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Abstract— In this paper, a piecewise-affine direct virtual
sensor is proposed for the estimation of unmeasured outputs of
nonlinear systems whose dynamical model is unknown. In order
to overcome the lack of a model, the virtual sensor is designed
directly from measured inputs and outputs. The proposed
approach generalizes a previous contribution, allowing one
to design lower-complexity estimators. Indeed, the reduced-
complexity approach strongly reduces the effect of the so-called
“curse of dimensionality”, and can be applied to relatively
high-order systems, while enjoying all the convergence and
optimality properties of the original approach.

I. INTRODUCTION

The estimation of unmeasurable variables of a dynamical
system using available measurements and information on the
system dynamics is a widely studied problem in control
theory. If the system is nonlinear, it is usually impossible
to rely on optimal solutions (such as the Kalman filter for
linear systems), and approximate solutions must be sought,
such as extended Kalman filters, unscented Kalman filters,
ensemble Kalman filters, particle filters, and moving horizon
estimation. These methods require a model of the system to
be applied. However, in many practical applications reliable
models are not available, and a problem of filter design from
data must be solved. The standard two-step procedure to
address this problem is the following:

1) obtain a model by using system identification;
2) design an observer based on the resulting model.
In this way, the overall performance is usually far from

optimal, and alternative strategies were recently proposed.
In particular, in [1] a direct (one-step) procedure for de-
signing an optimal filter was proposed, which is applicable
to nonlinear systems, and is proven to be the minimum
variance estimator among the selected class of approximating
filters. We refer to the observer obtained using the direct
procedure as the direct virtual sensor (DVS). The DVS is a
function of past measured inputs and outputs, and possibly
of past estimates: no model of the system is required, only
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observability of the variable to be estimated is assumed as
a necessary condition. The method consists of choosing a
suitable set of basis functions, that leads to satisfying the
assumptions required to apply the theoretical results in [2].
Apart from [1], where a stochastic framework is considered,
a different approach to DVS design for nonlinear systems
can be found in [3], where a set membership approach
is exploited. The DVS has also been applied to relevant
automotive case studies in [4]–[7].

In [8], piecewise-affine simplicial (PWAS) functions were
proposed for DVS design. The main motivation was that
PWAS functions can be implemented very efficiently in
digital circuits (e.g. field-programmable gate arrays, FPGAs
[9], or application specific integrated circuits, ASICs), thus
providing fast response times, low cost, and low power
consumption (at least for ASICs). The DVS in PWAS form
was tested on both simulation and experimental data in [8],
leading to an estimation accuracy of the same order of
magnitude as in [1]. Moreover, the implementation of the
DVS on a low-cost commercial FPGA led to latency times1

smaller than 100 ns.
The main drawback of the approach presented in [8],

henceforth referred to as Standard DVS (S-DVS), is that
a single PWAS function is used to obtain the estimate. If
a relatively large number of inputs or measurable outputs
is available, or if a large number of past data are used,
the exponential increase of the complexity (“curse of di-
mensionality”, [10]) makes the approach impractical. In this
paper, we propose a generalization of the approach of [8],
that leads to a complexity reduction. The resulting Reduced-
Complexity DVS (RC-DVS) is expressed as the sum of
lower-dimensional PWAS functions instead of using a single
higher-dimensional PWAS function. Moreover, past values
of the estimated variable can be employed, which was not
considered in [8].

A discrete-time version of Lorenz’s system, whose param-
eters are set to make the dynamics chaotic, is chosen as a
benchmark to compare our results with those of [8]. Note
that the same benchmark was also used in [1].

The paper is organized as follows: Section II introduces
the required system theoretical properties, and Section III
describes the structure and actual implementation of the
PWAS virtual sensor. Section IV deals with the convergence
properties of the proposed RC-DVS, whereas the issues re-
lated to its practical implementation are discussed in Section

1The latency of a circuit is the time needed to process an input and
provide the corresponding output.
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V. Simulation examples are presented in Section VI, and
conclusions are drawn in Section VII.

II. PRELIMINARIES

We focus our attention on a nonlinear discrete-time dy-
namical system S

S :

 x(t+ 1) = g(x(t), u(t))
y(t) = hy(x(t))
z(t) = hz(x(t))

(1)

where the state vector is x ∈ Rnx , the input vector is
u ∈ Rnu , the vector of measurable outputs is y ∈ Rny ,
and t represents the discrete-time instant. Vector z ∈ Rnz
collects a set of variables to be estimated. We assume that
only during training experiments z(t) can be measured by a
real sensor at time instants t = 0, ..., T . These measurements
(the training set) are used to design the virtual sensor,
which will operate without measuring z(t). The functions
g( · , · ) : Rnx × Rnu → Rnx , hy( · ) : Rnx → Rny , and
hz( · ) : Rnx → Rnz are assumed unknown, whereas nz = 1
is assumed for simplicity, without loss of generality, since
the case nz > 1 can be solved by nz scalar problems in a
component-wise fashion.

The possibility of estimating z(t) is related to the concept
of observability. Indeed, as stated in [3], the observability
of the system implies that z can be uniquely determined
using a finite number 0 ≤ Mu ≤ nx of samples of u, a
finite number 1 ≤ My ≤ nx of samples of y, and a finite
number 0 ≤ Mz ≤ nx of samples of z. In particular, if S
is observable, there exists a function fz such that z(t) =
fz(U(t), Y (t), Z(t)), with

U(t),
[
u(t−Mu + 1)′ u(t−Mu + 2)′ · · · u(t)′

]′
Y (t),

[
y(t−My + 1)′ y(t−My + 2)′ · · · y(t)′

]′
Z(t),

[
z(t−Mz + 1)′ z(t−Mz + 2)′ · · · z(t− 1)′

]′
where ′ denotes transposition. Two cases can be distin-
guished:
• if S is fully observable, the function fz can be defined

such that z(t) = fz(U(t), Y (t)), i.e., the past values
of z are not needed, since the whole state x can be
reconstructed from Y (t) and U(t), and z is a static
function of x; this was the case considered in [8];

• if S is partially observable, it is not possible to re-
construct all x, and past values of z are needed to
reconstruct z(t).

Vector U(t) is empty when the system is autonomous, while
Z(t) is empty when the system is fully observable.

III. THE PROPOSED DIRECT VIRTUAL SENSOR

A. General formulation of the DVS

Assuming that system S is (partially or fully) observable,
the DVS is a function providing the estimate ẑ(t) of z at
time t. Since the actual variables y, u and z at past time
instants are not available, the noisy measurements of them
are assumed to be ũ(t) = u(t) + ηu(t), ỹ(t) = y(t) + ηy(t),
and z̃(t) = z(t) + ηz(t), where ηu, ηy , and ηz are unknown

stochastic variables. For given values of Mu, My , and
Mz , the inputs of the DVS will be noisy sequences of
measurements of y and u, and a vector of past values of
ẑ, namely2

Ũ(t) ,
[
ũ(t−Mu + 1)′ ũ(t−Mu + 2)′ · · · ũ(t)′

]′
Ỹ (t) ,

[
ỹ(t−My + 1)′ ỹ(t−My + 2)′ · · · ỹ(t)′

]′
Ẑ(t) ,

[
ẑ(t−Mz)

′ ẑ(t−Mz + 1)′ · · · ẑ(t− 1)′
]′

Remark 1: If a model of the system is available (though
not directly used to obtain the DVS), it is possible to
check the observability of the system and to determine
suitable values for Mu, My , Mz . If a model is not available,
observability is simply assumed a priori, and the values of
Mu, My , Mz are considered as tuning parameters. �
For the sake of compactness, henceforth the input of the DVS
is referred to as

Ξ(t) ,
[
Ũ ′(t) Ỹ ′(t) Ẑ ′(t)

]′ ∈ Rnξ

where nξ ,Munu +Myny +Mz . Assume to split vector Ξ
into ν ∈ N subsets Ξ1, Ξ2, ...,Ξν , such that all elements of
Ξ are included in one and only one of these subsets. Each
of the Ξj , j = 1, ..., ν, has dimension equal to Nj , such that
1 ≤ Nj ≤ nξ, and N1+N2+...+Nν = nξ. The Nj elements
of each Ξj are denoted as ξj,1, ξj,2, ..., ξj,Nj . The proposed
DVS is referred to as Vα(w) and is defined as follows:

ẑ(t) = fα(Ξ(t);w) =

ν∑
j=1

Nj∑
k=1

wj,kαj,k(Ξj(t)) (2)

where fα : Rnξ → R (for fixed w), and {αj,k} is a basis of
PWAS functions that is described in Section III-B. Also,

w,
[
w1,1 · · · w1,N1 w2,1 · · · w2,N2 · · · wν,1 · · · wν,Nν

]′
with w ∈ Dw ⊂ Rnξ , Dw being a convex compact set.
The vector of parameters w is obtained by solving the least-
squares problem

w∗ = arg min
w

{
T−1∑
t=M

[z̃(t+ 1)− fα(Ξ(t);w)]
2

}
(3)

where M = max(Mu,My,Mz), M � T . Notice that, since
(2) is linear with respect to the weights w and since the cost
function is quadratic and defined over the convex set Dw,
the optimization problem (3) is convex.

Remark 2: We generalize the approach of [8] in two
directions. First, the past values of ẑ were not considered
in [8], where Ξ(t) ,

[
Ũ ′(t) Ỹ ′(t)

]′
, so the approach

was not applicable to systems that are not fully observable.
Moreover, past values of ẑ can be used for estimation even
when the system is fully observable, in order to increase
the performance of the DVS. Second, in [8] there was no
partitioning of Ξ, and then the PWAS S-DVS was defined
over a domain of dimension nξ. This might cause serious
implementation problems, since the number of coefficients

2Vector Ũ(t) is empty when the system is autonomous, Ẑ(t) is empty
when the the past values of ẑ are not used for the estimation.
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in (2) increases exponentially with nξ. The possibility of
splitting the domain into subspaces can lead to huge practical
advantages, as will be highlighted in Section VI. �

Remark 3: Another practical problem is related to the
initialization phase of the DVS. If the DVS starts receiving
measurements at time t = 0, the needed past values of ũ and
ỹ will be available at time tuy , max(Mu,My). Therefore,
if Mz = 0, the DVS will start providing its output at time
tuy . In case Mz > 0, past values of ẑ would be needed,
and then the DVS will be able to generate its output at time
t = M −1, using an initial guess for the past values of ẑ. In
practical applications, the initial guess can be related to an a-
priori knowledge of the initial condition. For example, when
estimating the sideslip angle in a vehicle [6], since the DVS
starts working when the engine is turned on, it is perfectly
reasonable to assume that the vehicle is not moving, which
implies that the sideslip angle is equal to zero. �

B. Digital implementation of the DVS

To implement the RC-DVS (2) on a digital circuit, we
consider a class of continuous and regular PWAS basis
functions, defined over regular partitions of hyper-rectangular
domains

Sj=
{

Ξj ∈RNj :ξ
j,i
≤ξj,i≤ ξ̄j,i, j=1, ..., ν, i=1, ..., Nj

}
(4)

The circuits proposed in [9] can evaluate PWAS functions
defined over this kind of domains. Each of the Sj is parti-
tioned into a set of regular simplices, and the functions that
can be obtained by combining the elements of this basis are
in turn PWAS functions. For details on simplices and PWAS
functions, the reader is referred to [8] and the references
therein.

If the algorithm proposed in [11] is used to define
the simplicial partitioning, the numbers of vertices and
simplices are equal to Nj =

∏Nj
i=1(pj,i + 1) and L =

Nj !
∏Nj
i=1 pj,i, respectively, where pj,i is the number of

non-overlapping subintervals of equal length into which
each interval

[
ξ
j,i
, ξ̄j,i

]
is partitioned. The union of all the

simplicial partitions of Sj is equal to Sj itself, and the
interiors of the simplicial partitions are disjoint.

Different types of continuous basis functions can be de-
fined; we use here the so-called α-basis [12]. Each function
αj,k(Ξj) in (2) is a PWAS hyper-pyramid, which takes the
value 1 at the vertex vj,k (i.e., the k− th vertex of the j− th
domain) and 0 at all the other vertices vj,q, q 6= k. Every
element of the α-basis has a local nature, is affine over each
simplex, and moreover 0 ≤ αj,k(Ξj) ≤ 1, ∀ Ξj ∈ Sj . For
the use of other bases to represent PWAS functions the reader
is referred to [13], [14].

Analogously to [8], the implementation of the proposed
DVS on a digital circuit consists of two blocks: a bank of
registers to store the past values of ũ, ỹ, and ẑ (i.e., Ξ(t)),
and an arithmetic unit to calculate the value of the PWAS
function fα. We implement the PWAS function on FPGA
using linear interpolators: The value of the j-th component
of (2) is obtained by linearly interpolating Nj + 1 values,

i.e., the values assumed by the function at the vertices of the
corresponding simplex. To solve the point location problem,
an algorithm based on Kuhn’s lemmas [11] is used, which
is optimal with respect to the number of inputs [15].

IV. CONVERGENCE ANALYSIS OF THE ESTIMATION
ERROR

Consider a standard two-step procedure to obtain a mini-
mum variance filter K(θ), estimating a state-space model of
(1) from a set of available measurements, and then designing
K(θ) based on this model. Generally speaking, the filter
K(θ) will be based on the set of parameters θ ∈ Dθ (Dθ

being a compact set), and designed relying on a class of
models M(θ) of (1). In particular, we consider the model
M(θ∗), obtained using a prediction error method from a
set of measured data, and the corresponding filter realization
K(θ∗). It is possible to represent the estimate given by K(θ∗)
in regression form as

ẑK(t+ 1) = fK(Ξ(t); θ∗). (5)

The following theorem describes the properties of the
proposed RC-DVS (2) in comparison with (5).

Theorem 1: Let system (1) be (partially or fully) observ-
able. Consider a minimum variance filter K(θ∗) in (5), and
the virtual sensor Vα(w∗) in (2), whose parameter vector w∗

is obtained from (3). Let ẑV be the value of the estimate
obtained with a RC-DVS Vα(w∗) in (2). Then, denoting
expected values by E[ · ], the following results hold with
probability 1 as T →∞:
i) The vector of parameters defined in (3) guarantees the

minimization of the variance of the estimation error
among all the virtual sensors with the same structure,
i.e., Vα(w∗) = arg min

Vα(w)
E
[
(z(t)− ẑV)

2
]
;

ii) If there exists w such that K(θ∗) = V(w) (i.e., it
is possible to express the two-step observer in re-
gression form as a particular realization of the vir-
tual sensor), one obtains that E

[
(z(t)− ẑK(t))

2
]
≥

E
[
(z(t)− ẑV(t))

2
]
, i.e. the performance of the RC-

DVS is better than or equal to that of (5);
iii) If there exists θo ∈ Dθ such that S = M(θo) (i.e.,

there exists a set of parameters of the two-step observer
that describes exactly the system), and there exists a
vector w such that K(θo) = V(w), then V(w∗) is a
minimum variance filter.

For ii) and iii) to be applied, it is necessary that K(θ∗) has
fading memory. �
Proof: See the Appendix. �

In conclusion, the proposed RC-DVS retains all the posi-
tive features of the general DVS framework of [1], [3].

V. HINTS ON IMPLEMENTATION ISSUES

When designing the proposed RC-DVS, some practical
issues must be taken into account. These are briefly described
in the following, and the reader is referred to [8] for a deeper
analysis.
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If problem (3) is solved directly, it is possible to obtain
a solution that is sensitive to small changes in the data. A
possible way to solve this problem relies on the so-called
Tikhonov regularization, consisting of obtaining w by solving
the regularized least squares (RLS) problem

min
w

{
σw′Γw +

T−1∑
t=M

[z̃(t)− fα(Ξ(t);w)]
2

}
(6)

where σ is the Tikhonov regularization parameter. The reader
is referred to [16] for further details.

The choice of the domains Sj for the PWAS function
also requires some attention. If no a-priori information is
available, the size of the sets Sj must be estimated before
solving (6). If {Ŝj} is the set of hyper-rectangles that exactly
contains all data, the choice {Sj} = {Ŝj} is not a good
choice, because some trajectories could exit {Ŝj} in normal
operating conditions. Following [8], the sets Sj are then
computed as an expansion of the sets Ŝj with respect to
their centers by a constant factor γ > 1, whose choice relies
on heuristic criteria.

The size of w, which is equal to nξ, depends on how many
simplices we use to obtain the partitions of the sets Sj . The
value of nξ influences the complexity of the optimization
problem (6) and, most important, the dimension of the
memory required by the circuit implementation.

The parameters Mu, My and Mz are related in theory to
the observability properties of the system. However, when a
model of the system is not available a priori, they become
design parameters. If the system is observable, large values
of Mu, My and Mz lead to a better estimate, but also to large
latency times and memory requirements of the digital circuit.
Mu, My and Mz also influence the number of coefficients
w of a DVS. In particular, for a S-DVS the size of w grows
exponentially as these parameters increase. On the contrary,
by using the proposed RC-DVS one can decide to increase
the value of ν while keeping Mu, My and Mz fixed, in order
to reduce the effect of the exponential increasing of circuit
complexity, as shown in the case study of Section VI.

The distribution of the data in the time interval [0, T ], is
also important, since all the main dynamic properties of the
system (including transient responses) must lie within this
time window (see, e.g., [17]).

VI. SIMULATION RESULTS

We test the performance of the RC-DVS on a simulation
example, that permits a comparison with the S-DVS pro-
posed in [8]. Consider the discrete-time Lorenz system

x1(t+ 1) = (1− τs)x1(t) + τsx2(t)

x2(t+ 1) = (1− τ)x2(t)− τx1(t)x3(t) + τρx1(t)

x3(t+ 1) = (1− τβ)x3(t) + τx1(t)x2(t)

ỹ1(t) = x1(t)x2(t) + ηy1(t)

ỹ2(t) = x22(t) + ηy2(t)

z̃(t) = sin(0.1x3(t)) + ηz(t)
(7)

Simulation Method nξ Mz My RMSEE

A S-DVS 256 0 2 0.201
RC-DVS 32 0 2 0.225

B S-DVS 4096 2 2 0.042
RC-DVS 64 2 2 0.060

C RC-DVS 4096 64 64 0.002

TABLE I
PARAMETERS AND SIMULATION RESULTS FOR RC-DVS AND S-DVS

APPLIED TO LORENZ’S SYSTEM

where τ = 0.01 is the sampling time, s = 10, β = 8/3 and
ρ = 28 are fixed parameters, and ηy1(t), ηy2(t) and ηz(t) are
Gaussian processes with zero mean and standard deviations
equal to 0.02, 0.02 and 0.01, respectively. With this set of
parameters, system (7) exhibits a chaotic behavior. The S-
DVS has already been tested on the same system in [8], and
compared with the approach of [1]. Simulations were carried
out using the Root Mean Square Estimation Error (RMSEE)
calculated over a test set as a measure of the accuracy of the
estimation

RMSEE =

√√√√ 1

Ts

Ts∑
t=1

(ẑ(t)− z̃(t))2 (8)

where Ts is the number of samples in the test set. As a result,
the values of the RMSEE for the two approaches were very
close to each other.

In the following, a RC-DVS and a S-DVS are derived
from a set of T = 60000 samples of z̃(t) and ỹ(t). The
parameters (My , Mz) of the two DVS have been varied in
order to show the differences between the two methods. Note
that the Lorenz system is autonomous (nu = 0), so that Mu

can be ignored.
In order to derive the RC-DVS, ν has been set to ν =

max{My,Mz}, i.e., Ξ(t) is divided into a number of subsets
equal to the number of past samples used by the RC-DVS
itself. As a consequence, the estimate ẑ(t) is given by the
sum of ν PWAS functions. We select a uniform partition
with 3 subdivisions along each dimension and a zero-order
Tikhonov regularization (σ = 10−3). The remaining param-
eters used for the virtual sensors are reported in Table I.
Table I also shows the RMSEE, calculated over Ts = 3000
samples, for RC-DVS and S-DVS.

Simulation A shows that the RMSEE of S-DVS is lower
than the RMSEE of RC-DVS if the same value of My (i.e.
past samples of the measurable output) is used. Nevetheless,
the complexity in terms of coefficients is higher in the case
of S-DVS (256 instead of 32).

In Simulation B we allowed the RC-DVS and the S-DVS
to use past estimates ẑ(t), i.e., we set Mz = 2 > 0. Figure 1
shows the transient response of the S-DVS and the RC-DVS
virtual sensors. It is apparent that the performance is better
at the cost of a higher complexity for both virtual sensors.

Finally, Simulation C shows the results obtained by in-
creasing the value of My and Mz for the RC-DVS until the
same number of coefficients of the S-DVS of Simulation B is
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Fig. 1. Transient response of a virtual sensor: true data (solid black),
S-DVS estimate (dashed gray) and RC-DVS estimate (dotted gray).

reached. In this case, the estimation error of the RC-DVS is
lower than the error obtained with the S-DVS of Simulation
B. Notice that in this case it is not possible to derive a
practical realization of the S-DVS with My = Mz = 64,
since the resulting PWAS function would be defined by more
than 10115 coefficients.

VII. CONCLUSIONS

In this paper, a reduced-complexity PWAS direct virtual
sensor was proposed to overcome the curse of dimensionality
of the original approach in [8] while maintaining the same
theoretical properties. Its practical implementation in low-
cost digital circuits (FPGA) at very fast rates makes the
approach very appealing for industrial applications, when
unmeasurable variables of relatively low-order systems must
be estimated with high sampling frequencies.
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APPENDIX

Proof of Theorem 1: Analogously to [1] and [8], one
needs to show that conditions S3, C1, and M1 in [2] hold,
which leads to the fulfillment of i), ii), and iii). Condition
S3 refers to the data set and is satified if we assume that
system (1) is observable. Condition C1 refers to the choice
of vector w and is fulfilled if the quadratic criterion in (3)
is adopted. Condition M1 requires to check if the proposed
DVS retains the following property: there exist two scalars
C > 0 and λ, 0 < λ < 1, such that

1) The estimate is limited at origin, namely

|fα(Ξ0(t);w)| ≤ C (9)

for Ξ0(t) ,
[
Ũ ′0(t) Ỹ ′0(t) Ẑ ′0(t)

]
= 0 ∈ Rnξ ;

2) The virtual sensor (2) has exponential fading memory

|fα(Ξ1(t);w)− fα(Ξ2(t);w)|

≤ C
t∑

s=0

λt−s
[
‖ũ1(s)− ũ2(s)‖1

+ ‖ỹ1(s)− ỹ2(s)‖1 + ‖ẑ1(s)− ẑ2(s)‖1
]

(10)

for any Ξ1(t), Ξ2(t);
3) Function fα is differentiable with respect to w for all

w ∈ Dw and the following exponential fading property
is satisfied:

‖∇wfα(Ξ1(t);w)−∇wfα(Ξ2(t);w)‖1

≤ C
t∑

s=0

λt−s
[
‖ũ1(s)− ũ2(s)‖1

+ ‖ỹ1(s)− ỹ2(s)‖1 + ‖ẑ1(s)− ẑ2(s)‖1
]

(11)

for any Ξ1(t), Ξ2(t).
In the reminder of the proof we will prove that all three
properties hold. Recalling that 0 ≤ αk( · ) ≤ 1 holds for all
k, it yields

|fα(Ξ0(t);w)| =

∣∣∣∣∣∣
ν∑
j=1

Nj∑
k=1

wj,kαj,k(Ξj0(t))

∣∣∣∣∣∣
≤

ν∑
j=1

Nj∑
k=1

|wj,k| , C1 > 0
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which implies the fulfilment of (9).
Consider the left-hand side of (10):

|fα(Ξ1(t);w)− fα(Ξ2(t);w)|

≤

∣∣∣∣∣∣
ν∑
j=1

Nj∑
k=1

wj,k

(
αj,k(Ξj1(t))− αj,k(Ξj2(t))

)∣∣∣∣∣∣
≤

ν∑
j=1

Nj∑
k=1

∣∣∣wj,k [αj,k(Ξj1(t))− αj,k(Ξj2(t))
]∣∣∣

=

ν∑
j=1

Nj∑
k=1

|wj,k|
∣∣∣αj,k(Ξj1(t))− αj,k(Ξj2(t))

∣∣∣ .
The structure of the α-basis chosen for the design of the vir-
tual sensor implies that each basis function αj,k is Lipschitz
continuous with respect to the input Ξ(t). More precisely,
there exists β > 0 such that

|αj,k(Ξj1(t))− αj,k(Ξj2(t))| ≤ β
∥∥∥Ξj1(t)− Ξj2(t)

∥∥∥
1

(12)

for all (j, k) ∈ (1, ..., ν × 1, ..., Nj). Then,

ν∑
j=1

Nj∑
k=1

|wj,k|
∣∣∣αj,k(Ξj1(t))− αj,k(Ξj2(t))

∣∣∣
≤ β

ν∑
j=1

Nj∑
k=1

|wj,k|
∥∥∥Ξj1(t)− Ξj2(t)

∥∥∥
1

≤ βC1

ν∑
j=1

Nj∑
k=1

∥∥∥Ξj1(t)− Ξj2(t)
∥∥∥
1

= βC1

ν∑
j=1

Nj

∥∥∥Ξj1(t)− Ξj2(t)
∥∥∥
1

≤ βC1nξ

ν∑
j=1

∥∥∥Ξj1(t)− Ξj2(t)
∥∥∥
1

= βC1nξ ‖Ξ1(t)− Ξ2(t)‖1 (13)

Consider the right-hand side of (10), and take any λ, 0 <
λ < 1. Moreover, let C2 > 0 be a constant to be determined.
Recalling that M = max(Mu,My,Mz), it yields

C2

t∑
s=0

λt−s
[
‖ũ1(s)− ũ2(s)‖1

+ ‖ỹ1(s)− ỹ2(s)‖1 + ‖ẑ1(s)− ẑ2(s)‖1
]

≥ C2

(
t∑

s=t−Mu+1

λt−s ‖ũ1(s)− ũ2(s)‖1

+

t∑
s=t−My+1

λt−s ‖ỹ1(s)− ỹ2(s)‖1

+

t∑
s=t−Mz+1

λt−s ‖ẑ1(s)− ẑ2(s)‖1

)

≥ C2λ
M−1

(
t∑

s=t−Mu+1

‖ũ1(s)− ũ2(s)‖1

+

t∑
s=t−My+1

‖ỹ1(s)− ỹ2(s)‖1

+

t∑
s=t−Mz+1

λt−s ‖ẑ1(s)− ẑ2(s)‖1

)
= C2λ

M−1 ‖Ξ1(t)− Ξ2(t)‖1
If we define

C2 , λ
1−MC1βnξ

we obtain

C1βnξ ‖Ξ1(t)− Ξ2(t)‖1 = C2λ
M−1 ‖Ξ1(t)− Ξ2(t)‖1

which implies the fulfillment of (10).
Function fα is differentiable with respect to w, and its
gradient is

∇wfα(Ξ(t);w) = ∇w

(
N1∑
k=1

w1,kα1,k(Ξ1(t))

+ . . .+

Nν∑
k=1

w1,kαν,k(Ξν(t))

)
=
[
V ′α1

(Ξ1(t)) V ′α2
(Ξ2(t)) · · · V ′αν (Ξν(t))

]
where

Vαj (Ξ
j(t))=

[
αj,1(Ξj(t)) αj,2(Ξj(t)) · · · αj,Nj (Ξj(t))

]′
with j = 1, ..., ν. Considering the left-hand side of (11),
from (12) we obtain

‖∇wfα(Ξ1(t);w)−∇wfα(Ξ2(t);w)‖1

=

ν∑
j=1

Nj∑
k=1

∣∣∣αj,k(Ξj1(t))− αj,k(Ξj2(t))
∣∣∣

≤ βnξ ‖Ξ1(t)− Ξ2(t)‖1 = βnξ ‖Ξ1(t)− Ξ2(t)‖1
Noting that the right-hand side of (11) coincides with that
of (10), by setting

C3 = λ1−Mβnξ

we obtain

βnξ ‖Ξ1(t)− Ξ2(t)‖1 ≤ C3λ
M−1 ‖Ξ1(t)− Ξ2(t)‖1

which leads to the fulfilment of (11).
The existence of C1, C2, and C3 implies that, for any

choice of λ, 0 < λ < 1, by choosing

C = max(C1, C2, C3)

conditions (9)-(11) are satisfied, which completes the proof.
�
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