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Abstract— In this paper we study a class of stochastic design
problems formulated in terms of general inequality conditions
on expectations. These inequalities can be used to express
various mean square or almost sure stabilization conditions for
stochastic systems. In contrast with existing probabilistic meth-
ods that only solve such problems with a certain probability
(degree of confidence), we propose a novel method that provides
a full guarantee that the constructed solution truly solves the
original problem. The main idea of our method is based on
overapproximating the expectations by suitably constructed
upper Riemann-Stieltjes sums and imposing the inequalities on
these sums instead. Next to the full guarantee on the constructed
solution, the method offers three other advantages. First, it
applies to arbitrary probability distributions. Second, under
rather mild conditions we can derive a “converse theorem”
that states that if the original problem is solvable, our method
will find a solution by sufficiently refining the upper Riemann-
Stieltjes sums. Finally, we will show that convexity of the
function used in the expectation can be exploited to obtain
convex design conditions in our approach.

I. INTRODUCTION

Throughout the history of system and control theory
the analysis of and control design for systems subject to
uncertain disturbances modeled as random variables have
played an important role. The majority of the results in this
area of stochastic control theory [1] has focussed on systems
in which the random variables can be modeled as Gaussian
processes. A major advantage of using Gaussian processes
is that it simplifies the stochastic analysis and synthesis
problems considerably. This is also the case for one of the
most well-known problems in this context being the linear-
quadratic-Gaussian (LQG) or H2 optimal control problem,
see, e.g., [2], [3]. Although the central limit theorem provides
a good justification for the use of Gaussian random variables,
in many situations it is still of interest to consider systems
subject to non-Gaussian disturbances or uncertainties.

Less solution frameworks exist for general (non-Gaussian)
stochastic control design problems that can be stated as
finding a parameter µ ∈ Υ (e.g., control parameters and/or
a proper Lyapunov function) such that a collection of con-
straints of the form

Ewf(w, µ) :=

∫
Rnw

f(w, µ)p(w)dw < 0, (1)

is satisfied. Here, f : Rnw ×Υ→ R is a given function with
Υ ⊆ Rny , Ew denotes the expectation with respect to w,
and p : Rnw → R is a probability density function (pdf) of
the random variable w, which is not necessarily Gaussian.
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Note that conditions as in (1) are quite powerful as they
can express all kinds of stability conditions including, for
instance, decreasing conditions of Lyapunov functions for
mean square stability purposes [4], or conditions in terms of
the top Lyapunov exponent to assess almost sure stability,
see, e.g., [5]. Besides, if f is chosen appropriately as an
indicator function of a µ-dependent set, (1) can also express
so-called chance constraints [6]. Such problems involving
chance constraints are important in relaxing various robust
control design problems, see, e.g, [7].

One of the few general frameworks to tackle such prob-
lems are formed by probabilistic or randomized methods
as surveyed in, e.g., [8], [9]. These probabilistic methods
have been widely used in recent years to obtain approximate
solutions to these problems. The approximate nature of the
solutions has to be understood in the sense that a solution
is only obtained with a certain probability (a certain degree
of confidence) [8], [9]. As such, if this path is followed,
the user should accept a certain risk-level expressing that
the problem at hand is not solved truly. Recently, a novel
approach was presented overcoming the approximate nature
of the solutions for a specific class of optimization problems
subject to chance constraints, see [7]. The method is based
on upper bounding these chances through approximation of
the indicator function by using so-called kinship functions.
By imposing the constraints on these upperbounds instead,
true solutions to the original problem are obtained.

In this paper we will propose another solution to the
stochastic design problems as in (1). The solution is based
on approximating the integrals in (1) by suitably constructed
upper Riemann-Stieltjes sums [10] and requiring negativity
of these sums instead. In case these new inequalities can
be solved in the design parameter µ, a true solution to
the original problem (1) is found. Hence, in contrast with
the probabilistic methods, no risk level is needed as a full
guarantee is given that the constructed solution solves the
problem at hand. This forms one of the main advantages
of our upper Riemann-Stieltjes approach. In addition, two
other features can be mentioned. First, a “converse theorem”
can be derived under rather mild conditions, which states
that if the original problem is solvable, our method will
find a solution provided the upper Riemann-Stieltjes sums
are sufficiently refined (resulting in more complex numerical
problems to be solved). Second, in case the function f has
certain convexity properties the numerical problems that have
to be solved in our upper Riemann-Stieltjes approach can be
transformed into convex conditions as well. This latter fact
will be used to illustrate how this upper Riemann-Stieltjes
method can provide an alternative solution to the mean
square stabilization problem of stochastic linear systems [4],
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[11], [12].

II. PROBLEM FORMULATION

A. Notation and preliminaries
For a set S ⊂ Rn we denote its convex hull by coS

and its interior by intS. The transpose of a matrix M is
denoted by M ′. Let p : Rnw → R be a probability density
function (pdf) for the random variable w, i.e., p is a Lebesgue
integrable function,

∫
Rnw

p(w)dw = 1 and p(w) ≥ 0 for all
w ∈ Rnw . The probability P(w ∈W ) for a set W ⊆ Rnw is
equal to

∫
W
p(w)dw and for a function h : Rnw → Rl, the

expectation Ewh is given by
∫
Rnw

h(w)p(w)dw. All integrals
are interpreted in Lebesgue sense and are assumed to exist.
Note that P(w ∈W ) is defined for µp-measurable sets [13],
where µp is the measure induced by the pdf p in the sense
that µp(W ) = P(w ∈ W ) =

∫
W
p(w)dw. We will also use

the support of the function p denoted by Sp and defined as
{w ∈ Rnw | p(w) 6= 0}.

B. Stochastic design problem
In this paper we would like to address the following basic

stochastic design problem given a random variable w with
pdf p : Rnw → R.

Problem 1: Let f : Rnw × Υ → R be a given function
with Υ ⊆ Rny . Find µ ∈ Υ such that the inequality (1) is
satisfied.

In general the solution to such a design problem might be
extremely complex due to the nonlinear nature of both f and
p. Therefore, in this paper we will provide a computational
method to address these challenging problems.

Remark 1.1: We opted here to focus on stochastic con-
ditions (1) in terms of expectations, which can be used to
express various kinds of stochastic stability and stabilization
conditions [4], [5]. However, many other types of constraints
(e.g., chance constraints [6]) can be addressed using the same
techniques as outlined in the next sections.

III. UPPER RIEMANN-STIELTJES APPROACH

A. Main idea
To solve Problem 1, we introduce a collection S =

{S1, . . . , SM} of M µp-measurable subsets Sm, m =
1, . . . ,M , of Rnw satisfying intSi ∩ intSj = ∅ when i 6= j.
A collection of sets with the latter property will be called
a partition throughout the paper. If for a set Θ ⊆ Rnw ,
a partition S satisfies

⋃M
m=1 Sm = Θ, we say that S is a

partition of Θ. Using partitions, we are able to compute an
upperbound of

∫
Rnw

f(w, µ)p(w)dw in Problem 1 according
to∫

Rnw

f(w, µ)p(w)dw ≤
M∑

m=1

pm sup
w∈Sm

f(w, µ) + g(µ), (2)

where
pm := P(w ∈ Sm) =

∫
Sm

p(w)dw

and g : Υ→ R is a function satisfying∫
Rnw\

⋃M
m=1 Sm

f(w, µ)p(w)dw ≤ g(µ), µ ∈ Υ. (3)

Note that (3) expresses that the function g is used to
capture the tail (the part of Rnw outside

⋃M
m=1 Sm)

in the integral in (1). Interestingly, the expression∑M
m=1 pm supw∈Sm

f(w, µ) can be perceived as an upper
Riemann-Stieltjes sum or an upper Darboux sum, see, e.g.,
[10], of the integral

∫⋃M
m=1 Sm

f(w, µ)p(w)dw. Therefore,
we call our approach to solve Problem 1 an upper Riemann-
Stieltjes method. Due to the inequality (2) we know that
Problem 1 is solved for µ ∈ Υ, if the more stringent
constraint

M∑
m=1

pm sup
w∈Sm

f(w, µ) + g(µ) < 0 (4)

is satisfied.
If no additional assumptions on f are available (such as

convexity, which will be used in the next section), it might
be hard to compute the exact suprema supw∈Sm

f(w, µ)
(certainly given the dependence on µ). In this case one can
use the following conditions to solve Problem 1.

Lemma 1.1: Let p : Rnw → R be the probability
density function (pdf) for the random variable w and let
f : Rnw × Υ → R be a given function with Υ ⊆ Rny . Let
S = {S1, . . . , SM} be a partition with Sm, m = 1, . . . ,M ,
compact subsets of Rnw and assume that f is continuous in w
on Sm for each fixed µ ∈ Y , m = 1, . . . ,M . Let g : Υ→ R
be a function such that (3) holds. Then, Problem 1 is solved
for µ∗ ∈ Υ, if µ∗ satisfies

M∑
m=1

pmf(wm, µ
∗) + g(µ∗) < 0 (5)

for all wm ∈ Sm, m = 1, . . . ,M .
For space reasons, all proofs of the results are omitted.
A simple corollary to the previous result is obtained for

the special case that the pdf p has a bounded support.
Corollary 1.1: Let p : Rnw → R be the probability

density function (pdf) for the random variable w and let f :
Rnw ×Υ→ R be a given function with Υ ⊆ Rny . Assume
that the support Sp is bounded. Let S := {S1, . . . , SM} be a
partition such that Sp ⊆

⋃M
m=1 Sm with Sm, m = 1, . . . ,M ,

compact subsets of Rnw , and assume that f is continuous in
w on Sm for each fixed µ ∈ Υ, m = 1, . . . ,M . Then,
Problem 1 is solved for µ∗ ∈ Υ, if µ∗ satisfies

M∑
m=1

pmf(wm, µ
∗) < 0 (6)

for all wm ∈ Sm, m = 1, . . . ,M .

B. Non-conservatism

The conditions as in Corollary 1.1 represent, in principle,
only sufficient conditions. Interestingly, the next theorem
formulates for the case that p has a bounded support, that by
sufficiently refining the partition of Sp any solution µ∗ ∈ Υ
to Problem 1 can be reconstructed by our upper Riemann-
Stieltjes approach based on (6). To formalize what it means
for a partition to be sufficiently refined, we give the next
definition.
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Definition 1.1: The diameter diamS of a set S ⊆ Rn is
defined as sup{‖w1−w2‖ | w1, w2 ∈ S}. The diameter of a
collection of sets S = {S1, . . . , SM} is defined as diamS =
diam{S1, . . . , SM} := maxm=1,...,M diamSm.

Theorem 2: Let p : Rnw → R be the probability density
function (pdf) for the random variable w and let f : Rnw ×
Υ→ R be a given function with Υ ⊆ Rny . Assume that the
support Sp is bounded and let f be continuous in w on clSp
for all fixed µ ∈ Υ. Suppose that µ∗ ∈ Υ solves Problem 1.
Then there is an ε0 > 0 such that for all partitions S =
{S1, . . . , SM} of clSp with Sm, m = 1, . . . ,M , compact
sets and diamS ≤ ε0, the condition (6) is satisfied.

Remark 2.1: The theorem above also applies when all
the partitions S = {S1, . . . , SM} are chosen as clSp ⊆⋃M

m=1 Sm ⊂ Θ ⊂ Rnw , where Θ is a compact set and f
is continuous on Θ in w for each fixed µ ∈ Υ. This setup is
useful in case the sets Sm, m = 1, . . . ,M , in the partition
are given certain regularity properties (e.g. polytopes as in
Section V below), but clSp cannot be written as a finite union
of sets with such regularity properties.

IV. EXPLOITING CONVEXITY

In this section we adopt the following assumption.
Assumption 2.1: The function f is convex with respect to

w for all fixed µ ∈ Rny , i.e., for all µ ∈ Υ, all w1, w2 ∈
Rnw and all 0 ≤ α ≤ 1 it holds that

f(αw1+(1−α)w2, µ) ≤ αf(w1, µ)+(1−α)f(w2, µ).
In this case it is convenient to choose Sm, m = 1, . . . ,M ,

to be compact polyhedral sets (called polytopes), which can
then be written as

Sm = co{vm,1, . . . , vm,Nm}, (7)

where {vm,i}Nm
i=1 are the vertices of Sm, m = 1, . . . ,M , and

co denotes the convex hull. Exploiting the polytopic charac-
ter of Sm, m = 1, . . . ,M , together with Assumption 2.1, we
can prove the following result.

Lemma 2.1: Let p : Rnw → R be the probability density
function (pdf) for the random variable w and let f : Rnw ×
Υ → R be a given function with Υ ⊆ Rny . Assume that
the support Sp is bounded. Suppose Assumption 2.1 holds
and let {S1, . . . , SM} be a polytopic partition, where the
polytopes are given in the vertex representation as in (7).
Suppose g : Υ → R is a function such that (3) holds. If
µ∗ ∈ Υ satisfies the constraint

M∑
m=1

pm max
im=1,...,Nm

f(vm,im , µ
∗) + g(µ∗) < 0, (8)

then µ∗ ∈ Υ solves Problem 1.
Interestingly, when f and g are convex in µ (for each fixed

w), (8) constitutes a finite set of convex constraints in µ∗,
because (8) can be rewritten equivalently, as

M∑
m=1

pmf(vm,im , µ
∗) + g(µ∗) < 0, for all

i1 ∈ {1, . . . , N1}, . . . , iM ∈ {1, . . . , NM}. (9)

In particular, convexity of g is guaranteed for the case that
Sp is bounded, because g can be taken as g = 0, when
Sp ⊆

⋃M
m=1 Sm.

Note that (9) consists of N1N2 · · ·NM constraints in ny
scalar variables (we are looking for µ∗ ∈ Υ ⊆ Rny ). Because
the product N1N2 · · ·NM grows quickly when the number of
polytopes in the partition becomes large, for implementation
purposes of (9) it is more convenient to introduce the slack
variables σm, m = 1, . . . ,M , and replace the conditions (9)
by the equivalent inequalities

M∑
m=1

pmσm + g(µ∗) < 0 (10a)

f(v1,i1) ≤ σ1, i1 = 1, . . . , N1 (10b)
... (10c)
f(vM,iM ) ≤ σM , i1 = 1, . . . , NM , (10d)

which are 1 +N1 +N2 + . . .+Nm constraints in M + ny
scalar variables. Obviously, the implementation (10) of (9)
scales much better for large number of polytopes in S.

V. AN ILLUSTRATIVE APPLICATION

To illustrate the main developments, in this section we
apply the above ideas to obtain an alternative method to
solve the mean square stabilization problem for stochas-
tic linear discrete-time systems. Exact solutions for mean-
square stabilization can be obtained by using ideas from
LQ optimal control theory [4], [11] or extensions of the
ideas in [12]. Approximate solutions can be found using
probabilistic methods, see, e.g., [14], in which randomized
algorithms were used to solved the continuous-time version
of this problem.To emphasize, here we just use this problem
as an illustration of the main ideas of the proposed upper
Riemann-Stieltjes method.

A. Stabilization problem
Consider the mean square stabilization problem for the

stochastic linear discrete-time system

x(k + 1) = A(w(k))x(k) +B(w(k))u(k), k ∈ N, (11)

where x(k) ∈ Rnx is the state variable, u(k) ∈ Rnu is the
control input, and w(k) ∈ Rnw is the parametric uncertainty
at discrete time k ∈ N. We assume that

[A(w)B(w)] = [A0 B0] +

nw∑
i=1

wi[Ai Bi] (12)

with Ai, Bi, i = 0, 1, . . . , nw, are given matrices. A para-
metric dependence as in (12) is customary in the literature on
linear parameter-varying (LPV) systems, see, e.g., [15]. Here,
we consider the parameters w(k), k ∈ N, to be independently
and identically distributed (IID) random vectors all with pdf
p : Rnw → R and we study the problem of rendering the
system uniformly globally mean square exponentially stable
(UGMSES) by a state feedback u(k) = Kx(k), k ∈ N. To
formalize this problem, consider the resulting closed loop

x(k + 1) = [A(w(k)) +B(w(k))K]︸ ︷︷ ︸
=:Acl(w(k))

x(k), k ∈ N, (13)
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which should be UGMSES as defined next.
Definition 2.1: The system (13) with w(k), k ∈ N, IID

random vectors with pdf p : Rnw → R is said to be uniformly
globally mean square exponentially stable (UGMSES), if
there exist constants b > 0 and 0 ≤ c < 1 such that for
any initial condition x(0) ∈ Rnx , it holds that

E(‖x(k)‖2) ≤ bck‖x(0)‖2. (14)

In addition, we say that the problem of uniform global mean
square exponential (UGMSE) stabilization by state feedback
for (11) with w(k), k ∈ N, IID random vectors with pdf
p : Rnw → R is solvable, if there exists a K ∈ Rnu×nx

such that (13) is UGMSES.

B. Applying the upper Riemann-Stieltjes approach

According to Lemma 1 in [4] solving the UGMSE stabi-
lization problem is equivalent to finding a matrix P � 0
and a feedback gain K ensuring that EV (x(k + 1)) −
V (x(k)) < 0 for all x(k) 6= 0 along the dynamics (13),
where V (x) = x′Px is the Lyapunov function. Observe that
EV (x(k + 1)) − V (x(k)) < 0 for all x(k) 6= 0 can be
rewritten equivalently as∫

Rnw

x′(A(w) +B(w)K)′P (A(w) +B(w)K)xp(w)dw

− x′Px < 0, ∀x ∈ Rnx \ {0}, (15)

which are an infinite number of scalar constraints in the form
(1). Indeed, if we define

fx(w,P,K) :=

x′[(A(w) +B(w)K)′P (A(w) +B(w)K)− P ]x, (16)

the conditions (15) become∫
Rnw

fx(w,P,K)dw < 0, ∀x ∈ Rnx \ {0}, (17)

which are obviously of the form (1) with µ = (P,K) the
design variables. We will follow the upper Riemann-Stieltjes
approach to transform these conditions into a computation-
ally tractable form. For ease of exposition, we study here the
case that p has bounded support Sp. For this situation we
select a finite number of (bounded) polytopes S1, . . . , Sm

such that Sp ⊆
⋃M

m=1 Sm. Due to the polytopic nature of
Sm, Sm can be written as Sm = co{vm,1, . . . , vm,Nm},
where {vm,i}Nm

i=1 are the vertices of Sm, m = 1, . . . ,M ,
as in (7). Note that due to the bounded support of p, as in
Corollary 1.1, the function g is not needed now. In addition,
various convexity properties of the functions fx, x 6= 0, can
be exploited according to Lemma 2.1.

Lemma 2.2: Consider the system (11) with the matrices
satisfying (12). For fixed P � 0, fixed K ∈ Rnx×nu and
fixed x ∈ Rnx , the mapping w 7→ fx(w,P,K) is convex.

This lemma shows that Lemma 2.1 can be applied, which
yields the conditions

M∑
m=1

pmx
′[(Am,im +Bm,imK)′P (Am,im +Bm,imK)

−P ]x < 0, for i1 ∈ {1, . . . , N1}, . . . , iM ∈ {1, . . . , NM}
(18)

for x 6= 0, where Am,i := A(vm,i) and Bm,i := B(vm,i),
i = 1, . . . , Nm, m = 1, . . . ,M . These conditions are
equivalent to

M∑
m=1

pm(Am,im +Bm,imK)′P (Am,im +Bm,imK)

− P ≺ 0, for i1 ∈ {1, . . . , N1}, . . . , iM ∈ {1, . . . , NM},
(19)

where we used that
∑

m pm = 1 due to Sp ⊆
⋃M

m=1 Sm. By
using a Schur complement we obtain (20).
Pre- and postmultiplying (20) by diag(P−1, I, I, . . . , I) and
changing the variables Q = P−1 and Z = KP−1 = KQ
gives the linear matrix inequalities (LMIs) as in (21).

Hence, we have proven the following theorem.
Theorem 3: Consider (11) with w(k), k ∈ N, IID random

vectors with pdf p : Rnw → R and Sp bounded. Suppose that
the matrices A(w) and B(w), w ∈ Rnw , satisfy the relation-
ship (12). Let S := {S1, . . . , SM} be a partitioning with
Sm polytopes that are represented as in (7), m = 1, . . . ,M ,
and Sp ⊆

⋃M
m=1 Sm. If the LMIs (21) are feasible, then the

UGMSE stabilization problem is solved for K = ZQ−1.
A non-conservatism proof can be given regarding this

theorem. In particular, we can prove by using Theorem 2
and Remark 2.1 that by sufficiently refining the partitioning
the conditions become necessary as well. We formalize this
statement in the next theorem.

Theorem 4: Consider (11) with w(k), k ∈ N, IID random
vectors with pdf p : Rnw → R and Sp bounded. Suppose
that the matrices A(w) and B(w), w ∈ Rnw satisfy the
relationship (12). If the UGMSE stabilization problem is
solvable, then there exists an ε0 > 0 such that for all
polytopic partitions {S1, . . . , SM} with clSp ⊆

⋃M
m=1 Sm

and diameter smaller than ε0, the LMIs (21) are feasible,
thereby constructing the desired feedback that solves the
UGMSE stabilization problem according to Theorem 3.

C. Implementation issues

Similar to the observation at the end of Section IV, note
that (21) consists of N1N2 · · ·NM LMIs. An alternative way
of implementing (19) is to use matrix slack variables Um,
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P

√
p1(A1,i1 +B1,i1K)′

√
p2(A2,i2 +B2,i2K)′ . . .

√
pm(Am,im +Bm,imK)′√

p1(A1,i1 +B1,i1K) P−1 0 . . . 0√
p2(A2,i2 +B2,i2K) 0 P−1 . . . 0

...√
pm(Am,im +Bm,imK) 0 0 . . . P−1

 � 0,

for i1 ∈ {1, . . . , N1}, . . . , iM ∈ {1, . . . , NM}. (20)


Q

√
p1QA′1,i1 + Z′B′1,i1

√
p2QA2,i2 + Z′B′2,i2 . . .

√
pmQA′m,im

+ Z′B′m,im√
p1A1,i1Q+B1,i1Z Q 0 . . . 0√
p2A2,i2Q+B2,i2Z 0 Q . . . 0

...√
pmAm,imQ+Bm,imZ 0 0 . . . Q

 � 0,

for i1 ∈ {1, . . . , N1}, . . . , iM ∈ {1, . . . , NM}. (21)

m = 1, . . . ,M , such that

M∑
m=1

pmUm ≺ 0, (22a)

(A1,i1 +B1,i1K)′P (A1,i1 +B1,i1K)− P ≺ U1,

i1 = 1, . . . , N1 (22b)
... (22c)

(AM,iM +BM,iMK)′P (AM,iM +BM,iMK)− P ≺ UM ,

iM = 1, . . . , NM . (22d)

By applying a Schur complement to (22b)-(22d), we obtain

M∑
m=1

pmUm ≺ 0, (23a)(
U1 − P A′1,i1 +K ′B′1,i1

A1,i1 +B1,i1K P−1

)
� 0,

i1 = 1, . . . , N1 (23b)
... (23c)(

UM − P A′M,iM
+K ′B′M,iM

AM,iM +BM,iMK P−1

)
� 0,

iM = 1, . . . , NM . (23d)

By pre- and postmultiplying (23a) by P−1, pre- and postmul-
tiplying (23b)-(23d) by diag(P−1, I) and using the change
of variables Q = P−1, Z = KP−1 = KQ and Vm =

P−1UmP
−1, m = 1, . . . ,M , we obtain the LMIs

M∑
m=1

pmVm ≺ 0, (24a)(
V1 −Q QA′1,i1 + Z ′B′1,i1

A1,i1Q+B1,i1Z Q

)
� 0,

i1 = 1, . . . , N1 (24b)
... (24c)(

VM −Q QA′M,iM
+ Z ′B′M,iM

AM,iMQ+BM,iMZ Q

)
� 0,

iM = 1, . . . , NM , (24d)

Hence, if the LMIs (24) are feasible, we can recover K
as K = ZQ−1. Note that in this way we only have 1 +
N1 + N2 + . . . NM LMIs, which scale much better in the
number of polytopes used in the partition than the direct
implementation based on (21) without using slack variables,
which requires N1N2 · · ·NM LMIs. Note that in the latter
case also the LMIs are of a larger size than the ones in (24).

Remark 4.1: Note that some conservatism is introduced in
the step where we go from (19) to (22). However, also for
the implementation using slack matrices based on the LMIs
(24) a non-conservatism result of the type as in Theorem 4
can be proven.

D. Numerical example

Consider the stochastic system (11) with

A(w) =

[
1 + 1

2w 1
0 1 + 1

2w

]
, B(w) =

[
0

1− 4
3w

]
(25)

and w(k), k ∈ N, are IID random variables with pdf

p(w) = max{1− |w|, 0}, (26)

which is zero outside the bounded support Sp = (−1, 1).
In order to determine a state feedback gain K that makes
the closed-loop system (13) UGMSES, we subdivide clSp
in M = 8 intervals Sm = [−1 + m−1

4 ,−1 + m
4 ], m =
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Fig. 1. Discretized probability distribution {pm}, m = 1, . . . ,M
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Fig. 2. Closed-loop trajectories with parameters w(k), k ∈ N, having
pdf (26)

1, . . . , 8. The resulting values pm =
∫
Sm

(1 − |w|)dw are
plotted in Fig. 1. Before we solve the UGMSE stabilization
problem as formulated in Problem 2.1, we first show that
a robustly stabilizing state feedback gain K such that (13)
is stable for any w(k) ∈ clSp = [−1, 1], k ∈ N, cannot
be found. This is most easily seen by observing that for
w(k) = 3

4 , the matrix B(w(k)) = 0 and the matrix A(w(k))
is unstable. Therefore, for the realization w(k) = 3

4 , k ∈
N, we obtain a linear system that is not stabilizable and
consequently, a robustly stabilizing feedback gain cannot be
found. Hence, one really has to focus on the the UGMSE
stabilization problem directly.

Therefore, we consider the LMI problem (24), which is
modeled in CVX [16] and solved in about 100 ms on a
Macbook 2.13 GHz Intel Core 2 Duo running MATLAB
R2009, under the additional constraint Q11 = 1 to scale the
resulting Lyapunov function V (x) = x′Q−1x = x′Px. The
resulting Lyapunov function x′Px and feedback law u(k) =
Kx(k), k ∈ N are given by, respectively,

P =
[

1.1341 0.4808
0.4808 1.7232

]
and K = [ −0.1284− 0.6384 ].

To illustrate that this feedback gain indeed solves the
UGMSE stabilization problem, Fig. 2 depicts closed-loop
trajectories resulting from randomly selected initial condition
x(0) and random parameters w(k), k ∈ N, generated in
accordance with the pdf (26).

VI. CONCLUSIONS

In this paper a general class of stochastic design problems
was studied. In contrast with probabilistic methods that only
solve such problems with a certain probability, a new upper
Riemann-Stieltjes approach was proposed with a full guar-
antee that the constructed solution truly solves the original
problem. Next to this guarantee on the constructed solution,
the method has two other advantages. Namely, under rather
mild conditions a “converse theorem” was derived that states
that if the original problem is solvable, our upper Riemann-
Stieltjes approach will lead to a solution by sufficiently refin-
ing the upper Riemann-Stieltjes sums. Moreover, convexity
of the function used in the expectation can be exploited
to obtain convexity of the numerical problems that need
to be solved in our approach. To illustrate the main ideas,
the method was used to provide an alternative solution to
the mean square stabilization problem for linear stochastic
systems. Future work will be dedicated to exploring the pos-
sibilities of this method in solving other stochastic (control)
design problems, next to finding weaker conditions under
which the proposed technique applies.
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