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Abstract— We formulate the problem of dynamic, real-time
optimal power dispatch for electric power systems consisting
of conventional power generators, intermittent generators from
renewable sources, energy storage systems and price-inelastic
loads. The generation company managing the power system
can place bids on the real-time energy market (the so-called
regulating market) in order to balance its loads and/or to make
profit. Prices, demands and intermittent power injections are
considered to be stochastic processes and the goal is to compute
power injections for the conventional power generators, charge
and discharge levels for the storage units and exchanged power
with the rest of the grid that minimize operating and trading
costs. We propose a scenario-based stochastic model predictive
control algorithm to solve the real-time market-based optimal
power dispatch problem.

I. INTRODUCTION

Liberalization and deregulation of electricity markets has
led to a competitive environment consisting of market par-
ticipants (usually termed as generation companies or bal-
ance responsible parties) that are legally entitled to trade
electricity on the various markets in order to satisfy their
loads and earn profit. On the other hand, adoption levels
of renewable resources are continuously increasing due to
the need for a decrease of production costs and greenhouse
emissions from electricity generation by conventional fossil-
fueled power plants (e.g. coal, gas, etc.). Efficient integration
of intermittent generation into the existing power grid is a
major bottleneck due to high variability and low predictabil-
ity of renewable resources, especially wind [1].

Although market structures vary with respect to each coun-
try, they share some common characteristics. Specifically,
in the majority of electricity markets, participants (power
suppliers and consumers) place their bids on the day-ahead
market regarding commitments for each hour of the follow-
ing day. At the end of the day-ahead auction, the independent
system operator (ISO) selects the accepted and rejected
bids according to some clearing mechanism [2]. Due to
uncertainties in power demand and generation, the existence
of a real-time market operated from the ISO is mandatory in
order to counteract real-time energy imbalances. In real-time
markets (also called balancing or regulating markets), market
participants place their bids at every PTU (Program Time
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Unit), which is usually an interval of 5 to 15 minutes long [2].
Unlike day-ahead prices, real-time prices are characterized
by large volatility, sudden spikes that are hard to predict, and
counterintuitive phenomena like negative values. Negative
prices result from positive imbalance, where supply is larger
than demand, especially during the night [3].

On the other hand, intermittent resources are uncontrol-
lable, thus cannot be immediately dispatched when needed,
i.e., at periods when demand is high. A partial remedy to
this problem is the use of energy storage systems [4] (e.g.
pumped hydro storage, thermal energy storage, compressed
air energy storage, fuel cells). Energy storage systems can
use electricity during off-peak hours in order to store energy
which can be converted back to electricity during peak hours.
The value of storage for providing balancing services for
power systems with significant wind penetration is indicated
in [5].

In this paper we consider a combined power system
consisting of conventional generators, intermittent generators
and energy storage units. The exogenous signals acting on
the power system are the load, the real-time price and power
outputs from intermittent resources. These are all treated as
stochastic processes. The goal is to compute in real-time,
power outputs for the conventional power generators, charge
and discharge power levels for the energy storage systems
and exchanged power with the real-time market, so as to
satisfy demand and physical constraints while minimizing
expected multi-period production and purchase costs.

The problem studied in this paper bears some resemblance
with the dynamic economic dispatch (DED) and optimal
control dynamic dispatch (OCDD) problems tackled in [6],
[7]. However, in their classical setup the demand is assumed
to be a periodic and deterministic signal, there is no inter-
mittent generation or storage, the objective is to minimize
production costs over a finite-horizon (equal to the period
of the demand), and the resulting policies are of open-loop
nature. In [8] a model predictive control (MPC) approach to
the dynamic dispatch problem through the OCDD framework
is proposed. In [9], MPC is proposed for real-time dispatch
of power systems consisting of conventional generators and
intermittent resources. However, loads and intermittent gen-
eration are assumed to be accurately predicted by point
forecasts (certainty-equilvalent MPC). In [10], a general
modeling framework is proposed for energy storage in power
systems in order to manage intermittent power feeds. Their
framework is exemplified by an MPC strategy whose purpose
is to balance storage conversion losses and thermal load
setpoint deviations against wind curtailments in order to
avoid unnecessary generator ramping and load shedding.
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Demand and intermittent generation are considered to be
deterministic and there is no economic incentive included
in the controller’s performance index. To the best of the
authors’ knowledge there are only few papers that consider
the market-based dispatch problem [11], but only in the
deterministic setting (demand and prices are deterministic)
producing open-loop solutions. Therefore, our model can be
seen as an extension of DED or OCDD to a setting that
is more suitable to the needs of today’s deregulated energy
markets with high penetration of renewable resources.

Studies in a stochastic framework have been mainly con-
ducted for optimal bidding along with the unit commitment
problem for the day-ahead in an open-loop manner [12], [13].
Instead, our algorithm considers an optimal dispatch problem
based on the real-time market, can take as input the results
of the unit commitment, i.e., which power units are on/off
during which periods, taking advantage of more accurate
predictions for the exogenous inputs to produce cost-efficient
power management solutions.

The contributions of the paper are a modeling framework
for real-time market-based optimal power dispatch for power
systems with energy storage systems and the application of
scenario-based stochastic model predictive control (SMPC)
for its solution without any a-priori assumption on the
distribution of the underlying stochastic process. SMPC
[14] has been successfully applied to problems such as
automotive power management and adaptive cruise control,
[15], networked control systems, [16], [17], option hedging
[18], [19] and portfolio optimization [20].

II. NOTATION

Let R, Z+, Rn, Rm×n denote the field of real numbers, the
set of non-negative integers, the set of column real vectors of
length n and the set of m by n real matrices, respectively.
The transpose of a matrix A ∈ Rm×n is denoted by A′,
while 1n denotes a column vector of n elements all being
equal to 1. For any k1, k2 ∈ Z+ with k1 ≤ k2, the finite
set of integers {k1, . . . , k2} is denoted by N[k1,k2]. For any
x1, x2 ∈ R with x1 ≤ x2, [x1, x2] denotes the closed interval
{x ∈ R|x1 ≤ x ≤ x2}. The Cartesian product of Xi ⊂
Rni , i ∈ N[k1,k2], is denoted by Πk2

i=k1
Xi. If A ∈ Rm×n,

B ∈ Rp×q , A⊗B denotes the Kronecker product of A and
B. The direct sum of matrices A ∈ Rni×mi , i ∈ N[k1,k2]

is denoted by
⊕k2

i=k1
Ai. If (Ω,F,P) is a probability space

and ξ : Ω→ Rn is a random vector on (Ω,F,P), then E[ξ]
denotes its expected value.

III. MODEL FORMULATION

Consider a power system consisting of np conventional
power generators, nr intermittent power generators and ns
energy storage systems. The length of the PTU is denoted
by T (in hours). At each time instant (PTU) k ∈ Z+, let
pi(k) ∈ R (MW), i ∈ N[1,np] denote the power output of the
i-th power generator, xi(k) ∈ R (MWh), uci (k) ∈ R, udi (k) ∈
R (MW), i ∈ N[1,ns] denote the amount of energy stored
(state-of-charge, SOC), the amount of electricity converted to
some other form of stored energy and the amount of energy

converted to electricity respectively for the i-th storage unit,
ri(k) ∈ R (MW), i ∈ N[1,nr] the power output of the i-
th intermittent generator, pex(k) ∈ R (MW) the amount of
electricity exchanged with the market, d(k) (MW) the local
load that needs to be served by the power system, and λ(k)
the real-time energy price.

A. Conventional Power Generators

At each time instant k ∈ Z+, the power output of each
conventional power generator, pi(k), must lie in the closed
interval [pmin

i , pmax
i ] with 0 ≤ pmin

i ≤ pmax
i , i ∈ N[1,np], i.e.:

pmin
i ≤ pi(k) ≤ pmax

i , i ∈ N[1,n]
(1)

and satisfy the following ramp-rate constraints:

∆pmin
i ≤ pi(k)− pi(k − 1) ≤ ∆pmax

i , i ∈ N[1,np] (2)

Letting p(k) , [p1(k) · · · pnp(k)]′, P , Π
np

i=1[pmin
i , pmax

i ]

and ∆P , Π
np

i=1[∆pmin
i ,∆pmax

i ], constraints (1), (2) can be
expressed as

p(k) ∈ P (3a)
p(k)− p(k − 1) ∈ ∆P (3b)

B. Energy Storage Systems

The existence of energy storage systems is the distinct
characteristic that makes the power system under investiga-
tion a dynamical system. Specifically, the dynamics of the
i-th energy storage system is described by the following state
equation:

xi(k + 1) = αixi(k) + T (αc
iu

c
i (k)− (αd

i )−1udi (k)) (4)

Parameter αi ∈ (0, 1] accounts for self-discharge, i.e.
internal energy losses associated with energy storage (e.g.
heat storages lose energy due to a difference between internal
storage and ambient temperature). Parameters αc

i ∈ (0, 1],
αd
i ∈ (0, 1] represent efficiency of the charge (conversion

from electricity to energy) and discharge (conversion from
energy to electricity) processes, respectively.

At each PTU k ∈ Z+, the amount of energy stored in each
energy storage system, xi(k), must lie in the closed interval
[xmin

i , xmax
i ] with 0 ≤ xmin

i ≤ xmax
i , i ∈ N[1,ns], i.e.:

xmin
i ≤ xi(k) ≤ xmax

i , i ∈ N[1,ns] (5)

and satisfy the following ramp-rate constraints:

∆xmin
i ≤ xi(k)− xi(k − 1) ≤ ∆xmax

i , i ∈ N[1,ns] (6)

Furthermore, for any k ∈ Z+ one must have

uc,min
i ≤ uci (k) ≤ uc,max

i , i ∈ N[1,ns] (7a)

ud,min
i ≤ udi (k) ≤ ud,max

i , i ∈ N[1,ns] (7b)

with 0 ≤ uc,min
i ≤ uc,max

i , 0 ≤ ud,min
i ≤ ud,max

i ,
i ∈ N[1,ns]. Letting x(k) , [x1(k) · · ·xns

(k)]′, u(k) =

[uc1(k) ud1(k) · · ·ucns
(k) udns

(k)]′, and bi , T [αc
i −(αd

i )−1],
i ∈ N[1,ns] the dynamics of the energy storage systems (eq.
(4)) can be expressed by the following linear time-invariant
system

x(k + 1) = Ax(k) +Bu(k) (8)
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where A ,
⊕ns

i=1 αi and B ,
⊕ns

i=1 bi. Furthermore, let-
ting X , Πns

i=1[xmin
i , xmax

i ], ∆X , Πns
i=1[∆xmin

i ,∆xmax
i ],

umin
i , [uc,min

i ud,min
i ]′ and U , Πns

i=1[umin
i , umax

i ],
constraints (5), (6), (7) can be expressed as

x(k) ∈ X (9a)
x(k)− x(k − 1) ∈ ∆X (9b)

u(k) ∈ U (9c)

C. Power balance

At each time instant k ∈ Z+ the following power balance
must be satisfied:
np∑
i=1

pi(k) +

ns∑
i=1

(udi (k)−uci (k)) +

nr∑
i=1

ri(k)−pex(k) = d(k)

(10)
Notice that according to (10), we make the convention that
pex(k) takes positive values if electricity outflows from the
power system to the rest of the grid.

By letting E , Ins
⊗ [−1 1], (10) can be expressed as

1′np
p(k) + Eu(k) + 1′nr

r(k)− pex(k) = d(k) (11)

where r(k) , [r1(k) · · · rnr
(k)]′.

D. Stage Cost

With each conventional power generator i ∈ N[1,np], we
associate a convex quadratic fuel cost function `i : R→ R+:

`i(pi) , Qip
2
i + qipi + ci (12)

The total production cost for the power system at time k ∈
Z+ can be expressed as:

`p(p(k)) ,
np∑
i=1

`i(pi(k)) = p(k)′Qp(k) + q′p(k) + c (13)

where Q ,
⊕np

i Qi, q , [q1 · · · qnp
]′ and c ,

∑np

i=1 ci.
At time instant k ∈ Z+, the profit of trading pex(k) MW
of power to the real-time market is given by Tλ(k)pex(k)
(price λ(k) is in $/MWh). The total cost that incurs for the
power system at time k ∈ Z+ is equal to the total production
cost minus the trading profit:

`(p(k), pex(k), λ(k)) = `p(p(k))− Tλ(k)pex(k) (14)

E. Exogenous Inputs

It is assumed that load {d(k)}k∈Z+
, real-time price

{λ(k)}k∈Z+
and intermittent production {ri(k)}k∈Z+

, i ∈
N[1,nr] are real-valued stochastic processes defined on a
probability space (Ω,F,P). Let ξ(k) , [d(k) λ(k) r(k)′]′ ∈
Rnr+2. Then {ξ(k)}k∈Z+

is a vector-valued stochastic pro-
cess on (Ω,F,P). Notice that we do not assume any particu-
lar a-priori assumption about its properties (e.g. Markovian-
ity, etc.).

IV. SCENARIO-BASED SMPC FOR REAL-TIME OPTIMAL
MARKET-BASED POWER DISPATCH

A. Stochastic Model Predictive Control

For k ∈ Z+, let z(k) , [p(k) pex(k) u(k)′]′, nz , np +
2ns + 1. Given z(k − 1), x(k − 1) and ξ(k), let Z(z(k −
1), x(k−1), ξ(k)) denote the set of (z(k), x(k)) ∈ Rnz×Rns

that satisfy (3), (9) and (11). Extending the classical receding
horizon philosophy to a stochastic setting, a finite-horizon
stochastic optimal control problem is solved on-line at every
time k ∈ Z+, given x(k−1), p(k−1) and after measurements
for x(k), ξ(k) are received:

inf
z(l)

E

[
k+N∑
l=k

`(p(l), pex(l), λ(l))

∣∣∣∣∣ ξ(k)

]
(15a)

s.t. z(l) is Fl
k −measurable, l ∈ N[k,k+N ] (15b)

x(l + 1) = Ax(l) +Bu(l), l ∈ N[k,k+N ] (15c)
(z(l), x(l)) ∈ Z(z(l − 1), x(l − 1), ξ(l)), l ∈ N[k,k+N ]

(15d)
x(k +N + 1) ∈ X (15e)
x(k +N + 1)− x(k +N) ∈ ∆X (15f)

According to (15a), the goal is to minimize the expected
value of the sum of future costs up to a prediction horizon
N ∈ Z+, conditioned on the present information ξ(k). In
(15b), Fl

k , σ(ξ[k,k+l]), i.e., Fl
k is the natural filtration

generated by ξ[k,k+l] = {ξ(k), . . . , ξ(k + l)} and Fk
k =

{∅,Ω}, since ξ(k) is known at time k. The Fl
k-measurability

condition (cf. (15b)) means that z(k) : Ω → Rnz depends
only on information up to time k. It is also known as
nonanticipativity in the stochastic programming community
[21] or causality in the control literature. Implicit in this
assumption is that at any time k ∈ Z+, we know the current
load d(k), real-time price λ(k) and intermittent production
r(k). However, we only have a probabilistic information
about their future evolution. The satisfaction of constraints
(15d) is to be understood in the P-almost sure sense. After
solving (15), only the first member of the optimal finite-
horizon policy is kept and applied to the power system,
i.e., the SMPC control law is κSMPC(x(k), p(k − 1), x(k −
1), ξ(k)) , z(k). Notice that optimization takes place over
closed-loop policies due to the nonanticipativity constraint
(15b).

B. Scenario-based Stochastic Model Predictive Control

There are some inherent difficulties regarding the SMPC
formulation (15). First, explicit knowledge of the probability
distribution of the underlying stochastic process {ξ(k)}k∈Z+

is required. However, such a probability distribution is usu-
ally very hard to estimate, if not impossible, especially
for quantities such as wind speed and real-time prices. In
case such distribution is available but has infinite support,
then still the SMPC problem (15) is an infinite-dimensional
optimization problem, hence intractable, since one has to
optimize with respect to mappings z(k) : Ω→ Rnz .
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A practical solution to these problems is to approximate
the stochastic process {ξ(l)}l∈N[k,k+N]

by a process having
finitely many sample paths (called scenarios) exhibiting a
tree structure and emanating from the current value ξ(k). A
scenario tree has a finite number of nodes for each stage
l ∈ N[k,k+N ]. At stage k there is only one node called the
root node, which is labeled by 0 and whose value is equal to
ξ(k). At a general stage l > k, each node j ∈ N (N denotes
the set of nodes of the tree) is connected to a unique node at
stage l−1, called the ancestor node and denoted by A(j) ∈
N , and is also connected to (possibly more than one) nodes
at stage l + 1, called the children nodes. The set of nodes
corresponding to the final stage k+N is called the set of leaf
nodes and is denoted by L ⊂ N . By construction, there is
a one-to-one correspondence between scenarios and the leaf
nodes. Algorithms that perform such kind of approximations
are called scenario tree generation methods, see the survey
[22]. Various scenario tree generation methods have been
proposed in the literature, e.g., [23], [24], [25] to mention
a few. In the case of the stochastic process {ξ(l)}l∈N[k,k+N]

being modeled by a scenario tree, the SMPC problem (15)
becomes a (large-scale) convex QP which can be solved
efficiently either by off-the-self algorithms or by specialized
decomposition methods.

In the present work we applied the method proposed
by [25] to generate scenario trees in order to approximate
{ξ(l)}l∈N[k,k+N]

. More precisely, the underlying idea of the
method is to independently generate a finite number of sce-
narios that are obtained either by resampling from historical
data or by sampling from a time-series model calibrated
using historical data. The result of this step is named a
scenario fan. However a scenario fan does not exhibit an
appropriate tree structure capable of modeling the stagewise
decision process. Specifically, the nonanticipativity condition
is violated since the decision maker is allowed to see into the
future. Furthermore, in order to obtain a good approximation
of the true probability distribution the number of scenarios
may be very large. Therefore, the scenario fan is further
processed in order to arrive to a scenario tree with a reduced
number of nodes and the appropriate information structure.

Specifically, forward tree construction ([25], alg. 4.5) is
based on successive clustering of scenarios, starting for the
root node. The algorithm takes as input the scenario fan
and the relative tolerance εrel , ε/εmax (εmax is the best
possible distance between the probability distribution of the
initial scenario fan and the distribution of one of its scenarios
endowed with unit mass) and at each stage, each cluster
of the previous stage is further subdivided into sub-clusters
using scenario reduction according to a probability metric.
The outcome of forward tree construction is a scenario tree,
consisting of a reduced set of nodes, N , the value of the
process ξj , (dj , `j , rj) and the probability πj for each
node j ∈ N , with ξ0 = ξ(k) and π0 = 1 for the root node.

The resulting scenario-based SMPC (SSMPC) problem
solved at each time k ∈ Z+, given x(k − 1), p(k − 1),

x(k) and ξ(k) becomes:

min
{zj}j∈N

∑
j∈N

πj`(pj , pex,j , λj) (16a)

s.t. (z0, x(k)) ∈ Z(z(k − 1), x(k − 1), ξ0) (16b)

xj = AxA(j) +BuA(j), j ∈ N \ {0} (16c)

(zj , xj) ∈ Z(zA(j), xA(j), ξj), j ∈ N \ {0} (16d)

Axj +Buj ∈ X, j ∈ L (16e)

Axj +Buj − xj ∈ ∆X, j ∈ L (16f)

Since constraints (3), (9) and (11) are linear, the stage
cost (cf. (14)) is convex quadratic in (pj , pex,j) and πj are
positive, it follows that (16) is a convex quadratic program.
To sum up, according to the proposed SSMPC algorithm for
real-time optimal market-based power dispatch, at each time
k ∈ Z+, after we receive measurements about the current
load d(k), real-time price λ(k), intermittent production r(k)
and storage levels x(k), we generate scenarios of length
N emanating from ξ(k), then we apply forward tree con-
struction to generate a scenario tree and finally we solve
the convex QP (16), to obtain the SSMPC control action
κSSMPC(x(k−1), p(k−1), x(k), ξ(k)) , z0 which we apply
to the power system (Fig. 1).

Unlike standard MPC where the main goal is to achieve
stability of some equilibrium point or tracking of a reference
signal, here the main concern is to satisfy load in the
power system while minimizing operational costs. Notice
that (16) is always feasible since there is an option of buying
electricity from the grid to satisfy load.

Fig. 1: Scenario-based SMPC for optimal power dispatch

V. CASE STUDY

In order to exemplify the merits of the proposed SSMPC
approach, we simulate the 12-bus power system (modified
from [9]) shown in Figure 2. The system consists of three
conventional power generators, i.e., two coal power gener-
ators (P1, P2) and one natural gas power generator (P3),
two intermittent generators, i.e., a wind farm (R1) and a
photovoltaic (PV) generator (R2), and one hydro storage
unit (S1). The characteristics of the conventional power
generators are given in Tables I and II, while the parameters
of the storage unit are summarized in Table III.

The PTU is assumed to be equal to 10 minutes (T =
1/6). Real historical data were used in the simulations.
Load and real-market price data are obtained from the
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Fig. 2: 12–bus power system

TABLE I: Generator Cost Data

Unit Qi qi ci
P1 0.0015 5.063 66.338
P2 0.0038 12.225 48.713
P3 0.0081 10.248 81.659

New York ISO (http://www.nyiso.com/public/
market_data/), while meteorological data regarding
wind speed and solar radiation are obtained by the National
Data Buoy Center (http://www.ndbc.noaa.gov/).
Specifically, data for the first 22 days of January 2011 were
used for creating scenarios at every time instant k ∈ Z+,
while the power system in closed-loop with the SSMPC
controller is simulated for the 23rd of January. Figure 3
depicts the load, total intermittent generation (sum of wind
farm and PV outputs) and the real-time price for that day.

SSMPC was compared against prescient optimal control
(Prescient-OC) where complete knowledge of the realization
of the stochastic exogenous inputs is assumed, and certainty-
equivalent MPC (CE-MPC), where uncertain parameters are
substituted by their time-varying average values based on
the historical data. The prediction horizon N was set equal
to 16 for both SSMPC and CE-MPC. SSMPC was tested
for various values of the relative error parameter of forward
tree construction. Table IV summarizes the results of the
simulations. As expected, the average number of nodes is
decreasing while the simulation cost is increasing as εrel

TABLE II: Generator Data

Unit pmin
i pmax

i ∆pmin
i ∆pmax

i
P1 450 1100 -250 250
P2 50 500 -200 200
P3 50 100 -75 75

TABLE III: Storage Data

Unit xmin
i xmax

i ∆xmin
i ∆xmin

i αi αc
i αd

i
S1 15 300 -120 120 1 0.85 0.90

uc,min
i = ud,min

i uc,max
i = ud,max

i
0 300

(a) (b)

Fig. 3: (a) Load, intermittent generation, (b) real-time price,
for January 23rd, 2011.

TABLE IV: Comparison of scenario-based SMPC with pre-
scient optimal control and certainty-equivalent MPC

Algorithm Storage No Storage
Cost Cost Avg # of nodes

Prescient-OC 1071329 1146623
CE-MPC 1629791 1636586

SSMPC (εrel = 0.1) 1189097 1207660 350
SSMPC (εrel = 0.2) 1190668 1208233 335
SSMPC (εrel = 0.3) 1191415 1208367 172
SSMPC (εrel = 0.4) 1196641 1210750 87
SSMPC (εrel = 0.5) 1204152 1211249 50
SSMPC (εrel = 0.6) 1206664 1212901 38
SSMPC (εrel = 0.7) 1209915 1216337 31
SSMPC (εrel = 0.8) 1209207 1218682 26
SSMPC (εrel = 0.9) 1210070 1219773 22
SSMPC (εrel = 1.0) 1210070 1219773 20

increases. It is clear from Table IV that SSMPC outperforms
CE-MPC. In order to examine the value of employing
energy storage systems for power systems with intermittent
generation, we also compare against the case where there is
no energy storage unit in the system.

Figure 4(a) illustrates the operational costs of the three
approaches during the simulation. Unlike CE-MPC, it is
clear that SSMPC can take advantage of the high profit
opportunities appearing when upward real-time price spikes
occur. Figure 4(b) displays the exchanged power with the
real-time market for the power system in closed-loop with
the SSMPC controller. Figure 5 depicts power outputs for the
three conventional generators (Fig. 5(a)) and state of charge
of the storage unit (Fig. 5(b)) for the power system in closed-
loop with the SSMPC controller (εrel = 0.1).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we formulated a real-time market-based
optimal power dispatch problem for power systems that
can be seen as balance responsible parties participating in
the deregulated electricity market. Specifically, the power
system must balance its own loads while respecting opera-
tional constraints, minimizing production costs, and making
as large profit as possible by trading power on the real-
time market. The power system can contain intermittent
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(a) (b)

Fig. 4: (a) Operational cost comparison, (b) exchanged
electricity with the real-time market.

(a) (b)

Fig. 5: (a) Conventional power generation, (b) state of charge
of the energy storage unit.

generation and storage energy systems, characteristics that
will become prevalent in future power systems.

We proposed a novel scenario-based SMPC algorithm for
the solution of the real-time market-based optimal power dis-
patch problem. The algorithm uses a scenario tree generation
algorithm in order to construct a tree suitable for multistage
stochastic optimization from a scenario fan and solves a
convex QP at every sampling time. The algorithm is very
flexible in the sense that the process of creating scenarios
is separated from the solution procedure. Specifically, the
user can provide scenarios based on historical data or com-
ing from a time-series model of the underlying stochastic
process. The value of incorporating stochastic information
was examined on a non-trivial 12-bus system using real
historical data for simulation, showing clear advantages over
certainty-equivalent MPC and achieving large cost savings
which stronlgy encourage the use of SMPC for managing
electric power systems in today’s (and tomorrow’s) markets.
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[24] N. Gröwe-Kuska, H. Heitsch, and W. Romisch, “Scenario reduction
and scenario tree construction for power management problems,” in
IEEE Power Tech Conference Proceedings, Bologna, vol. 3, 2004, p. 7.

[25] H. Heitsch and W. Römisch, “Scenario tree modeling for multistage
stochastic programs,” Mathematical Programming, vol. 118, no. 2, pp.
371–406, 2009.

7116


