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Abstract— This paper proposes a dual fast gradient-
projection method for solving quadratic programming
problems that arise in linear model predictive control with
general polyhedral constraints on inputs and states. The
proposed algorithm is quite suitable for embedded control
applications in that: (1) it is extremely simple and easy to
code; (2) the number of iterations to reach a given accuracy
in terms of optimality and feasibility of the primal solution
can be estimated quite tightly; (3) the computational cost
per iteration increases only linearly with the prediction
horizon; and (4) the algorithm is also applicable to linear
time-varying (LTV) model predictive control problems,
with an extra on-line computational effort that is still linear
with the prediction horizon.

I. INTRODUCTION

Model Predictive Control (MPC) is continuously gain-
ing popularity in industry to solve a very wide spectrum
of control problems, due to its ability to explicitly
optimize closed-loop performance and to take into ac-
count constraints on command inputs, internal states,
and outputs [1]. The key enabler for the spread of MPC
in industry is the availability of optimization algorithms,
typically quadratic programming (QP) solvers, that (1)
can provide a solution within the available sampling in-
terval; (2) require little memory to store the data defining
the optimization problem and the code implementing the
algorithm itself; (3) the control code is simple enough
to be software-certifiable; (4) the worst-case execution
time of the algorithm is well predictable to satisfy hard
real-time system requirements.

During the last years tremendous efforts were devoted
by researchers to develop algorithms that address the
above requirements, and to date many good algorithms
and packages for QP are available to solve linear MPC
problems, mainly active-set methods [2], interior-point
methods [3] and Newton methods [4]. A different ap-
proach, which is limited to relatively small problems,
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was taken in [5], where multiparametric quadratic pro-
gramming is used to pre-solve off-line the QP to obtain
the optimal command input as an explicit (continuous
and piecewise affine) function of the state vector.

In this paper we propose an algorithm based on
the fast gradient method of [6] for linear (possibly
time-varying) MPC problems with general polyhedral
constraints on inputs and states that satisfies the above
requirements. Specifically, the fast gradient method
is applied to the dual problem resulting by relaxing
the inequality constraints. Global convergence rates of
O(1/ν2) (ν is the iteration counter) are provided not
only for dual optimality but also for primal properties
of optimality and feasibility, that is what matters in
MPC applications. Two practical ways are provided for
certifying computational complexity (i.e., the worst-case
number of iterations to achieve certain accuracy). In
addition, concrete termination criteria that do not involve
unknown quantities such as the optimal value, are given
that guarantee a pre-specified accuracy. Furthermore, an
efficient way of calculating the gradient of the dual
function is described whose complexity grows only
linearly with the prediction horizon.

Within the MPC community, fast-gradient methods
were also rediscovered very recently in [7], [8]. In [7] it
was shown how to certify the computational complexity
of the method of [6] when applied to MPC. However,
the method is applied to the primal problem, which
limits the study to input-constrained MPC and simple
enough constraint sets (e.g., a box). In [8] the fast
gradient method is applied to the dual of the MPC
problem, where the equality constraints corresponding
to the state equations have been relaxed. This framework
can only handle bound input and state constraints and a
particular class of ellipsoidal constraints, and complexity
certification guarantees are provided only for the dual
cost.

Note: Due to lack of space, the proofs of the results
of this paper are given in the internal report [9] which
is available upon request from the authors.

II. NOTATION

Let R, N, Rn, Rm×n, Sn+, Sn++ denote the field of
real numbers, the set of non-negative integers, the set
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of column real vectors of length n, the set of m by n
real matrices, the set of symmetric positive semidefinite
and positive definite n by n matrices, respectively. The
transpose of a matrix A ∈ Rm×n is denoted by A′.
For any nonnegative integers k1 ≤ k2 the finite set
{k1, . . . , k2} is denoted by N[k1,k2]. If k1 = 0 we simply
write Nk2

. For z ∈ Rn, [z]+ denotes its Euclidean
projection on the nonnegative orthant, i.e., the vector
whose i-th coordinate is max{zi, 0}. For a vector z ∈
Rn, ‖z‖ denotes the Euclidean norm of z, while if
A ∈ Rm×n, ‖A‖ denotes the spectral norm of A (unless
otherwise stated). For a set C ⊆ Rn, intC, rintC,
denote its interior and relative interior, respectively. The
graph of a set-valued mapping S : Rd ⇒ Rn, is the
set gphS = {(p, z)|z ∈ S(p)}, while its domain is
domS = {p|S(p) 6= ∅} = {p|∃ z s.t. (p, z) ∈ gphS}.

III. BASIC SETUP

Consider the Model Predictive Control (MPC) formu-
lation

V ?(p)= min

N−1∑
k=0

`(xk, uk) + Vf (xN ) (1a)

s.t. x0 = p (1b)
xk+1 = Axk +Buk + f, k ∈ NN−1 (1c)
Fxk +Guk ≤ c, k ∈ NN−1 (1d)
FNxN ≤ cN . (1e)

Given the current state vector p ∈ Rnx , the goal
is to compute a state-input sequence x0, . . . , xN ,
u0 . . . , uN−1, (xk ∈ Rnx , uk ∈ Rnu ) that minimizes
the finite-horizon cost (1a) over the prediction horizon
N , while satisfying the constraints (1d) (c ∈ Rms ) and
(1e) (cN ∈ RmN ), with

`(x, u) = 1
2 [ xu ]

′
[
Q S′

S R

]
[ xu ] + [ qr ]

′
[ xu ] , (2)

Vf (x) = 1
2x
′QNx+ q′Nx, (3)

R ∈ Snu++,
[
Q S′

S R

]
∈ Snx+nu

+ , and QN ∈ Snx+ .
Let x = [x′0 · · ·x′N ]′, u = [u′0 · · ·u′N−1]′ and z =

[x′ u′]′ ∈ Rn (n = Nnu + (N + 1)nx). Also V (z) =∑N−1
k=0 `(xk, uk) + Vf (xN ), Z(p) = {z ∈ Rn|x0 =

p, xk+1 = Axk + Buk + f, k ∈ NN−1} and g :
Rn → Rm (m = Nms + mf ) is the affine mapping
with gk(z) = Fxk + Guk − c, k ∈ NN−1, gN (z) =
FNxN − cN . Then (1) can be expressed as

P(p) : V ?(p) = min
z∈Z(p)

{V (z)|g(z) ≤ 0} (4)

By relaxing the inequality constraints, we obtain the
following problem which is dual to (4)

D(p) : Ψ?(p) = max
y≥0

Ψ(p, y), (5)

where the dual function is

Ψ(p, y) = min
z∈Z(p)

V (z) + y′g(z). (6)

For p ∈ Rnx let Z?(p), Y?(p) denote the set of optimal
solutions of (4), (5), respectively.

Since (4) is a convex quadratic program, strong du-
ality always holds (without the need of any constraint
qualification). Therefore V ?(p) = Ψ?(p), and one can
solve D(p) to obtain a dual optimal vector y?(p) ∈ Y(p)
and then calculate a primal optimal vector z?(p) ∈
Z?(p) by solving minz∈Z(p) V (z)+(y?)′g(z). The dual
function (6) can be written as

Ψ(p, y) = min
z

N−1∑
k=0

¯̀(xk, uk, yk) + V̄f (xN , yN ) (7)

s.t. x0 = p

xk+1 = Axk +Buk + f, k ∈ NN−1

where ¯̀(x, u, yk) , `(x, u) + y′kg(x, u), V̄f (x, yN ) ,
Vf (x) + y′Ngf (x). Given p ∈ Rnx , y ∈ Rm, problem
(7) is a standard finite-horizon linear-quadratic optimal
control problem with positive definite input weight ma-
trix, therefore it is well known that there exist unique
sequences x0, . . . , xN , u0 . . . , uN−1, that attain the min-
imum [10, Section 1.9]. Furthermore, through Danskin’s
theorem [10, Prop. B.25], this means that the dual func-
tion is real-valued, continuously differentiable with its
gradient given by ∇yΨ(p, y) = g(zy), where zy solves
(7). Finally, (7) can be seen as a parametric equality-
constrained quadratic program with the parameter vector
being y, therefore, zy is a linear mapping, while Ψ(p, ·) :
Rm → R is convex quadratic, thus its gradient, being
an affine mapping, is Lipschitz continuous on Rm.

IV. ACCELERATED DUAL GRADIENT PROJECTION

In this section we will describe the Accelerated Dual
Gradient Projection (GPAD for short) scheme for solv-
ing (4). The goal is to compute an (εV , εg)-optimal
solution for (4), defined as follows.

Definition 1: Consider two nonnegative constants εV ,
εg . We say that z ∈ Rn is an (εV , εg)-optimal solution
for (4) if z ∈ Z(p) and

V (z, p)− V ?(p) ≤ εV (8a)
max

i∈N[1,m]

[gi(z)]+ ≤ εg. (8b)

To simplify notation, we omit the dependence on the
parameter p for the rest of this section:

V ? = min
z∈Z
{V (z)|g(z) ≤ 0}, (9)

The dual function is Ψ(y) = minz∈Z{V (z) + y′g(z)},
while the dual problem is Ψ? = maxy≥0 Ψ(y).
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The results presented in this section are valid under
less stringent assumptions regarding V , g, Z and Ψ.
Specifically, we only assume that V : Rn → R is a
convex function, each component of g : Rn → Rm is
convex, Z ⊂ Rn is a convex set, strong duality holds
and that Ψ is continuously differentiable with Lipschitz
continuous gradient, i.e., there exists a LΨ > 0 such
that ‖∇Ψ(y1)−∇Ψ(y2)‖ ≤ LΨ‖y1− y2‖. Let Φ(y) =
−Ψ(y). Then Ψ? = −miny≥0 Φ(y), and ∇Φ(y) =
−g(zy), where zy = arg minz∈Z{V (z) + y′g(z)}.
GPAD (summarized in Algorithm 1) is the first fast
gradient method of Nesterov [6] (see also [11], [12,
Section 6.9], [13, Alg. 2], [14]) applied to the convex
minimization problem miny≥0 Φ(y).

Algorithm 1 Accelerated Dual Gradient Projection
(GPAD)

y(0) = y(−1) ∈ Rm+ . θ0 = θ−1 = 1. ν ← 0
Step 1. w(ν) = y(ν) + θν(θ−1

ν−1 − 1)(y(ν) − y(ν−1))
Step 2. z(ν) = arg minz∈Z{V (z) + w′(ν)g(z)}
Step 3. y(ν+1) =

[
w(ν) + 1

LΨ
g(z(ν))

]
+

Step 4. θν+1 =

√
θ4
ν+4θ2

ν−θ
2
ν

2 . Set ν ← ν + 1 and go
to Step 1.

Step 2 is the only complicated part of Algorithm
1. However, in many interesting cases z(ν) can be
computed exactly. For example, if (9) is a strictly convex
quadratic program (V is strictly convex quadratic, Z =
Rn and g is affine), then the dual function can be com-
puted explicitly by inverting the Hessian of the primal.
In that case, computing z(ν) involves just a matrix-
vector product. In an MPC setting (eq. (1)), one can
eliminate the state sequence, converting the problem to
a strictly convex quadratic program. However, this would
require the inversion of a large-scale matrix, which can
be performed offline only once in the case of an LTI
system, but may become prohibitive for LTV systems.
Furthermore, the calculation of z(ν) would require a
matrix-vector product whose cost is of order O(N2).
In Section V we show how we can implement step 2
much more efficiently.

The following theorem gives the O(1/ν2) global
convergence rate for the dual cost.

Theorem 1 ([13, Cor. 2]): Let {y(ν), w(ν), θν} be
generated by Algorithm 1. Then for any k ∈ N+

Φ(y(ν+1))− Φ(y?) ≤ 2LΨ

(ν + 2)2
‖y(0) − y?‖2. (10)

In Theorem 1 and in what follows, y? is any element
of the set of dual optimal solutions Y?.

A. Primal infeasibility bound

While Algorithm 1 solves the dual of (9), we are
mainly interested in finding a solution to the primal
problem (9) that is (εV , εg)-optimal and a bound on the
number of iterations it takes to find it. For the averaged
primal sequence

z̄(ν) =
(∑ν

i=0θ
−1
i

)−1∑ν
i=0θ

−1
i z(i) (11)

convergence results were reported in [15, Theorem 3],
[13, Cor. 2], and [16]. However these results assume
compact dual and/or primal constraint sets, and cannot
be applied to convex optimization problems in which the
dual constraint set is the nonnegative orthant. The next
theorem provides bounds on the primal infeasibility for
the averaged primal iterates (11).

Theorem 2: Let {y(ν), w(ν), z(ν), θν} be generated by
algorithm 1. Then for any ν ∈ N+

max
i∈N[1,m]

[gi(z̄(ν))]+ ≤
8LΨ

(ν + 2)2
‖y(0) − y?‖. (12)

B. Primal suboptimality bounds

The next theorem gives global convergence rate of
V (z̄(ν)) to V ?. Notice that a lower bound on V (z̄(ν))−
V ? is also relevant since z̄(ν) could be infeasible,
therefore one may have V (z̄(ν)) ≤ V ? as well.

Theorem 3: Let {y(ν), w(ν), z(ν), θν} be generated by
Algorithm 1. Then for any ν ∈ N+

V (z̄(ν))− V ? ≤
2LΨ

(ν + 2)2
(‖y?‖2 + ‖y(0)‖2), (13a)

V (z̄(ν))− V ? ≥−
8LΨ

(ν + 2)2
‖y(0) − y?‖ ‖y?‖. (13b)

The following corollary provides a practical termi-
nation criterion for deciding (εV , εg)-optimality of z̄(ν)

without knowing V ?. Its proof follows directly from
Theorems 2, 3.

Corollary 1: Let {y(ν), w(ν), z(ν), θν} be generated
by Algorithm 1. If

Φ(y(ν+1)) + V (z̄(ν)) ≤ εV (14a)
max

i∈N[1,m]

[gi(z̄(ν))]+ ≤ εg (14b)

then z̄(ν) is an (εV , εg)-optimal solution for problem (9).
Furthermore V (z̄(ν))− V ? ≥ εg‖y?‖.
Notice that in equations (12), (13a), quantities
maxi∈N[1,m]

[gi(z̄(ν))]+, V (z̄(ν)) can be replaced by
min{maxi∈N[1,m]

[gi(z̄(ν))]+,maxi∈N[1,m]
[gi(z(ν))]+},

min{V (z̄(ν)), V (z(ν))} without changing their validity.
This simple observation leads to Algorithm 2, which is
very effective in practice according to our experience.
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Algorithm 2 GPAD with termination criterion

Input: εV > 0, εg > 0
Iterate steps 1–4 of Algorithm 1 until (14) or

Φ(y(ν+1)) + V (z(ν)) ≤ εV (15a)
max

i∈N[1,m]

[gi(z(ν))]+ ≤ εg (15b)

is satisfied.

V. EFFICIENT CALCULATION OF THE GRADIENT

The main computational burden of GPAD lies in
solving problem minz∈Z(p){V (p, z) + y′g(z)} (Step 3
in Algorithm 1). The next proposition describes how to
perform this operation very efficiently.

Proposition 1: Given y ∈ Rm, the unique optimal
sequence zy for (7) is given by Algorithm 4, where Kk,
Dk, Mk, dk, Lk, Ck, sk, k ∈ NN−1 can be calculated
by Algorithm 3.

Algorithm 3 Factor step
0: PN = QN .
for k = N − 1, . . . , 0 do

1: R̄k= R + B′Pk+1B, S̄k = S + B′Pk+1A, (16a)
r̄k = r + B′Pk+1f, (16b)

2: Kk= −R̄−1
k S̄k, Dk = −R̄−1

k G′, (17a)
Mk= −R̄−1

k B′, dk = −R̄−1
k r̄k, (17b)

3: Lk= (A + BKk)′, Ck = (Fk + GKk)′, (18a)
sk = q + Kkr̄k, (18b)

4: Pk= Q + A′Pk+1A− S̄′kR̄
−1S̄k (19)

end for

Algorithm 4 Solve step

0: eN = F ′NyN + qN (20)
for k = N − 1, . . . , 1 do

1: ek = Lkek+1 + Ckyk + sk (21)
end for

2: x0 = p
for k = 0, . . . , N − 1 do

3: uk = Kkxk + Dkyk + Mkek+1 + dk, (22a)
4: xk+1 = Axk + Buk, (22b)

end for

A rough flop count of Algorithm 3 (considering only
operations of cubic order, i.e., matrix-matrix products,
factorizations and forward-backward substitutions for
linear systems with matrix-valued right hand-sides) gives
N(3n3

x+ 6n2
xnu+ 6n2

unx+ 1
3n

3
u+ 2msnxnu+ 2n2

ums)
flops, which increases only linearly with the prediction
horizon. Having performed the factor step, calculating
the gradient of (7) is very cheap. Specifically, computing

zy takes N(4n2
x + 6nxnu + 2ms(nx + nu)) + 2mNnx

flops, which again increases only linearly with the
prediction horizon. Note that in the case of MPC for
Linear Time-Invariant (LTI) systems, Algorithm 3 can
be performed off-line.

VI. CALCULATING A TIGHT LIPSCHITZ CONSTANT

Calculating a tight Lipschitz constant for the gradient
of the dual is important, since both the theoretical and
practical convergence rate of GPAD depends on it.
Utilizing [15, Theorem 1], if

[
Q S′

S R

]
∈ Snx+nu

++ , then

LΨ = ‖[ F̃ G̃ ]‖2
µ is a Lipschitz constant for ∇yΨ(p, ·).

Here µ = λmin(H̃), H̃ =
[
Q̃ S̃′

S̃ R̃

]
, Q̃ =

[
IN⊗Q 0

0 QN

]
,

R̃ = IN ⊗ R, S̃ =
[
IN⊗S

0

]
, and F̃ , G̃ are given

in the appendix. In [8] this result was improved in
the case of Ψ(p, ·) being strictly convex quadratic.
Translating the latter result to the present setting, L′Ψ =
‖
[
F̃ G̃

]
H̃−1/2‖2 is smaller than LΨ unless H̃ is a

positive multiple of the identity matrix.
However, in the present work it is assumed that[
Q S′

S R

]
, and QN are merely positive semidefinite as it

often happens in MPC applications, when for example
the system’s output is weighted in the stage cost. Since
for a given p ∈ Rnx , Problem (7) is an equality
constrained convex quadratic program, its value function
Ψ(p, ·) is convex quadratic, therefore the spectral norm
of its Hessian matrix is the tightest Lipschitz constant
for ∇yΨ(p, ·). The next proposition gives a formula for
the Hessian of Ψ(p, ·), using Proposition 1.

Proposition 2: Consider problem (7). Then x =
X̃y + t̃(p), u = Ũy + ṽ(p), ∇2

yΨ(p, y) = F̃ X̃ + G̃Ũ ,
where

X̃= L̃′B̃Ẽ, t̃(p) = L̃′(B̃d̃+ f̃(p))

Ũ= K̃X̃ + Ẽ, ṽ(p) = K̃t̃(p) + d̃,

Ẽ = D̃ + M̃L̃C̃, and the matrices involved are given
in the appendix. Therefore LΨ = ‖F̃ X̃ + G̃Ũ‖ is the
tightest Lipschitz constant for Ψ(p, ·).

Based on Proposition 2, matrices Ũ , X̃ , can be cal-
culated efficiently by utilizing the upper triangularity of
L̃, without requiring the factorization of a large matrix.
Having calculated matrices X̃ , Ũ one can compute the
spectral norm of the Hessian, i.e., LΨ = ‖F̃ X̃ + G̃Ũ‖.
Alternatively, for LPV systems where the calculation of
the spectral norm is not affordable in real-time, one can
compute an upper bound on LΨ, such as the Frobenius
norm or the induced 1-norm, or perform a backtracking
line search during the course of GPAD [13], [14].

VII. CERTIFICATION OF COMPLEXITY

Certifying computational complexity amounts to find-
ing a bound on the number of iterations required by
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GPAD to solve P(p) (cf. Eq. (4), equivalently Eq. (1))
that is independent on p, as defined below.

Definition 2: Given P ⊂ domS , where S(p) = {z ∈
Z(p)|g(z) ≤ 0}, ν? is called a uniform iteration bound
(UIB) for GPAD on P if for every p ∈ P and every
ν ≥ ν?, z̄(ν) is an (εV , εg)-optimal solution for P(p) .

For simplicity we will assume that GPAD is started
from y(0) = y(−1) = 0. As it is clear from Theorems
2 and 3, obtaining such a UIB requires determining
a uniform bound on the norm of some dual optimal
solution, defined below.

Definition 3: For a P ⊂ domS, we say that ∆y(P)
is a uniform dual bound (UDB) for P(p) on P if for any
p ∈ P there exists a y?(p) ∈ Y?(p) such that

‖y?(p)‖ ≤ ∆y(P) <∞. (24)
The calculation of a UDB immediately leads to the

establishment of a UIB as it is seen by the following
corollary, which is a direct consequence of Theorems 2
and 3.

Corollary 2: Let P ⊂ domS and ∆y(P) be a UDB
on P . Then

ν? =

⌈√
2LΨ∆y(P) max

{√
∆y(P)
εV

, 2√
εg

}⌉
− 2,

is a UIB on P .
Since Theorems 2 and 3 are valid for any

y?(p) ∈ Y?(p), the tightest UDB on domS is
maxp∈domS miny?(p)∈Y?(p) ‖y?(p)‖. In principle, one
can determine Y?(p) explicitly (by solving the paramet-
ric optimization problem D(p) using the algorithm of
[17]) and then calculate the minimum norm selection.
However, this procedure would vanish the use of on-line
optimization, in favor of the explicit solution. Finding
an upper bound for maxy?(p)∈Y?(p) ‖y?(p)‖ on some
compact subset of int(domS) (assuming that domS
has nonempty interior) is a much easier problem. The
need to confine the search for such a bound only on a
P ⊂ int(domS) is dictated by the following lemma.

Definition 4: We say that P(p̄) satisfies the Slater
condition (at p̄ ∈ Rd) if there exists a z̄ ∈ Z(p̄) such
that g(z) < 0. We call any such vector z̄ a Slater vector
for P(p̄).

Lemma 1: Consider P(p). If int(domS) 6= ∅, then
P(p̄) satisfies the Slater condition if and only if p̄ ∈
int(domS), in which case Y?(p̄) is bounded and

‖y?(p̄)‖ ≤ γ−1(V (p̄, z̄)− V ?(p̄)), (25)

for all y?(p̄) ∈ Y?(p̄), where γ = mini∈N[1,m]
{−gi(z̄)}

and z̄ ∈ Rn is a Slater point for P(p̄).
Remark 1: For p̄ ∈ int(domS), the tightest possible

bound of the form (25) can be obtained by solving
minz,γ{γ−1V (p̄, z)|z ∈ Z(p), g(z) + γ ≤ 0, γ ≥ 0}.

Although this problem is not convex, it is equivalent to
Γ(α) = 0, where

Γ(α) = min
z∈Z(p),γ≥0

{V (p̄, z)− αγ|g(z) + γ ≤ 0}. (26)

Notice that Γ is a univariate function whose root can
be found by employing a generalized Newton method
with respect to α, where at each iteration we solve (26),
which is a convex QP [18].

Next, two practical ways of calculating a UDB for
P(p) on a subset of int(domS) 6= ∅, are presented.

Proposition 3: Let PS = {ps}s∈N[1,S]
, with ps ∈

int(domS), and

γ = min{−gi(zs)|s ∈ N[1,S], i ∈ N[1,m]}, (27a)
β = max{V (ps, zs)|s ∈ N[1,S]}, (27b)

where zs is a Slater vector for P(ps), s ∈ N[1,S]. If
V ? ≥ 0, then ∆y(PS) = γ−1β is a UDB for P(p) on
PS , convPS .

A second way of deriving a UDB is described next.
Proposition 4: Let int(domS) 6= ∅, ε > 0 and Pε =

{p ∈ Rnx |∃z ∈ Z(p), g(z) + ε ≤ 0}. Then

∆y(Pε) = max
p,y
{
∑m
i=1yi|y ∈ Y?(p), p ∈ Pε} (28)

is a UDB for P(p) on Pε.
Remark 2: By writing down the optimality conditions

for P(p), problem (28) can be formulated as a Lin-
ear Program with Linear Complementarity Constraints
(LPCC), which in turn can be transformed into mixed-
integer linear inequalities by adopting the so-called “big-
M” technique (see e.g. [19, Prop. 2]), and using bounds
obtained by e.g., Proposition 3. Obviously, bound (28) is
tighter than the one of Proposition 3, and by choosing
an arbitrarily small ε it can be made valid for P =
int(domS).

VIII. SIMULATIONS

Consider a two dimensional system with matrices
A = [ 1 1

0 1 ], B = [ 1
0.5 ], and constraints −1 ≤ u ≤ 1,

− [ 2
5 ] ≤ x ≤ [ 2

5 ]. The weight matrices are Q = I2,
R = 0.1, while S, q, r, qN , f are equal to zero. The
terminal weight QN is chosen as the solution of the
infinite-horizon unconstrained LQR problem, and FN ,
gN represent the maximal positively invariant set of
the system in closed-loop with the LQR feedback law.
The certification analysis will be carried out for GPAD
and Problem (1) with prediction horizon ranging from
N = 5 to N = 15 with step 2. For each N , we apply
the following steps: (i) calculate the Lipchitz constant
using Proposition 2; (ii) compute the UDB according to
Proposition 4 by solving problem (28) (ε = 0.1); (iii)
compute the UDB according to Proposition 3, with the
collection of points being the vertices of Pε (to make the
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TABLE I: Complexity certification analysis

N Uniform iteration bound GPAD
Prop. 3 Prop. 4 Sampled Cor. 1 Alg. 2

5 6188 1692 1282 570 164
7 8716 1960 1392 607 166
9 8758 1972 1398 610 167
11 8780 2012 1402 611 167
13 8794 2010 1404 612 167
15 8802 2006 1406 613 167

comparison with Proposition 4 fair); (iv) compute the
UIBs according to Corollary 2; (v) form a uniform grid
on Pε (gridding each axis with 103 points) and for each
point of the grid compute an (εV , εg)-solution (εV =
10−2, εg = 10−3) stopping GPAD according with the
termination criterion of Corollary 1 and of Algorithm 2;
(vi) for validation purposes, for each point of the grid
we compute the optimal solution of (1) using CPLEX,
and then the minimum norm dual optimal solution. The
maximum of the norm of the dual optimal solutions
along the grid serves as a benchmark to compare against
our bounds. Notice that this is just a lower bound to the
tightest UDB.

The results of the analysis are summarized in Table I,
showing that Proposition 4 leads to much tighter bounds
than Proposition 3, and very close to the ones obtained
by sampling (40% larger), and obtained by GPAD with
the termination criterion of Corollary 1. Finally, GPAD
with the termination criterion of Algorithm 2 greatly
outperforms the one with termination criterion given by
Corollary 1.

In terms of speed of execution of the GPAD algorithm,
a comparison with other state-of-the-art active set and
interior point solvers has been reported in [20] and [9],
respectively, showing comparable (and often superior)
performance.
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APPENDIX

F̃ =
[
IN⊗F 0

0 FN

]
, G̃ =

[
IN⊗G

0

]
,

C̃ =
[

0 0
0 ⊕Nk=1Ck

]
, M̃ = [ 0 ⊕N−1

k=0 Mk ] ,

L̃ =


I L0 L

1
0 ··· L

N−1
0 LN−1

0

0 I L1 ··· LN−2
1 LN−1

1

...
...

...
. . .

...
...

0 0 0 ··· I LN−1
N−1

0 0 0 ··· 0 I


d̃ = d+ L̃s, d = [ d′0 ··· d

′
N−1 ]

′
, s = [ 0 s′1 ··· s

′
N ]
′

D̃ = [⊕N−1
k=0 Dk 0 ] , K̃ = [⊕N−1

k=0 Kk 0 ]

Ã =

−I 0 ··· 0 0
A −I ··· 0 0

...
...

. . .
...

...
0 0 ··· A −I

 , B̃ =
[

0
IN⊗B

]
, f̃(p) =

 p
f

...
f
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