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Abstract— This paper is concerned with L2-gain optimal
control approach for coordinating the active front steering
and differential braking to improve vehicle yaw stability and
cornering control. The vehicle dynamics with respect to the tire
slip angles is formulated and disturbances are added on the
front and rear cornering forces characteristics modelling, for
instance, variability on road friction. The mathematical model
results in input-affine nonlinear system. A numerical algorithm
based on conjugate gradient method to solve L2-gain optimal
control problem is presented. The proposed algorithm, which
has backward-in-time structure, directly finds the feedback
control and the “worst case” disturbance variables. Simulations
of the controller in closed-loop with the nonlinear vehicle model
are shown and discussed.

I. INTRODUCTION

Over the past two decades, there has been tremendous
progress in the development of various control strategies for
vehicle dynamics stabilization. In [1] and [2] linear H∞
controllers that stabilize the vehicle against uncertainty have
been proposed. The µ-synthesis has been applied to the
linearized vehicle model in [3], obtaining a controller which
provides robust stability against perturbations generated in
various driving conditions. In [4] a fuzzy-logic controller
is proposed to improve vehicle handling and stability when
non-linearities are present in the model. A dynamic control
allocation approach for vehicle yaw stabilization scheme
has been presented in [5]. Also, different model predictive
control (MPC) strategies have been explored in the vehicle
dynamics context: time-varying MPC [6], [7], hybrid MPC
[8], and switched MPC [9].

However, to the knowledge of the authors, the problem
of a nonlinear L2-gain vehicle stability control has not been
investigated yet. In this paper, the nonlinear L2-gain optimal
control problem of stabilizing the vehicle dynamics using
differential braking and active front steering is considered.
We formulate the vehicle dynamics with respect to the tire
slip angles. A simplified “magic formula” for the tire model
is used. The disturbance (uncertainty) is added on the front
and rear cornering forces characteristics. This is a reasonable
disturbance, which models, instance, a road friction different
of what expected, due to the presence of ice/snow/gravel on
the road.
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It is well known [10] that the L2-gain optimal control
problem requires solving a Hamilton-Jacobi-Isaacs equation
(HJIE). The analytic solution of HJIE is difficult or impossi-
ble to find in most cases. In [11] the HJIE for systems with
input constraints is derived. Authors have introduced a two-
player policy iteration scheme that results in a framework
that allows the use of neural networks to approximate optimal
policies and value functions. In [12] an application of neural
networks to find a closed-form representation of the feedback
strategies and the value function that solves the associated
HJIE is presented.

In our approach, the nonlinear L2-gain optimal control
problem is transformed into a nonlinear finite-horizon op-
timal state feedback control problem with min-max cost.
In contrast to the approaches based on neural networks
for an approximate solution of HJIE [11], [12], in this
paper the tuning of basis functions weights is based on
the direct minimization of the performance criterion with
respect to the control input, with simultaneous maximiza-
tion of the same performance criterion with respect to the
disturbance. A conjugate gradient approach is used for mini-
mization/maximization of the performance criterion, while
the performance criterion gradients are calculated exactly
using the chain rule for ordered derivatives. Since the control,
disturbance and state variables are treated as dependent vari-
ables (coupled via plant equations), the final algorithm has a
backward-in-time structure similar to the back-propagation-
through-time (BPTT) [13] algorithm.

The algorithm presented in this paper is an extension
of the recent work in [14], [15] toward finite-horizon L2-
gain optimal state feedback control. In [14], and [15] a
conjugate gradient-based BPTT-like algorithm for optimal
open-loop control of nonlinear multivariable systems with
control and state constraints is presented. The algorithm per-
formance is illustrated on a realistic high-dimensional vehicle
dynamics model. The optimization results have demonstrated
favourable features of the algorithm in terms of accuracy,
robust numerical stability, and relatively fast execution.

As a further algorithmic improvement, in this work Jaco-
bian matrices are calculated using automatic differentiation
(AD). Application of AD comparing with numerical differ-
entiation [15] provide significant reduction of the algorithm
computational time.

The rest of the paper is organized as follows. In Section
II by formulating the vehicle dynamics using tire slip angles
and steering angle as the states and by considering a “magic
formula” approximation of the tire forces with respect to the
tire slip angles, the mathematical model results in an input-
affine nonlinear system. In Section III, the state feedback
nonlinear L2-gain control problem is transformed into a
feedback min-max optimal control problem. We formulate
the feedback as a linear combination of basis function.
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The backward-in-time min-max control algorithm is derived.
In Section IV the proposed algorithm is implemented to
coordinate active front steering and differential braking in
a driver-assist steering system that aims at stabilizing the
vehicle. Analysis of the simulation results are given. Finally,
Section V concludes the paper.

Notation: The notation used is fairly standard. Matrices are
represented in bold upper case. All vectors are intended as
column vectors and represented in bold lower case. Scalars
are represented in italic lower case. The symbol T denotes
transposition, and 0 is null matrix of appropriate dimensions.
col(·) denotes the operator which puts its arguments into a
single column vector and row(·) denotes the operator which
puts its arguments into a single row vector. We use diag(·) to
denote a diagonal matrix with specified entries on the main
diagonal and zeros elsewhere. The derivative of a vector of
size m with respect to a vector of size n is a matrix of
size n ×m. This also means that the derivative of a scalar
with respect to a vector is a column vector. The operator ‖·‖
denotes the Euclidean norm. We avoid to explicitly show the
dependence of the variables from the time when not needed.

II. VEHICLE YAW STABILITY CONTROL

A. Vehicle steering model
This section describes the vehicle model used for con-

trol design and simulations. We consider normal “on-road”
driving maneuvers, where the vehicle dynamics can be
conveniently approximated by the bicycle model [16] shown
in Fig. 1. The approximated model has the advantage of
reduced complexity over a four-wheel vehicle model, while
it is still able to capture the relevant dynamics.

Fig. 1. Schematics of the bicycle model of the vehicle dynamics.

For small steering angles, cos δ ' 1, the vehicle behavior
can be described by the differential equations [9]

α̇f =
Ff + Fr

mvx
−
vx
(
αf − αr + δ

)
a+ b

+
a
(
aFf − Fr + Y

)
vxIz

− ϕ,

α̇r =
Ff + Fr

mvx
−
vx
(
αf − αr + δ

)
a+ b

−
b
(
aFf − Fr + Y

)
vxIz

,

δ̇ = ϕ,
(1)

where αf [rad] and αr [rad] are the tire side-slip angles
at the front and at the rear tires, respectively, Y [Nm] is
the yaw moment obtained by differential braking, ϕ [rad/s]
is the steering angle rate, Iz [kgm2] is the vehicle inertia
along the z-axis, m [kg] is the vehicle mass, a [m] and
b [m] are the distances of the front and rear wheel axles

from the vehicle center of mass, respectively, vx [m/s] is the
longitudinal velocity at the wheels equal to the one at the
center of mass.

The front and rear tire forces Ff [N], Fr [N], respectively,
are nonlinear functions of tire slip angles αf and αr. In this
paper the tire model is based on a simplified form [17] of
the “magic formula” [18], i.e.,

Fj = µDj sin [Cj arctan (−Bjαj)] , (2)

where j = f for the front tires, and j = r for the rear
tires, µ is the tire friction coefficient, Bj , Cj and Dj are tire
model parameters. The numerical values of these parameters
are given in Section IV. Fig. 2 depicts front and rear tire
forces versus side-slip angles for fixed values of the friction
coefficients.
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Fig. 2. Tyre force characteristics for different friction coefficient values.

Usually, the major element of uncertainty in the vehicle
dynamics is the road friction coefficient µ. We assume its
value is within a certain known interval. The variations in
the coefficient µ can be represented by µ = µ(1+pµ∆j), where
µ is the so-called nominal value of µ, pµ is the maximum
relative uncertainty with −1 ≤ ∆j ≤ 1 being the relative
variation. If we choose the disturbance vector components
as dj = ∆j µDj sin [Cj arctan (−Bjαj)], it follows that

Fj = µDj sin [Cj arctan (−Bjαj)] + pµ dj . (3)

B. Control problem formulation

Let x = [x1 x2 x3]
T

= [αf αr δ]
T, u = [u1 u2]

T
=

[Y ϕ]
T and d = [d1 d2]

T
= [df dr]

T be the state,
the control input, and the disturbance input of the vehicle
dynamics, respectively. With the previously defined vectors,
the vehicle model (1), (3) can be easily transformed into a
control-oriented affine nonlinear dynamical system.

The control objective is to find control inputs Y (vehicle’s
yaw moment) and ϕ (steering angle rate) and to determine
the “worst case” disturbance (with respect to the friction co-
efficient) that avoid the vehicle dynamics (1) to be unstable.

The limits on the braking torques induce constraints on the
achievable yaw moment, that, for the maneuvers of interest,
are enforced by −Ymax ≤ Y ≤ Ymax. In addition, we
consider constraints on the steering angle rate −ϕmax ≤
ϕ ≤ ϕmax.

In order to achieve desired behavior, the following cost
function is defined

J =

∫ tf

0

(
‖z‖2 − γ2‖d‖2 +

4∑
k=1

Kkg
2
kH
− (gk)

)
dt, (4)
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where ‖z‖2 = xT Qx x + uT Qu u, and gk are the components
of the vector function consisting of control inequality con-
straints. Qx and Qu are positive definite weight matrices.
H−(·) is the Heaviside step function defined as H−(·) = 0

if (·) ≥ 0, and H−(·) = 1 if (·) < 0. Note that although
the Heaviside step function H−(·) is not continuous, the
penalty terms of the form (·)2H−(·) in equation (4) are
continuously differentiable functions. The penalty function
coefficients Kk should be chosen sufficiently large to provide
accurate constraints satisfaction.

III. NONLINEAR L2-GAIN OPTIMAL CONTROL DESIGN

Consider an affine nonlinear dynamical system in the form,

ẋ(t) = f(x) + G1(x)u(t) + G2(x)d(t), x(0) = x0,

z(t) =

[
g3(x)
u(t)

]
, f(0) = 0, g3(0) = 0,

(5)

where x ∈ Rn0 is the state vector, u ∈ Rnu is the control
input, d ∈ Rnd is the vector representing internal/external
disturbance, z ∈ Rnz is the to-be-controlled output or penalty
variable. The functions f(·), G1(·), G2(·), g3(·) are smooth
functions of x. It is assumed that d ∈ L2[0, tf ], tf ≥
0, where L2[0, tf ] denotes the standard Lebesgue space of
vector valued square integrable functions over [0, tf ]. Note
that, the vehicle model (1), (3), is easily formulated as (5).

For the case when all the states of the system are available,
the objective is to determine a state-feedback controller u(x)
and determine the “worst case” disturbance internal/external
variables d(x), such that the finite L2-gain from d to z is
less than or equal to some positive number γ > 0. In other
words, for every initial condition x(0) = x0,

tf∫
0

‖z‖2dt ≤ γ2
tf∫
0

‖d‖2dt+ J(x0). (6)

The original idea behind this approach is to formulate the
L2-gain optimal control problem as a differential game in
which u and d are two opposing players [19]. It is well
known [20] that this problem is equivalent to solving the
min-max optimization problem

J∗ = min
u

max
d


tf∫
0

(
‖z‖2 − γ2‖d‖2

)
dt

 (7)

subject to (5).
Problem (7) is solved by the feedback [10]

u∗(x) = −GT
1(x)

∂V

∂x
, d∗(x) =

1

γ2
GT

2(x)
∂V

∂x
, (8)

where V ≥ 0 is the solution of the corresponding HJIE with
V (0) = 0.

Lemma 1: If (i) the nonlinear system (5) is asymptotically
stable with d = 0 and u = u∗, and (ii) has L2-gain less than
γ when d 6= 0, and (iii) the cost function (7) is smooth, then
the closed-loop dynamics are asymptotically stable.

Proof: See [10].

A. Algorithm derivation

In order to numerically solve problem (7) subject to (5),
we consider a special form of u and d from (8) as follows

û(x) = Θ(x)π(t), d̂(x) = Ψ(x)ρ(t), (9)

where Θ(x) ≡ diag
(
θ1(x), . . . , θnu (x)

)
and Ψ(x) ≡

diag
(
ψ1(x), . . . , ψnd (x)

)
, with θi(x) ≡ row

(
θi1(x), . . . , θinθ (x)

)
and ψi(x) ≡ row

(
ψi1(x), . . . , ψinψ (x)

)
are vectors of basis

functions on a compact set Ω ⊂ Rn0 with θij(x) ∈
C1(Ω), ψij(x) ∈ C1(Ω), and θij(0) = 0, ψij(0) =
0. Furthermore, π(t) ≡ col

(
p1(t), . . . , pnu (t)

)
and ρ(t) ≡

col
(
r1(t) . . . , rnd (t)

)
, where pi(t) ≡ col

(
pi1(t), . . . , pinθ (t)

)
and ri(t) ≡ col

(
ri1(t), . . . , rinψ (t)

)
, are the vectors of basis

functions time-varying weights.
Weierstrass’s theorem [21] guarantees that any continuous

function on a bounded domain in Rn0 can be approximated
by a complete independent basis set. Standard usage of
Weierstrass’s approximation theorem exploits polynomial
basis functions. Non-polynomial basis sets have been con-
sidered in [22], where it is shown that linear combination
of basis functions with time-varying weights can be used to
uniformly approximate continuous time-varying functions.

Hence, with control and disturbance variables from (9),
the final min-max optimization problem is

J∗ = min
π

max
ρ


tf∫
0

(
‖g3‖2 + wT Q(x) w

)
dt

 , (10)

subject to

ẋ(t) = f(x) + Γ(x) w(t), x(0) = x0, (11)

where w(t) ≡
[
πT(t) ρT(t)

]T, Γ(x) ≡ [G1(x) Θ(x) G2(x) Ψ(x)]

and Q(x) ≡
[
ΘT(x) Θ(x) 0

0 −γ2 ΨT(x) Ψ(x)

]
.

1) Time discretization: To compute the numerical approx-
imation of the nonlinear L2-gain optimal control problem,
we discretize the system dynamics (11) and the performance
criterion (10) basing on the explicit Adams method.

Assume that the time interval [0, tf ] is divided into N−1
sub-intervals of equal length. Then, the time grid consists of
points ti = iτ for i = 0, 1, 2, . . . , N − 1, where τ = tf/N
is the time step length.

The explicit k-th order Adams method can be conveniently
transformed into the following discrete-time state-space form

x̂(i+ 1) = φ̂ (x̂(i), w(i)) , x̂(0) = x̂0, (12)

for i = k− 1, k, k+ 1, . . ., and initial conditions x(0) = x0,
x(1) = x1, . . . , x(k − 1) = xk−1 where x̂(t) is the extended
(na = n0 · k)-dimensional state vector

x̂(i) =
[
x1(i) x2(i) . . . xna−1(i) xna(i)

]T
, (13)

and

φ̂ = [x1(i) + τa1φ1(i) + τxn0+1(i) . . . akφn0(i)]
T
, (14)

where φ(·) = f(x(·)) + Γ(x(·)) w(·). a1, . . . , ak are constant
coefficients (for their numerical values see [23]).

Lemma 2: Adams method (12) is convergent if and only
if it is stable and consistent.
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Proof: See [23, p. 392].
As a multistep method, the Adams method of the k-th

order requires the knowledge of k initial conditions. In this
work, to determine these initial conditions the fourth-order
Runge-Kutta method [23] is used.

The discrete-time form of the performance criterion results
in

J(x0) = τ

N−1∑
i=0

F (x̂(i), w(i)) , (15)

where F (·) is the sub-integral function of (10) in the i-th
sampling interval.

2) Conjugate gradient algorithm: The numerical algo-
rithm for tuning the π weights is based on the direct
minimization of the performance criterion with simultaneous
tuning of the ρ weights through the maximization of the
same performance criterion.

In this work the optimization is performed by a conjugate
gradient descent/ascent algorithm in the following form

s(l+1)(i) = −g(l+1)(i) + β(l)s(l)(i), (16)

w(l+1)(i) = w(l)(i) + η(l)s(l)(i), (17)

where g(i) ≡
(

∂J
∂w(i)

)T
≡
[(

∂J
∂π(i)

)T (
− ∂J
∂ρ(i)

)T
]T

, for l =

1, 2, . . . , M . M is the number of gradient algorithm itera-
tions, and s is the search direction vector.

The maximization of the performance criterion with re-
spect to ρ is obtained simply by changing the sign in front
of the gradient of the cost function.

The standard method for computing η(l) is the line search
algorithm which requires one-dimensional minimization of
the performance criterion. This is a computationally expen-
sive method which may require many evaluations of the
performance criterion during one iteration of the gradient
algorithm. Also, if the performance criterion is not appro-
priately scaled, the line search algorithm may exhibit poor
convergence properties [15]. In order to avoid these issues,
we use the SuperSAB approach [24] which requires only the
information on the gradient directions in two consecutive it-
erations of the gradient algorithm. The algorithm is modified
in terms of using a scalar convergence rate η(l) (as oppose
to a matrix formulation), in order to avoid discontinuities in
vector w. The modified SuperSAB algorithm is given by

η(l) =


d+ η(l−1) if gT(l) g(l−1) > 0,

d− η(l−1) if gT(l) g(l−1) < 0,

η(l−1) if gT(l) g(l−1) = 0,

(18)

where 0 < d− < 1 < d+ are dilatation coefficients
(decreasing/increasing factors).

The scalar β(l) is determined by [25]

β(l) =
µgT(l+1) g(l+1) + [1− µ]gT(l+1)

[
g(l+1) − g(l)

]
νgT(l) g(l) + [1− ν]sT(l) [g(l+1) − g(l)]

, (19)

where µ ∈ [0, 1] and ν ∈ [0, 1]. If the scalars µ and ν
take only their extreme values, 0 or 1, then four possible
combinations are obtained: the Fletcher-Reeves method for
µ = 1 and ν = 1, the Polak-Ribere method for µ = 0 and
ν = 1, the Hestenes-Stiefel method for µ = 0 and ν = 0,
the Dai-Yaun method for µ = 1 and ν = 0.

It is important to note that, in order to ensure numerical
stability of the algorithm, the parameter β(l) is limited to
βmax. If the parameter β(l) has a constant value, 0 < β(l) <
1, then the conjugate gradient algorithm becomes equivalent
to a standard gradient algorithm with momentum.

3) Gradient calculation: The gradient of the performance
criterion (15) with respect to w in the l-th iteration of the
gradient algorithm is given by

∂J

∂w(j)
= τ

N−1∑
i=0

∂F (i)

∂w(j)
= τ

(
∂F (j)

∂w(j)
+

N−1∑
i=j+1

∂F (i)

∂w(j)

)
, (20)

for j = 0, 1, 2, . . . , N −1, where (because of the causality
principle) the terms with i < j are equal to zero.

The terms in the sum on the right-hand side of (20) depend
on w(j) implicitly through x̂(i) for i > j, which gives

∂F (i)

∂w(j)
=

∂x̂(i)

∂w(j)

∂F (i)

∂x̂(i)
. (21)

From (12) it follows that

∂x̂(j + 1)

∂w(j)
=
∂φ̂(j)

∂w(j)
,
∂x̂(i)

∂w(j)
=
∂x̂(i− 1)

∂w(j)

∂φ̂(i− 1)

∂x̂(i− 1)
, (22)

for i = j+ 2, . . . , N − 1. The above iterative expression is
the chain rule for ordered derivatives.

Next, let us denote the second term in the bracket of the
right side of equation (20) by σ(j) =

∑N−1
i=j+1

∂F (i)
∂w(j)

.
Starting from j = N − 2; i = N − 1 it follows that

σ(N − 2) =
∂F (N − 1)

∂w(N − 2)
=
∂φ̂(N − 2)

∂w(N − 2)

∂F (N − 1)

∂x̂(N − 1)
.

Further, for j = N − 3; i = N − 1, N − 2 it follows

σ(N − 3) =
∂F (N − 2)

∂w(N − 3)
+
∂F (N − 1)

∂w(N − 3)
=

=
∂φ̂(N − 3)

∂w(N − 3)

[
∂F (N − 2)

∂x̂(N − 2)
+
∂φ̂(N − 2)

∂x̂(N − 2)

∂F (N − 1)

∂x̂(N − 1)

]
.

This procedure can be further continued for j = N −
4, . . . and the final backward-in-time recursive algorithm
for calculation of the gradient in (16) has the form

ω(N − 1) = 0,

ω(j) =
∂F (j + 1)

∂x̂(j + 1)
+
∂φ̂(j + 1)

∂x̂(j + 1)
ω(j + 1),

σ(j) =
∂φ̂(j)

∂w(j)
ω(j),

∂J

∂w(j)
= τ

(
∂F (j)

∂w(j)
+ σ(j)

)
,

(23)

for j = N − 2, N − 3, . . . , 0. Obviously, from (11) and
(12), it follows that ∂φ̂(j)/∂w(j) = ΓT(x̂(j)), and from (10)
and (15), it follows that ∂F (j)/∂w(j) = 2 Q(x(j)) w(j).

4) Jacobians calculation: The extended Jacobian matrix
∂φ̂(·)/∂x̂(·) for the Adams method can be expressed basing
on (12) as function of the basic Jacobian matrix ∂φ(·)/∂x(·).
Similarly, the gradient of the function in the summation in
(15) with respect to the extended state vector is related to
the basic gradient.

The basic Jacobian matrix ∂φ(·)/∂x(·) and gradient
∂F (·)/∂x(·) can be calculated using AD. AD is now a
widely used tool within scientific computing. A variety of
tools exist for AD. In this work, TOMLAB/MAD [26]
mathematical software is used.
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IV. VEHICLE YAW CONTROL APPLICATION

In the previous section we have developed an approach
for solving the L2-gain optimal control problem for general
affine nonlinear systems using a conjugate gradient based
numerical algorithm with backward-in-time structure. In this
section the application of proposed algorithm to the vehicle
yaw stability control problem is presented.

The state feedback L2-gain optimal control strategy for
vehicle stability control synthesized by the proposed numer-
ical algorithm was tested in simulation in closed loop with
vehicle dynamics model based on (1), which has been vali-
dated in experimental vehicle tests in [9]. For the considered
passenger vehicle, we have m = 2050 kg, Iz = 3344 kgm2,
a = 1.47 m, b = 1.43 m, vx = 15 m/s.

The coefficients of the “magic formula” (2) are chosen as
Dj = 0.5 ·m ·g, where g = 9.81 m/s2, Cf = 1.2, Bf = 8.5,
Cr = 1.5 and Br = 10.2. We consider the nominal value
µ = 0.7. It is assumed that the road friction coefficient µ
can vary up to ±40% of its nominal value, i.e., pµ = 0.4 in
(3).

The bounds of the actuators are set to Ymax = 1000 [Nm]
and ϕmax = 0.5 [rad/s].

Moreover, the control inputs basis functions are chosen as[
Y
ϕ

]
=

[
θ1(αf , αr) 0

0 1

] [
p1(t)
p21(t)

]
, (24)

where

θ1(αf , αr) =
[
αr α2

r αf αfαr αfα
2
r α2

f α2
fαr α2

fα
2
r

]
,

and the disturbance inputs basis functions are chosen as[
df
dr

]
=

[
ψ1
1(αf ) 0

0 ψ2
1(αr)

] [
r11(t)
r21(t)

]
, (25)

where ψ1
1(αf ) = µpµDf sin

[
Cf arctan

(
Bfαf

)]
and ψ2

1(αr) =

µpµDr sin [Cr arctan (Brαr)].
The terminal time is tf = 3 sec and the number of

time intervals is N = 3000 so that the sampling interval
is τ = 0.001 sec. The Polak-Ribiere conjugate gradient
method is used, and the number of iterations of the gradient
algorithm is M = 1000. The numerical values of the
algorithm parameters are chosen as d+ = 1.15, d− = 0.85,
η(0) = 10.0, βmax = 1.0. The initial basis functions weights
are set to zero.

The weighting factors of the cost function (4) are chosen as
follows. The state weighting matrix is Qx = diag (1, 1, 10).
The weights on inputs are Qu = diag

(
10−6, 1

)
. The penalty

function factors are K1 = K2 = 0.5 and K3 = K4 = 10,
large enough to satisfy control constraints. The scalar value
γ2 is set to 1.

An important point we want to mention here is that the
components of control vector (Y and ϕ) are different in
magnitude. This means that a unique convergence rate for
all the control variables in the conjugate gradient algorithm
could not be effective. Because of this we use a scaling
factor for each component of control vector in the conjugate
gradient algorithm.

Simulation results are shown in Figures 3-7. It can be seen
in Figure 3 that fast stabilization from the initial conditions
x0 = [0.15 0.25 0]

T is achieved. It can be observed from
Figure 4 that the proposed controller yields control inputs

|û| ≤ umax. The basis function weights r11 and r21 of the dis-
turbance inputs dj are considered as normalized uncertainty
term ∆j of the vehicle dynamics so that −1 ≤ r11, r

2
1 ≤ 1

as shown in Figure 5. In Figure 6 time histories of front and
rear tire forces are shown.

Furthermore, in a second series of simulation tests we
analyzed the robustness to disturbance variations for the case
µ = {worst case, 0.95, 0.45}. In Figure 7 it can been seen
that the proposed robust optimal controller provides a good
degree of robustness, with very limited variability of the
trajectories despite large variations in the parameters.
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Fig. 3. Time histories of front and rear tire slip angles (left) and steering
angle (right).
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Fig. 4. Time histories of yaw moment, steering angle (upper plots) and
basis functions weights (lower plots).
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Fig. 6. Time histories of front and rear tire forces.
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Fig. 7. Time histories of front and rear tire slip angles in the robustness
simulations.

V. CONCLUSION

In this paper the application of a numerical algorithm
for L2-gain vehicle yaw stability control problem has been
presented. The proposed algorithm directly finds the control
inputs (vehicle’s yaw moment and steering angle rate) in
the presence of uncertainty in the vehicle dynamics (e.g., in
the road friction coefficient) to avoid the vehicle dynamics
to become unstable. The closed-loop dynamics response is
evaluated in computer simulations, on a model validated in
experimental tests in [9].

While the individual methods such as backward-in-
time techniques, conjugate gradient optimization algorithms,
Adams method for solving ODEs, and AD are known from
the literature, in our approach they are integrated together to
provide an effective, novel algorithm for numerical solution
of the L2-gain optimal control problems.

Comparison of the algorithm with other existing meth-
ods is a subject of ongoing work and future publications.
Also, in future work the proposed algorithm for L2-gain
optimal control will be extended with a dynamic observer
thus implementing optimal output feedback control. Further
improvements of the algorithm application in terms of using
a more precise vehicle dynamics model will be considered
as well. Indeed the proposed algorithm can be applied to
higher-order systems with some increase in complexity.
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