

fixed

.

(20)
Problem FMMC

constr

-l
1

(⌘) has a form that is similar to
the one of Problem FMMC-l

1

(⌘). Of course, we always
assume in the following that the fixed weights have been
chosen in such a way that the feasible set

{w 2 Rmfree
: w

free

� 0

free

,M

free

w

free

6 1n�M

fixed

w

fixed

}
(21)

of Problem FMMC
constr

-l
1

(⌘) is nonempty.
In the next section we provide some theoretical results

about the optimal solutions of Problems FMMC-l
1

(⌘) and
FMMC

constr

-l
1

(⌘).
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IV. THEORETICAL RESULTS

We first consider the case of Problem FMMC-l
1

(⌘); ex-
tensions of the results to Problem FMMC

constr

-l
1

(⌘) are
considered later in this section.

a) Effect of the regularization parameter.
Solving Problem FMMC-l

1

(⌘) involves finding a good
compromise between the minimization of the term µ(w)

and the one of kwk
1

. Next Proposition 1 shows that the
regularization parameter ⌘ has opposite effects on the two
terms µ(w) and kwk

1

, when evaluated at an optimal solu-
tion, whose existence can be proved by an application of
Weierstrass theorem, for every value of ⌘ > 0.

Proposition 1: Let 0 < ⌘

1

< ⌘

2

, and w

�
(⌘

1

), w

�
(⌘

2

)

be optimal solutions to Problem FMMC-l
1

(⌘
1

) and Problem
FMMC-l

1

(⌘
2

), respectively. Then,
i) µ(w�

(⌘

1

))  µ(w

�
(⌘

2

)) ,
ii) kw�

(⌘

1

)k
1

� kw�
(⌘

2

)k
2

.

b) Conditions under which w = 0m is an optimal solution
to Problem FMMC-l

1

(⌘).
Under some conditions on ⌘, w = 0m is an optimal

(trivial) solution to Problem FMMC-l
1

(⌘).
Proposition 2: Let ⌘ � 2. Then w = 0m is an optimal

solution to Problem FMMC-l
1

(⌘). If ⌘ > 2, then w = 0 is
its unique optimal solution.

The following example demonstrates that the bound shown
in Proposition 2 is tight, at least if one does not impose
further restrictions on the class of graphs to be considered.

Example 1: Let n = 2 and m = 1. Then, the matrix P (w)

has the expression

P (w) =


1� w

1

w

1

w

1

1� w

1

�
, (22)

whose eigenvalues are 1 and 1 � 2w

1

. Hence, on the set
[0, 1] of admissible solutions to Problem FMMC-l

1

(⌘), its
objective is

1� 2w

1

+ ⌘w

1

, (23)

and w

1

= 0 is, respectively, the unique optimal solution to
Problem FMMC-l

1

(⌘) for ⌘ > 2, one of its (infinite) optimal
solutions for ⌘ = 2, and a suboptimal solution for 0 < ⌘ < 2.

c) Choice of the regularization parameter and reoptimization.
The above theoretical results justify the following practical

rule for choosing the regularization parameter ⌘:
� given a positive integer N and a maximal acceptable

increase " for the second-largest eigenvalue modulus of
P with respect to its optimal value µ

�
FMMC

in Problem
FMMC, solve Problem FMMC-l

1

(⌘) in correspondence
of N values ⌘

(j) for ⌘ such that
· 0 < ⌘

(1)

< ⌘

(2)

< . . . < ⌘

(N)

< 2 (to avoid the
trivial optimal solution w

�
= 0m), and

· µ(w

�
(⌘

(j)
))  µ

�
FMMC

+ " (j = 1, . . . , N ) ;
� choose j

� 2 {1, . . . , N} that maximizes the sparsity

s(w

�
(⌘

(j)
)) := 1� kw�

(⌘

(j)
)k

0

/m

= fraction of zero elements of w

�
(⌘

(j)
) ;

� perform a “reoptimization step” solving Problem
FMMC on the graph obtained deleting all the edges
i for which w

�
i (⌘

(j�)
) = 0, obtaining another weight

vector w

�
reopt

. Of course, µ(w

�
reopt

)  µ(w

�
(⌘

(j�)
))

(due to the optimality of w

�
reopt

on Problem FMMC
on the new graph, and the feasibility of w

�
(⌘

(j�)
) for

such a problem), and s(w

�
reopt

) � s(w

�
(⌘

(j�)
)) by

construction.
Finally, a possible way to choose the tolerance parameter "

(which has to be in any case smaller than 1�µ

�
FMMC

, again
to avoid trivial optimal solutions) consists in expressing it in
terms of the maximal allowable ratio ⇢ between the mixing
time ⌧(P ) and its optimal value ⌧

�
FMMC :=

1

log

✓
1

µ�
FMMC

◆ ,

which is obtained when solving Problem FMMC, i.e., one
sets

" = (µ

�
FMMC

)

1
⇢ � µ

�
FMMC

. (24)

d) Interpretation of Problem FMMC-l
1

(⌘) as a robust
Problem FMMC.

Problem FMMC-l
1

(⌘) has also the following interpreta-
tion. Let us suppose that, for any given “nominal” choice
of the weights wi (i = 1, . . . ,m), one has an “uncertainty”
�wi such that |�wi|  �|wi|, for some fixed � > 0. Then, an
application of Gersghorin’s theorem and Weyl’s inequalities
in matrix-perturbation theory shows that the second-largest
eigenvalue modulus µ(w +�w) is bounded from above as

µ(w +�w)  µ(w) + 2�kwk
1

. (25)

Then, an optimal “robust” choice of the nominal weight
vector w is obtained minimizing the objective µ(w)+2�kwk

1

on the set of admissible weight vectors w, i.e., solving a
robust version of Problem FMMC which takes into account
the uncertainty of the weights, replacing the objective µ(w)

with µ(w) + 2�kwk
1

. However, this is equivalent to solving
Problem FMMC-l

1

((⌘) with the choice ⌘ = 2�.

e) Extension to Problem FMMC
constr

-l
1

(⌘).
Apart from the tightness of the bound on the minimal value

of the regularization parameter ⌘ for which w

free

= 0mfree

is an optimal solution, all the results above can be extended
to Problem FMMC

constr

-l
1

(⌘). In particular, Propositions 1
and 2 can be extended to Problem FMMC

constr

-l
1

(⌘), with
w replaced by w

free

.

f) Formulation through semi-definite programming (SDP).
Likewise Problem FMMC, Problems FMMC-l

1

(⌘) and
FMMC

constr

-l
1

(⌘) can be formulated as semi-definite pro-
grams, allowing the use of interior-point methods for finding
their optimal solutions. More precisely, if one expresses the
edges e

1

, . . . , em in terms of their endpoints as (i, j), and
considers the set

E :={(i, j) : i 6= j, i, j 2 {1, . . . , n}, and

9k 2 {1, . . . , n} such that Mik = Mjk = 1} , (26)

one obtains the following alternative formulation of Problem
FMMC-l

1

(⌘).

Problem FMMC-l
1

(⌘) (SDP formulation) :
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minimizes2R,P2Rn⇥n

0

@
s+

⌘

2

nX

i 6=j,i,j=1

Pij

1

A

subject to � sI � P � 1

n

1n1
T
n � sI,

P1n = 1n, P = P

T
,

Pij � 0, 8i, j 2 {1, . . . , n} ,
Pij = 0, if (i, j) /2 E .

(27)

Moreover, by introducing the subset E
fixed

✓ E of edges
(i, j) associated with fixed weights Pij,fixed = Pji,fixed,
one obtains the following alternative formulation of Problem
FMMC

constr

-l
1

(⌘).

Problem FMMC

constr

-l
1

(⌘) (SDP formulation) :

minimizes2R,P2Rn⇥n

0

@
s+

⌘

2

nX

i 6=j,i,j=1

Pij

1

A

subject to � sI � P � 1

n

1n1
T
n � sI,

P1n = 1n, P = P

T
,

Pij � 0, 8i, j 2 {1, . . . , n} ,
Pij = 0, if (i, j) /2 E ,
Pij = Pij,fixed, if (i, j) 2 E

fixed

.

(28)
Of course, the fixed weights Pij can be removed from
the objective of the optimization problem above, without
changing its optimal solution.

We solve both Problems FMMC-l
1

(⌘) and FMMC
constr

-
l

1

(⌘) through a modified version of the MATLAB function
fmmc.m in the CVX package (http://cvxr.com/cvx/
download/), which solves the SDP formulation of Problem
FMMC presented in [5] and [9].

V. NUMERICAL RESULTS

In this section, we provide some numerical results
about the optimal solutions of Problems FMMC-l

1

(⌘) and
FMMC

constr

-l
1

(⌘), and a comparison with the one of Prob-
lem FMMC. As a test example, we consider a vertex-edge
incidence matrix M corresponding to a model of a wireless
sensor network with 50 vertices and 200 edges, generated in
a similar way as the one in [9, Section 5.1].

The first two plots in Figure 1, which refers to the behavior
of an optimal solution w

�
(⌘) with respect to ⌘, confirm

the statement of Proposition 1 about the opposite monotonic
dependence on ⌘ of µ(w

�
(⌘)) and kw�

(⌘))k
1

. The bottom
plot shows its sparsity s(w

�
(⌘)) as a function of ⌘, which

in this particular case is not a monotonic function of ⌘.
However, the plots also show that w

�
(⌘) is more sparse

than the optimal solution of Problem FMMC (for which one
has s(w

�
FMMC) = 0.41), for all the considered values of ⌘.

So, they highlight the possibility of choosing a value of the
parameter ⌘ for which the second-largest eigenvalue modulus
µ(w

�
(⌘)) is not much larger than its minimum possible value

µ

�
FMMC , and that, at the same time, provides a satisfactory

sparsity of w�
(⌘).

In order to find such a parameter, following the procedure
illustrated in Section IV c), we chose ⇢ = 1.5, associ-
ated with the tolerance " = 0.027, as µ

�
FMMC

= 0.9165

(see formula (24)). We also considered N = 20 values
⌘

(1)

, . . . , ⌘

(N) for the regularization parameter ⌘ (uniformly
spaced in the interval [2·10�5

, 5·10�3

], see Figure 1), obtain-
ing j

�
= 5 and ⌘

(j�)
= 1.1 · 10�3 as the optimal regulariza-

tion parameter. For this value, we obtained µ(w

�
(⌘

(j�)
)) =

0.9186, kw�
(⌘

(j�)
)k

1

= 17.45, and s(w

�
(⌘

(j�)
)) = 0.545.

Compared with the optimal solution w

�
FMMC of Problem

FMMC (for which µ(w

�
FMMC) = 0.9165, kw�

FMMCk1 =

23.71, and s(w

�
FMMC) = 0.41), the increase of the second-

largest eigenvalue modulus, the decrease of the l

1

norm of
the weight vector, and the increase of its sparsity were,
respectively, about 0.2%, 26%, and 25%. In terms of the
mixing time (7), we obtained an increase of about 3% with
respect to the value associated with w

�
FMMC .
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Fig. 1. Dependence on ⌘ of the second-largest eigenvalue modulus of the
weighted adjacency matrix P (w) evaluated at an optimal solution w�(⌘)
of Problem FMMC-l1(⌘), the l1-norm of the weight vector w�(⌘), and its
sparsity.

Figure 2 shows: the original graph associated with the
given vertex-edge incidence matrix M (top-left panel); its
subgraph obtained by keeping only the edges associated
with non-zero weights in the optimal solution w

�
FMMC

to Problem FMMC (top-right panel); the one obtained by
keeping only the edges associated with the non-zero weights
of w

�
(⌘

(j�)
) (middle-left panel); a comparison of the two

subgraphs (middle-right panel), obtained merging such sub-
graphs and highlighting in blue the non-zero-weighted edges
appearing in both graphs and in green (resp., red) the non-
zero weighted edges of the optimal solution to Problem
FMMC (resp., Problem FMMC-l

1

(⌘(j
�
))) that are associated

with zero weights in the optimal solution to Problem FMMC-
l

1

(⌘(j
�
)) (resp., Problem FMMC). In particular, starting from

the original 200 edges joining different vertices, the optimal
solution of Problem FMMC keeps 118 edges, while the
optimal solution to Problem FMMC-l

1

(⌘(j
�
)) keeps only 91

edges. The percentage of edge reduction when moving from
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w

�
FMMC to w

�
(⌘

(j�)
) is therefore about 23%.

As described in Section IV c), after finding the parameter
⌘

(j�), an additional improvement may be obtained perform-
ing a “reoptimization step”, solving Problem FMMC on the
sparser subgraph obtained deleting the edges associated with
zero weights in the optimal solution w

�
(⌘

(j�)
) to Problem

FMMC-l
1

(⌘(j
�
)). This step is illustrated in the bottom-left

and bottom-right panels of Fig. 2, which shows in red the
edges deleted by the reoptimization step. In this way, a
new weight vector w

�
reopt

is obtained with µ(w

�
reopt

) 
µ(w

�
(⌘

(j�)
)) and s(w

�
reopt

) � s(w

�
(⌘

(j�)
)). So, compared

with w

�
FMMC , the sparsity of the weight vector w�

reopt

either
remains the same or even increases, whereas the second-
largest eigenvalue modulus either remains the same or even
decreases. Indeed, after the reoptimization step, we obtained
µ(w

�
reopt

) = 0.9169 and s(w

�
reopt

) = 0.56.

original graph FMMC subgraph

FMMC-l1(η(j
◦)) subgraph FMMC vs FMMC-l1(η(j

◦))

reoptimized subgraph FMMC-l1(η(j
◦)) vs reoptimization

Fig. 2. A comparison of the subgraphs associated with non-zero weights
in the optimal solutions to Problems FMMC and FMMC-l1(⌘(j

�)).

VI. CONCLUSIONS

We have presented some theoretical and numerical results
about two sparse variations of the fastest mixing Markov-
chain problem. The variations of Problem FMMC presented
in Section III are similar to one already proposed and investi-
gated numerically in [9, Section 7.2], with the only difference
that the l

1

-norm term in that reference appears inside an
additional constraint instead than in the objective. However,
up to our knowledge, their theoretical analysis presented
in this paper includes novel contributions in Sections IV
b), d), e). Such sections contain theoretical results that are
specific to the l

1

-regularized Problem FMMC and were not
derived in [9]. In particular, to the best of our knowledge, the
interpretation of Problem FMMC-l

1

(⌘) as a robust version of
the fastest mixing Markov-chain problem is novel, together
with the theoretical results shown in Section IV that can
be proved using Gershgorin’s theorem. Instead, Sections IV
a) and c) provide results common also to l

1

-norm regular-
izations of other convex optimization problems (and stated

here for completeness, and for their applicability to Problems
FMMC-l

1

(⌘) and FMMC
constr

-l
1

(⌘)), whereas Section IV
f) provides semi-definite programming formulations similar
to the one presented in [9, Section 7.2], which are useful
for solving Problems FMMC-l

1

(⌘) and FMMC
constr

-l
1

(⌘)
numerically. We also mention that, for the average consensus
problem in the presence of disturbances, a similar graph-
sparsification optimization problem was also recently con-
sidered in [10], and solved in a distributed way through the
Alternating Direction Method of Multipliers (ADMM) [13].

Among possible future developments, we mention the use
of other sparsity-enforcing regularization terms (such as the
group LASSO [14] and the sparse group LASSO [15]), an
investigation of theoretical bounds on the degree of sub-
optimality of the obtained solution with respect to the one
achieved by using the l

0

pseudo-norm, and an extension of
the theoretical analysis to nonlinear consensus problems.
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