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Abstract— This paper proposes two proximal Newton meth-
ods for convex nonsmooth optimization problems in compos-
ite form. The algorithms are based on a new continuously
differentiable exact penalty function, namely the Composite
Moreau Envelope. The first algorithm is based on a standard
line search strategy, whereas the second one combines the
global efficiency estimates of the corresponding first-order
methods, while achieving fast asymptotic convergence rates.
Furthermore, they are computationally attractive since each
Newton iteration requires the solution of a linear system of
usually small dimension.

I. INTRODUCTION

The focus of this work is on efficient Newton-like al-
gorithms for convex optimization problems in composite
form, i.e., the goal is to minimize an extended-real-valued
function F = f + g, where f is convex twice continuously
differentiable and g is convex and it can be nonsmooth
and extended-real-valued. Problems of this form have found
many applications ranging from optimization-based con-
trol such as Model Predictive Control (MPC), to machine
learning, signal processing, linear inverse problems, and
image analysis. For example when f is quadratic and g
is the indicator of a polyhedral set then the problem of
minimizing F reduces a quadratic program (QP), which has
found numerous applications in embedded MPC, whereas
if g = ‖ · ‖1 then the problem becomes an `1-regularized
optimization problem which has found many applications in
sparse approximation techniques.

Perhaps the most well known algorithm for convex com-
posite optimization is the forward-backward or proximal gra-
dient algorithm [1], a generalization of the classical gradient
and gradient projection methods to problems involving a
nonsmooth term. Accelerated versions of the proximal gra-
dient algorithm based on the work of Nesterov [2]–[4] have
also gained popularity. All the aforementioned algorithms
are based on computing at every iteration a solution of
the following linearized version of the problem around the
current iterate x

min
u
{f(x) +∇f(x)′(u− x) + g(u) + 1

2γ ‖u− x‖
2}. (1)

Although these algorithms share favorable global conver-
gence rate estimates of order O(ε−1) or O(ε−1/2) (ε is
solution accuracy), they are first-order methods and as such,
they are usually effective on computing solutions of low
or medium accuracy only. An evident remedy is to include
second-oder information by replacing the term 1

2γ ‖u − x‖
2

with 1
2 (u− x)′Q(u− x), where Q is the Hessian of f at x
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or some approximation of it, mimicking Newton or quasi-
Newton methods for unconstrained problems. This route is
followed in the recent work of [5], [6]. However, a severe
limitation of the approach is that, unless Q has special
structure, the linearized subproblem is very hard to solve. For
example, if F models a QP, the corresponding subproblem
is as hard as the original problem.

In this paper we follow a different route by showing that
the value function of problem (1) (viewed as function of x),
which we call the Composite Moreau Envelope (CME), has
favorable properties and can serve as a real-valued, smooth,
exact penalty function for the original problem. Our approach
combines and extends ideas stemming from the literature
on merit functions for Variational Inequalities (VIs) and
Complementarity Problems (CPs), specifically the reformu-
lation of a VI as a constrained continuously differentiable
optimization problem via the regularized gap function [7] and
as an unconstrained continuously differentiable optimization
problem via the D-gap function [8], see [9, Ch. 10] for
a survey and [10], [11] for applications to constrained
optimization and MPC.

Next, we show that one can design Newton-like methods
to minimize the CME by using tools from nonsmooth
analysis. Unlike the approaches of [5], [6], where the corre-
sponding subproblems are expensive to solve, our algorithms
require only the solution of a usually small linear system to
compute the Newton direction. However, this work focuses
on devising algorithms that have good complexity guarantees
provided by a global (non-asymptotic) convergence rate
while achieving Q-superlinear or Q-quadratic asymptotic
convergence rates in the nondegenerate cases. We show
that one can achieve this goal by embedding Newton-like
iterations on the penalty function, directly into the proximal
gradient method. This is possible by relating directions of
descent for the penalty function with those for the original
nonsmooth function.

The methods proposed in this paper are also particu-
larly suitable for real-time optimization applications, such
as embedded MPC, where the basic requirements are not
only speed but also software simplicity and complexity
certification. A step in this direction was taken in [12]–[14],
where tight bounds on the number of iterations were obtained
using fast gradient methods.

The proofs of the results are omitted due to space limita-
tions, but are available upon request.

II. CONVEX COMPOSITE OPTIMIZATION

Consider the following nonsmooth optimization problem

F? , inf
x∈Rn

F (x) , f(x) + g(x), (2)

52nd IEEE Conference on Decision and Control
December 10-13, 2013. Florence, Italy

978-1-4673-5716-6/13/$31.00 ©2013 IEEE 2358



where f ∈ S2,1µf ,Lf (Rn) and g ∈ S0(Rn) 1. We assume that
the set of minimizers X? = argminF is nonempty. It is well
known [15] that x? ∈ X? if and only if

x? = proxγg(x? − γ∇f(x?)),

where γ > 0 and proxγg is the proximal mapping of g [16]
defined by

proxγg(x) , argmin
u

{
g(u) + 1

2γ ‖u− x‖
2
}
. (3)

The value function gγ : Rn → R of the optimization
problem (3) is called the Moreau envelope, i.e.,

gγ(x) , inf
u

{
g(u) + 1

2γ ‖u− x‖
2
}
.

Properties of the Moreau envelope and the proximal mapping
are well documented in the literature [1], [15], [17], [18]. For
example, one has gγ ≤ g, argminx g

γ(x) = argminx g(x),
infx g

γ(x) = infx g(x). Furthermore, the proximal mapping
is single-valued, continuous and nonexpansive (Lipschitz
continuous with Lipschitz constant 1) and the envelope
function gγ is convex, continuously differentiable, with γ−1-
Lipschitz continuous gradient given by ∇gγ(x) = γ−1(x−
proxγg(x)). In many cases the Moreau envelope and the
proximal mapping can be computed explicitly [18], [1].
However, computing (f + g)γ is usually as hard as solving
Problem (2).

III. COMPOSITE MOREAU ENVELOPE

Next, we introduce the Composite Moreau Envelope
which is a continuously differentiable penalty function for
(2). For γ > 0, consider Fγ : Rn → R defined by

Fγ(x) = f(x)− γ
2 ||∇f(x)||22 + gγ(x− γ∇f(x)).

An alternative way to express Fγ is

Fγ(x)= min
u∈Rn

{
f(x)+∇f(x)′(u− x) + g(u)+ 1

2γ ‖u− x‖
2
}
.

Let

yγ(x) , proxγg(x− γ∇f(x)),

zγ(x) , γ−1(x− yγ(x)).

We note immediately that x? ∈ X? ⇐⇒ zγ(x?) = 0,
γ > 0. One distinctive feature of Fγ is the fact that it is real-
valued despite the fact that F can be extended-real-valued.
In addition, Fγ enjoys favorable first-order differentiability
properties.

Proposition 1: Fγ is continuously differentiable with

∇Fγ(x) =
(
I − γ∇2f(x)

)
zγ(x).

If γ ∈ (0, L−1f ) then the set of stationary points of Fγ equals
X?.

Another important property of Fγ is that it minorizes F .

1S2,1µ,L(R
n): class of twice continuously differentiable, strongly convex

functions with convexity parameter µ ≥ 0, whose gradient is Lipschitz
continuous with constant L ≥ 0. S0(Rn): class of proper, lower semicon-
tinuous convex functions from Rn to R.

Proposition 2: For any x ∈ Rn, γ > 0

Fγ(x) ≤ F (x)− γ
2 ‖zγ(x)‖2.

On the other hand, at any x ∈ Rn, Fγ can be lower bounded
by F evaluated at yγ(x).

Proposition 3: For any x ∈ Rn, γ > 0

F (yγ(x)) ≤ Fγ(x)− γ
2 (1− γLf ) ‖zγ(x)‖2.

In particular, if γ ∈ (0, L−1f ] then F (yγ(x)) ≤ Fγ(x).
The two preceding propositions lead us to the following

corollary. It states that if γ ∈ (0, L−1f ) then not only do the
stationary points of Fγ agree with X? (cf. Prop. 1) but also
that its optimal set agrees with X?. Although Fγ may not
be convex, the set of stationary points turns out to be equal
to the set of its minimizers.

Corollary 4: If γ ∈ (0, L−1f ) then X? = argminFγ .

IV. SECOND-ORDER ANALYSIS OF Fγ

As it was shown in Section III, Fγ is real-valued and
continuously differentiable. However, second order differen-
tiability of gγ is impossible unless g is twice continuously
differentiable [19]. In this section, we construct a linear
Newton approximation of ∇Fγ which can be considered as a
generalized Hessian for Fγ and will allow the development
of Newton-like methods with fast asymptotic convergence
rates. For completeness, we describe the tools of nonsmooth
analysis needed to proceed with the construction.

Definition 1 ( [9, Def. 7.5.13]): Let G : Rn → Rn be
locally Lipschitz on Rn. We say that G admits a linear
Newton approximation at a vector x̄ ∈ Rn if there exists a
multifunction T : Rn ⇒ Rn×n that has nonempty compact
images, is upper semicontinuous at x̄ and for any H ∈ T (x)

‖G(x) +H(x̄− x)−G(x̄)‖ = o(‖x− x̄‖) as x→ x̄.

Instead, if

‖G(x) +H(x̄− x)−G(x̄)‖ = O(‖x− x̄‖2) as x→ x̄

holds, then we say that G admits a strong linear Newton
approximation at x̄.

Arguably the most notable example of a linear Newton
approximation is Clarke’s generalized Jacobian, ∂CG(x) ,
conv(∂BG(x)), where the B-subdifferential is

∂BG(x) ,

{
H ∈ Rm×n

∣∣∣∣ ∃{xk} ⊂ CG with
xk → x,∇G(xk)→ H

}
and CG is the subset of Rn consisting of the points where
G is differentiable (if G is locally Lipschitz continuous,
according to Rademarcher’s theorem Rn \ CG is of zero
measure). In particular, if G is (strongly) semismooth at
x̄, i.e., G is directionally differentiable at x̄ and ‖Hd −
G′(x; d)‖ = o(‖d‖) for all d → 0 and all H ∈ ∂G(x + d),
then ∂CG, ∂BG are linear Newton approximations of G at
x̄. If G is strongly semismooth at x̄, i.e., G is directionally
differentiable at x̄ and ‖Hd − G′(x; d)‖ = O(‖d‖2) for all
d→ 0 and all H ∈ ∂G(x+ d), then ∂CG, ∂BG are strong
linear Newton approximations of G at x̄.

However, semismooth mappings can have linear Newton
approximations other than the generalized Jacobian. More
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importantly, mappings that are not semismooth can admit
linear Newton approximations as well.

A. Generalized Jacobian of proximal mappings

The next theorem gives the basic properties of the gener-
alized Jacobian of the proximal mapping.

Theorem 5: Suppose that g ∈ S0(Rn) and x ∈ Rn. Every
P ∈ ∂C proxγg(x) is a symmetric positive semidefinite
matrix that satisfies ‖P‖ ≤ 1.

Remark 1: In many cases where proxγg is explicitly com-
putable, it can be shown that it is (strongly) semismooth,
hence it admits ∂C proxγg , ∂B proxγg as linear Newton
approximations. For example, when g : Rn → R is piecewise
quadratic (e.g., indicator or support function of polyhedral
sets, `1 and `∞ norms, etc.) then proxγg is piecewise
affine, hence strongly semismooth. The projection operator
over symmetric cones is strongly semismooth [20]. General
conditions that guarantee semismoothness of the proximal
mapping can be found in [21], [22].

Remark 2 (block separable cost): An interesting property
of ∂C proxγg , that follows directly from its definition, is
that if g is (block) separable, then every P ∈ ∂ proxγg(x)
is a (block-) diagonal matrix. This has favorable computa-
tional implications especially for large-scale problems. For
example, if g is separable (`1-norm, indicator of `∞-ball or
of a box), i.e., g(x) =

∑n
i=1 gi(xi) then the elements of

∂C proxγg(x) (or ∂B proxγg(x)) are diagonal matrices with
diagonal elements in [0, 1] (or in {0, 1}).

B. Linear Newton approximation of ∇Fγ
In order to be able to devise Newton-like algorithms with

fast asymptotic convergence rates for minimizing Fγ , we
need to construct a linear Newton approximation for ∇Fγ .
One way to do that is to impose extra regularity assumptions
on f so that∇Fγ is semismooth. In that case one can employ
∂C(∇Fγ) as a linear Newton approximation. However, the
computation of an element of ∂C(∇Fγ) can become too
complicated, since it will involve third-order derivatives of f .
On the other hand, what is really needed to devise Newton-
like algorithms with fast local convergence rates is a linear
Newton approximation at some stationary point of Fγ , which
by Corollary 4 is also a minimizer of F , provided that
γ ∈ (0, L−1f ). It turns out that we can define a linear Newton
approximation at a stationary point, whose elements have
a simpler form than those of ∂C(∇Fγ), without assuming
semismoothness of ∇Fγ . The approach we follow is largely
based on [23], [9, Prop. 10.4.4]. First, we will need the
following lemma.

Lemma 6: Suppose that Pγ : Rn ⇒ Rn×n is a linear
Newton approximation for proxγg at x − γ∇f(x) ∈ Rn,
x ∈ Rn. Then

Zγ(x)={γ−1(I−P (I−γ∇2f(x)))|P ∈ Pγ(x− γ∇f(x))}

is a linear Newton approximation for zγ at x. Furthermore,
if Pγ is a strong linear Newton approximation for proxγg at
x− γ∇f(x) and ∇2f is Lipschitz continuous at x, then Zγ
is a strong linear Newton approximation for zγ at x.

Theorem 7: Suppose that Pγ : Rn ⇒ Rn×n is a linear
Newton approximation for proxγg at x? − γ∇f(x?) ∈ Rn,
x? ∈ X?. Then

Tγ(x)={(I−γ∇2f(x))Z|Z ∈ Zγ(x)}

is a linear Newton approximation for ∇Fγ at x?. Further-
more, if Pγ is a strong linear Newton approximation for
proxγg at x? − γ∇f(x?) and ∇2f is Lipschitz continuous
at x?, then Tγ is a strong linear Newton approximation for
∇Fγ at x?.

The next proposition shows that every element of Tγ
is a symmetric positive semidefinite matrix, therefore the
corresponding Newton system (cf. Eq. (5)) can be solved
(approximately) by (modified) Cholesky factorization or con-
jugate gradient methods.

Proposition 8: Let x ∈ Rn and assume that Pγ(x −
γ∇f(x)) ⊆ ∂C proxγg(x − γ∇f(x)). Any H ∈ Tγ(x) is
symmetric positive semidefinite and satisfies

c1‖d‖2 ≤ d′Hd ≤ c2‖d‖2, ∀d ∈ Rn, (4)

where c1 , min {(1− γµf )µf , (1− γLf )Lf}, c2 ,
γ−1(1− γµf ).

The mapping Tγ can be used to compute Newton-like
directions for Fγ . At any x ∈ Rn, we can pick a matrix
H ∈ Tγ(x) and solve the following linear system, which we
call Newton system, to determine a Newton direction:

Hd = −∇Fγ(x). (5)

Due to the structure of the elements of Tγ(x), this simplifies
to

(I − P (I − γ∇2f(x)))d = −(x− yγ(x)), (6)

where P ∈ Pγ(x− γ∇f(x)).

V. PROXIMAL NEWTON METHOD

Having established the equivalence between minimizing F
and the CME Fγ , as well as a linear Newton approximation
for ∇Fγ , it is now very easy to design globally convergent
Newton-like algorithms with strong asymptotic convergence
rates, for computing a x? ∈ X?. Algorithm 1 is a standard
line search method for minimizing Fγ . Under a nondegen-
eracy assumption on Tγ , eventually the stepsize becomes
equal to 1 and Algorithm 1 reduces to the (undamped) linear
Newton method [9, Alg. 7.5.14] for solving ∇Fγ(x) = 0.

The next theorem summarizes the convergence properties
of Algorithm 1, as well as its asymptotic convergence rate.
The proof of the first two parts is quite standard in uncon-
strained optimization of continuously differentiable functions
[24, Prop. 1.2.1], [9, Th. 10.4.9(a), (c)]. The proof of the third
part is similar to [9, Th. 10.4.9(d)].

Theorem 9: Let {xν} be an infinite sequence generated
by Algorithm 1. Assume that there exist δ2 ≥ δ1 > 0 such
that δ1‖d‖2 ≤ d′Dνd ≤ δ2‖d‖2 for all d ∈ Rn. (i)

1) Every accumulation point of {xν} belongs to X?.
2) If {xν} has an isolated accumulation point, then the

whole sequence {xν} converges to that point.
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Algorithm 1: Proximal Newton Method (PNM)

Input: γ ∈ (0, L−1f ), σ ∈ (0, 1/2), ρ > 0, p > 2, ν = 0,
x0 ∈ Rn.

1 Select H ∈ Tγ(xν) and solve

Hνd = −∇Fγ(xν).

If system is not solvable or if

∇Fγ(xν)′dν ≤ −ρ‖dν‖p

is not satisfied, dν ← −Dν∇Fγ(xν), Dν positive
definite

2 Find smallest iν ∈ N such that τν = 2−iν satisfies
Fγ(xν + τνd

ν) ≤ Fγ(xν) + στν∇Fγ(xν)′dν

3 xν+1 ← xν + τνd
ν

4 ν ← ν + 1 and go to Step 1.

3) Suppose that x? is a limit point of {xν}. If Pγ is a lin-
ear Newton approximation of proxγg at x?−γ∇f(x?)
and all elements of Tγ(x?) are nonsingular, then the
whole sequence converges to x? and the convergence
rate is Q-superlinear; furthermore if ∇2f is Lipschitz
continuous in a neighborhood of x?, the convergence
rate is Q-quadratic.

Remark 3: An obvious choice for Dν in Step 1 is the
identity matrix, which gives dν = −∇Fγ(xν). Another
interesting choice is Dν = γ(I−γ∇2f(xν))−1, which gives
dν = −γzγ(x) and xν+1 = xν − τν(xν − yγ(xν)). In that
case, we can select τν = 1 to obtain xν+1 = yγ(xν), i.e., the
proximal gradient step. It can be seen that this is a direction
of descent for Fγ . In fact, using Props. 2 and 3 we obtain
Fγ(xν+1) ≤ F (xν+1) ≤ Fγ(xν)− γ

2 (1−γLf )‖zγ(xν)‖2. It
can be easily shown that the conclusions of Theorem 9 are
valid also with this choices of Dν , τν .

VI. PROXIMAL GRADIENT-NEWTON METHOD

Algorithm 1 exhibits fast asymptotic convergence rates
provided that the elements of Tγ(x?) are nonsingular, but
not much can be said about its global convergence rate.
This is mainly due to the fact that Algorithm 1 “forgets”
about the convex structure of F , since it tries to minimize
directly Fγ which can be nonconvex and its gradient may
not be Lipschitz continuous. Another reason for this is that
the iterates xν produced by Algorithm 1 may be outside
dom g (but yγ(xν) ∈ dom g, see Prop. 3). In this section,
we show how Algorithm 1 can be modified so as to be able
to derive global complexity estimates, similar to the ones for
the proximal gradient method, and at the same time retain
fast asymptotic convergence rates. The key idea is to inject
a proximal gradient step after the Newton step (cf. Alg. 2)
and analyze the consequences of this choice on F , directly.

Remark 4: If Υ = ∅ in Algorithm 2, then it becomes
the proximal gradient method [2], [3], [15], i.e., xν+1 =
proxγg(x

ν − γ∇f(xν)).
It can be shown that the sequence of iterates {xν} pro-

duced by Algorithm 2 enjoy the same favorable properties

Algorithm 2: Proximal Gradient–Newton Method
(PGNM)

Input: γ ∈ (0, L−1f ), σ ∈ (0, 1/2), ρ > 0, p > 2,
Υ ⊆ N, ν = 0, s0 = 0, x0 ∈ dom g

1 if ν ∈ Υ or sν = 1 then
2 Select Hν ∈ Tγ(xν) and solve

Hνd = −∇Fγ(xν).

If system is not solvable or if

∇Fγ(xν)′dν ≤ −ρ‖dν‖p

is not satisfied, dν ← −Dν∇Fγ(xν), Dν positive
definite

3 Find smallest iν ∈ N such that τν = 2−iν satisfies
Fγ(xν + τνd

ν) ≤ Fγ(xν) + στν∇Fγ(xν)′dν

4 xν+1 ← yγ(xν + τνd
ν)

5 if iν = 0 then sν+1 ← 1 else sν+1 ← 0
6 else
7 xν+1 ← yγ(xν), sν+1 ← 0
8 end
9 ν ← ν + 1 and go to Step 2.

in terms of convergence and local convergence rates, as the
one of Algorithm 1.

Theorem 10: Theorem 9 holds for the sequence of iterates
produced by Algorithm 2.

As the next theorem shows, Algorithm 2 not only enjoys
fast asymptotic convergence rate properties but also comes
with the following global complexity estimate.

Theorem 11: Let {xν} be a sequence generated by Al-
gorithm 2. Assume that the level sets of F are bounded,
i.e., ‖x − x?‖ ≤ R for some x? ∈ X? and all x ∈ Rn
with F (x) ≤ F (x0). If F (x0) − F (x?) ≥ γ−1R2 then
F (x1) − F (x?) ≤ 1

2γ
−1R2. Otherwise, for any ν ∈ N we

have
F (xν)− F? ≤ 2γ−1R2

ν+2 .

When f ∈ S1,1µf ,Lf (Rn), µf > 0 the global rate of con-
vergence is linear. The next theorem gives the corresponding
estimates.

Theorem 12: If f ∈ S1,1µf ,Lf (Rn), µf > 0, then

F (xν)− F? ≤ (1 + γµf )−ν(F (x0)− F?),
‖xν+1 − x?‖2≤ 1−γµf

γµf
(1 + γµf )−ν‖x0 − x?‖2.

VII. SIMULATIONS

A. Box constrained QPs

We compare the performance of Algorithms 1 and 2 aginst
the fast gradient method (FGM) [25, Eq. 2.2.19] and the
interior point solver GUROBI 5.0 [26], on box-constrained
strongly convex QPs, i.e.,

minimize 1
2x
′Qx+ q′x

subject to x ∈ C,

where C = {x ∈ Rn|` ≤ x ≤ v}. With g(x) = δC(x),
we have that proxγg(x) = max{min{x, `}, v} is separable,
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therefore any P ∈ ∂Cg(x) is a diagonal matrix with elements
in [0, 1], cf. Remark 2, simplifying considerably the Newton
system (6). Specifically, let

δ , {i ∈ N[1,n]|`i < xi − γ∇if(x) < vi},
β , {i ∈ N[1,n]|xi − γ∇if(x) ≤ `i},
β , {i ∈ N[1,n]|xi − γ∇if(x) ≥ vi},

and β = β ∪ β. Then P = diag(p1, . . . , pn) where pi = 1,
for i ∈ δ and pi = 0 otherwise, belongs to Pγ(x−γ∇f(x)).
Therefore, the Newton system (6) simplifies to dβ = `β−xβ ,
dβ = vβ − xβ and

Qδδdδ = −∇δf(x)−Qδβdβ . (7)

Notice that we need to solve a linear system whose di-
mension is only |δ| × |δ|. This is particularly favorable
for constrained optimal control problems as those arising
in MPC applications, since the set of active constraints, δ,
is usually very small. Since in the particular example we
deal with medium scale problems, at every Newton iteration
of Algorithms 1 and 2 we solve (7) by computing the
Cholesky factor of Qδδ . A more efficient implementation
would involve modifying the Cholesky factor at every iter-
ation, by doing a series of rank-one updates for the indices
of constraints that enter or leave the active set δ.

Tests were performed on random QP problems, for in-
creasing values of n. The condition number of the Hes-
sians is up to 104. Algorithms where terminated when
‖zγ(xν)‖2/(2µf ) ≤ 10−4 which guarantees F (yγ(xν)) −
F? ≤ 10−4. For Algorithm 2, the set of iterations that a
Newton direction is taken, was chosen as Υ = {5, 10, . . .}.
Figure 1 shows the running time (averaged on 50 QP’s for
each n) for each solver. It can be observed that in general,
using Newton directions reduces dramatically the number
of iterations and CPU time compared to FGM. Evidently,
Algorithms PNM and PGNM can reach a very high accuracy
(which is almost unreachable by proximal gradient methods)
quite fast.

B. `1-regularized least squares

We test Algorithms 1 and 2 on the following `1-regularized
least squares problem:

minimize 1
2‖Ax− b‖

2 + λ‖x‖1, (8)

where A ∈ Rm×n, λ > 0. Problem (8) aims at finding
sparse solutions of underdetermined linear systems (m� n)
and has found numerous applications in signal reconstruction
techniques, compressive sensing and inverse problems. Our
algorithms are compared against FISTA [3], l1 ls [27] and
SpaRSA [28]. The proximal mapping of g(x) = λ‖x‖1 is

proxγg(x) = (sign(xi) max{|xi| − λγ, 0})i∈N[1,n]
,

i.e., the soft-thresholding operator. Since g is separable,
according to Remark 2, every element of P ∈ Pγ(x) =
∂Cg(x) is a diagonal matrix with elements in [0, 1], sim-
plifying considerably the Newton system (6). Specifically,

0 50 100 150 200
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0

10
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CPU time [ms]
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Fig. 1. Comparison on box-constrained strongly convex QPs

let δ = {i | |xi − γ∇if(x)| > λγ} and β = N[1,n] \ δ.
Then P = diag(p1, . . . , pn) where pi = 1, for i ∈ δ and
pi = 0 otherwise, belongs to Pγ(x − γ∇f(x)). Therefore,
the Newton system (6) simplifies to dβ = −xβ and

A′·δA·δdδ = c (9)

where c = −A′·δ(A·δxδ − b)− ζδλ, ζ = sign(x− γ∇f(x)).
Notice that in the vicinity of a solution, δ is usually much
smaller than β (after all the goal is to obtain a sparse
solution), therefore the dimension of (9) is usually small
compared to the number of variables n. In our algorithms,
system (9) is solved using the conjugate gradient (CG)
method, allowing us to avoid forming explicitly A′·δA·δ . The
CG method runs at maximum for 10 iterations or stops when
‖A′·δA·δdδ − c‖ ≤ ην‖c‖, where ην = min{0.5,

√
‖c‖}‖c‖.

The stopping criterion on the residual can be shown to
guarantee locally, superlinear convergence rate [9, Th. 7.5.5].
We have found that this stopping rule works well in practice,
since when far from the solution, solving (9) accurately
does not make much difference. However, when close to
the solution, less than 10 iterations are usually enough to
produce a direction that satisfies the stopping criterion for
the residual.

Algorithms 1, 2 and FISTA are stopped as soon as the
absolute value of the duality gap, |∇f(xν)′x + λ‖xν‖1|
and maximum dual constraint violation, ‖∇f(xν)‖∞ − λ
[2, Sec. 6], fall below 10−6. For Algorithms l1 ls [27] and
SpaRSA [28] the termination criterion is similar, but not
exactly equivalent.

An instance of problem (8) was generated in the same way
as in [2, Sec. 6], with m = 4000, n = 1000, m? = 100 (the
number of nonzero elements of the optimal solution). Results
for Algorithm 2 correspond to two different choices for the
set of Newton iterations; Y = {1, 2, 3, . . .} (PGNM–1) and
Y = {10, 20, 30, . . .} (PGNM–10).

The trajectories of the iterates in terms of F (xν) − F?,
where F? is the (known) optimal cost, are given in Fig. 2. It
can be observed that our algorithms are able to reach high
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Fig. 2. Cost trajectories of Algorithms 1 (PNM), 2 (PGNM–1, PGNM–10),
FISTA, SpaRSA and l1 ls.

accuracy faster. FISTA is able to reach medium accuracy
faster but then it has difficulties reaching a high accuracy.
The interior point solver l1 ls takes only 34 iterations,
however it needs 45.2 seconds in total, since every iteration
requires solving a much larger linear system than (9), again
using CG. On the other hand PNM, PGNM–1 and PGNM–
10 need 20.5, 16 and 14.9 seconds to fulfill the termination
criterion with 10−6 accuracy. After 20 seconds FISTA has
reached only 10−2 accuracy with respect to the duality gap
and dual constraint violation and it takes in total 162 seconds
to fullfil the termination criterion.

VIII. CONCLUSIONS & FUTURE WORK

The two algorithms presented in this paper can address a
wide class of nonsmooth convex optimization problems. The
main characteristic of the algorithms is the fast asymptotic
convergence rates for the sequence of iterates. In addition,
the bounds proved in Theorems 11 and 12 make the method
appealing for real-time optimization. Future work includes
embedding Newton iterations in accelerated versions of the
proximal gradient method to construct algorithms with better
global convergence rates.
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