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Abstract— This paper proposes the use of canonical piecewise
affine (PWA) functions for the approximation of linear MPC
controllers over a regular simplicial partition of a given set
of states of interest. Analysis tools based on the construction
of PWA Lyapunov functions are provided for certifying the
asymptotic stability of the resulting closed-loop system. The
main advantage of the proposed controller synthesis approach
is that the resulting stabilizing approximate MPC controller
can be implemented on chip with sampling times in the order
of tens of nanoseconds.

I. INTRODUCTION

Model predictive control (MPC) is a popular approach in
industry for designing feedback controllers for multivariable
systems with constraints [1], [2]. In MPC a performance
index that depends on the current state vector is repeatedly
optimized on line under constraints. Although very success-
ful in industry, especially for control of large multivariable
processes, the main drawback of MPC is the need to embed
an optimization solver in the controller, which complicates
the control code and its verification, and asks for more inten-
sive CPU resources compared to classical control schemes,
therefore preventing the application of MPC to fast-sampling
processes with cheap control units.

To overcome the aforementioned computational issues,
explicit MPC techniques were developed during the last ten
years to preprocess off line the MPC control law and convert
it into a piecewise affine (PWA) law. In this way, on-line
operations reduce to the evaluation of a lookup table of linear
control gains. We refer the reader to [3] for a recent survey
on explicit MPC.

Although successfully applied in several practical appli-
cations, especially to automotive systems [4] and power
converters [5], explicit MPC tends to generate a large set
of controller gains. The number of gains depends roughly
exponentially on the number of constraints included in the
MPC optimization problem. The most suitable applications
for explicit MPC were shown for fast-sampling problems in
the order of 1-50 ms sampling time and relatively small size
(1-2 manipulated inputs, 5-10 parameters). The main reason
for the excessive number of regions in the explicit MPC
law is usually due to the will of solving the multiparametric
programming problem exactly. To simplify the complexity
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of explicit MPC controllers, approximate explicit MPC tech-
niques were addressed recently [6]–[9]. By sacrificing the
optimality of the controller (which is often not a big loss, as
the performance index is usually selected by trial and error
by the designer), approximate explicit MPC simplifies the
control law, so that sampling frequencies can be pushed up
considerably.

An alternative route to synthesize approximate explicit
MPC is to treat the MPC control law as a generic nonlinear
function and use general purpose off-line function approx-
imation techniques. Ideas in this direction were pursued
in [10] using artificial neural networks and in [11] using set-
membership identification. One of the main drawbacks of
function approximation approaches is the difficulty in prov-
ing the stabilization properties of the synthesized controller.

In this paper we adopt a special class of basis functions,
the canonical PWA functions [12], to approximate a given
linear MPC controller and impose constraints in the approx-
imation procedure that allow analyzing closed-loop stability
properties using PWA Lyapunov functions. The choice of
this class relies mainly on the availability of direct circuit
implementation techniques for PWA functions expressed as
linear combinations of canonical PWA functions [13], [14].

This paper is organized as follows. Section II setups
the linear MPC problem. In Section III we introduce the
class of canonical PWA function used in Section IV for
the approximation of the MPC controller. Section V deals
with the analysis of stability of the closed-loop system, and
numerical and experimental results are shown in Section VI.

II. MODEL PREDICTIVE CONTROL SETUP

Consider a MPC algorithm based on the linear discrete-
time prediction model

x(t+ 1) = Ax(t) +Bu(t) (1)

of the open-loop process, where x(t) ∈ Rn is the state
vector at sampling time t, and u(t) ∈ Rm is the vector of
manipulated variables. The MPC algorithm selects u(t) by
solving the finite-time optimal control problem

min
U

x′NPxN +

(
N−1∑
k=0

x′kQxk + u′kRuk

)
(2a)

s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1, x0 = x(t)
(2b)

uk = Kxk, k = Nu, . . . , N − 1 (2c)
Euuk ≤ Gu, k = 0, . . . , Nu − 1 (2d)
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where N is the prediction horizon, Nu is the control horizon,
U , [ u′0 ... u′Nu−1 ]′ ∈ RmNu+1 is the vector of variables
to be optimized, Q = Q′ � 0, R = R′ � 0, P =
P ′ � 0 are weight matrices of appropriate dimensions
defining the performance index. In (2d) Eu and Gu are
matrices of appropriate dimensions defining constraints on
input variables. We also assume that Gu > 0, i.e., that the
constraint set of Rm defined by (2d) contains u = 0 in its
interior. A typical instance of (2d) are saturation constraints
Eu = [I − I]′, Gu = [u′max u′min]′, umin < 0 < umax.
In (2c), K is a terminal gain defining the remaining control
moves after the expiration of the control horizon Nu; for
instance K = 0, or K is the LQR gain associated with
matrices Q, R and P is the corresponding Riccati matrix.

By substituting xk = Akx(t)+
∑k−1
j=0 A

iBuk−1−i, Eq. (2)
can be recast as the quadratic programming (QP) problem

U∗(x(t)) , arg min
U

1
2
U ′HU + x′(t)F ′U +

1
2
x′(t)Y x(t)

(3a)
s.t. GU ≤W (3b)

where U∗(x(t)) = [ u′∗0 (x(t)) ... u′∗N−1(x(t)) ]′ is the optimal
solution, H = H ′ � 0 and F , Y , G, W are matrices of
appropriate dimensions [15]–[17]. The MPC control law is

u∗(x) = [I 0 . . . 0]U∗(x) (4)

corresponding to solving the QP problem (3) at each time
t, applying the first move u(t) = u∗0(x(t)) to the process,
discarding the remaining optimal moves, and repeating the
procedure again at time t+ 1 for the next state x(t+ 1).

One of the drawbacks of the MPC law (4) is the need to
solve the QP problem (3) on line. An alternative approach to
evaluate the MPC law (4) was proposed in [15]. Rather then
solving the QP problem (3) on line for the current vector
x(t), the idea is to solve (3) off line for all vectors x within
a given range and make the dependence of u on x explicit.
It turns out that u∗(x) : Rn 7→ Rm is a piecewise affine and
continuous function, and consequently the MPC controller
defined by (4) can be represented explicitly as

u∗(x) =


F0x if H0x ≤ K0

F1x+ g1 if H1x ≤ K1

...
...

Fnr−1x+ gnr−1 if Hnr−1x ≤ Knr−1

(5)
where nr is the number of polyhedral regions Xi = {x :
Hix ≤ Ki}, i = 0, . . . , nr − 1 defining the domain
partition. In (5) we labeled as X0 the region corresponding
to the unconstrained solution F0 = −[I 0 . . . 0]H−1F of
problem (3), where H0 = GF0 − D and K0 = W , with
0 ∈

◦
X 0.1

The evaluation of the MPC controller (4), once put in
the form (5), can be carried out by a very simple piece
of control code. Experiments on the implementation of
explicit MPC on field programmable gate arrays (FPGA) and

1The symbol
◦
A denotes the interior of the set A.

application specific integrated circuits (ASIC) with sampling
times around 1 µs have been recently reported in [18], [19].
In this paper we aim at pushing the sampling time in the tens
of nanoseconds range by adopting a special class of PWA
approximating functions that have a direct implementation
counterpart on electronic circuits.

III. PWA SIMPLICIAL FUNCTIONS

A generic PWA function belongs to L2[S], the space of
Lebesgue square integrable functions, but it is of interest
for modeling and circuit implementation reasons to consider
the subclass of continuous and regular PWA functions, i.e.,
functions defined over a regular partition of the domain S
into a set of simplices having the same shape. The elements
of this class, called PWA Simplicial (PWAS) functions, can
be formally defined by introducing a simplicial partition of
the domain and a set of basis functions.

In the following, we define PWAS functions starting from
the basic notions of simplex and simplicial partition.

A. Domain partition and basis functions definition

Definition 1: Given a set of n + 1 points
x0
i , x

1
i , . . . , x

n
i ∈ Rn, called vertices, a simplex Si

in Rn is a convex combination of the vertices,
i.e., is the set of points Si(x0

i , . . . , x
n
i ) ={

x ∈ Rn : x =
∑n
j=0 αjx

i
j , 0 ≤ αj ≤ 1,

∑n
j=0 αj = 1

}
=

conv{x0
i , . . . , x

n
i }

A simplex can also be represented by the hyperplanes
that define its boundary, i.e., by a set of inequalities:
Si(x0

i , . . . , x
n
i ) = {x : Ĥix ≤ K̂i}. As shown in [20],

matrices Ĥi, K̂i are defined directly by the inequalities[
1 . . . 1
x0
i . . . xni

]−1 [ 1
x

]
≥ 0 (6)

that are a minimal system of linear inequalities representing
Si. In this work we exploit both vertex and hyperplane
representations of Si, i = 0, . . . , L− 1.

The domain S is partitioned into simplices as follows.
Every dimensional component xj ∈ [xminj , xmaxj ] of S is
divided into pj subintervals of length xmaxj−xminj

pj
, collected

into the vector p. Consequently, the domain is divided into∏n
j=1 pj hyper-rectangles and contains Nv =

∏n
j=1(pj + 1)

vertices vk, collected into the set Vs. Each rectangle is further
partitioned into n! simplices with non-overlapping interiors
by applying the algorithm described in [21]; thus, S contains
L = n!

∏n
j=1 pj simplices Si, such that S = ∪L−1

i=0 Si and
◦
S i ∩

◦
S j = ∅, ∀i, j = 0, . . . , L − 1. The resulting partition

is called simplicial partition or type-1 triangulation and is
univocally identified by the vector p.

The class of continuous functions that are affine over
each simplex constitutes an Nv-dimensional linear space
PWASp[S] ⊂ PWAS[S] ⊂ PWA[S] ∩ C0[S] [12].
Therefore, it is possible to define different bases, made up of
Nv linearly independent functions belonging to PWASp[S].
By choosing some (arbitrary) ordering of the functions of any
of these bases, we can regard them as an Nv-length vector,
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say φ(x). Then a scalar PWAS function û ∈ PWASp[S]
is defined as a linear combination of the basis functions as
follows

û(x) =
Nv∑
k=1

wk φk(x) = w′φ(x) (7)

The coefficients wk, collected into the vector w, determine
uniquely û for each given x ∈ S.

A PWAS vector function û : Rn → Rm is defined by the
weights w = [(w1)′ (w2)′ . . . (wm)′]′

û(x) = [û1(x), . . . , ûm(x)]′ =

=


φ′(x) 0 · · · 0

0 φ′(x) . . . 0
...

...
. . .

...
0 0 · · · φ′(x)

w = Φ(x)w

Even if different types of basis functions can be defined,
in this work we refer to the so called α-basis [22].

Whatever basis one chooses, a PWAS function can be
implemented in a digital circuit by using linear interpolators.
Indeed, the value of a PWAS function can be obtained,
for any n-dimensional input vector, by linearly interpolating
only the n + 1 values assumed by the function at the
vertices defining the simplex the input vector belongs to. The
algorithm usually adopted to locate such simplex is based
on the Kuhn lemmas [21] and is optimal with respect to
the number of inputs [23]. Some examples of digital circuit
solutions for fast piecewise-linear interpolation can be found
in [13], [24], [25].

IV. PWAS APPROXIMATIONS OF MPC

In this section, we discuss some metrics and optimization
techniques to find PWAS approximations of MPC in L2[S].

As shown in [13], circuits implementing PWAS functions
are faster and simpler than those realizing general PWA
functions. Thus, we want to find a PWAS control vector
function û : Rn → Rm that approximates the optimal control
u∗ : Rn → Rm fulfilling the constraints (3b) (and thus
also constraints (2b), (2d)). In other words, û(x) must be
a feasible control. We suppose that the simplicial partition
(i.e., the vector p and then the vertex set Vs) is fixed, thus
we are looking for a (vector) function û ∈ PWASp[S] as
close as possible to u∗ according to some metrics. To this
end, we propose a functional whose minimization leads to
an approximation of u∗ in L2[S]. The method proposed in
this paper does not require the “exact” explicit MPC control
law (5) to compute the approximation.

The partition
⋃L−1
i=0 Si of S is required to satisfy the

following assumption.
Assumption 1: The simplex S0 is such that 0 ∈

◦
S0 ⊆ X0.

A. Constraints on the approximate controller

Feasibility. In order to obtain an approximate MPC control
law û enforcing the inequality constraints in (2), we need to
define some constraints on the weights w. Since we assume

that only input constraints (2d) are present, feasibility of û(x)
is simply enforced by imposing

EuΦ(v)w ≤ Gu, ∀v ∈ Vs (8)

Note that constraint (8) only imposes a condition on the
vertices of each simplex Si; feasibility of the control law
û(x) on the entire simplex Si simply follows by linearity of
û(x) on Si.

Local optimality. Because of Assumption 1, the further set
of constraints

û(v) = Φ(v)w = u∗(v), ∀ vertex v of S0 (9)

imposes the optimality of û around the origin. In particular,
since u∗ is linear in X0, the constraints in (9) impose that

û(x) = u∗(x), ∀x ∈ S0. (10)

Invariance. The approximate control law û is only defined
over the selected simplicial partition S. The set S may
be chosen arbitrarily large so that, for the set of initial
conditions x(0) of interest, the control law is always defined
on the closed-loop trajectory x(t). Rather than looking for
the subset of initial states in S for which x(t) ∈ S, ∀t ≥ 0,
we impose additional constraints on û such that the state
vector always remains within a polyhedral invariant set ΩE =
{x ∈ Rn : HEx ≤ KE} containing S, that will be further
examined in Section V-B:

HE (Av +BΦ(v)w) ≤ KE , ∀v ∈ Vs . (11)

These constraints impose that for all x ∈ S, the updated
state Ax+Bû(x) ∈ ΩE . Roughly speaking, constraints (11)
should mainly affect the resulting control law û(x) only to-
wards the boundaries of S. Note that imposing the invariance
of S (instead of the invariance of ΩE ) could result in a
very stringent constraint, especially if S is large and input
constraints are tight.

B. Definition of the approximation functional

The functional can be defined working in the infinite-
dimensional Hilbert space L2 and using the metrics induced
by the usual L2 inner product extended to vector functions

F2(û) =
∫
S

||u∗(x)− û(x)||2 dx

where ||·|| denotes the Euclidean norm. Considering that û ∈
PWASm[S], F2 reduces to a cost function F2:

F2(û) = F2(w) =
m∑
k=1

∫
S

[
u∗k(x)− (wk)′φ(x)

]2
dx

F2 can be expressed as

F2(w) = ||Cw − d||22 (12)

where

C =


Ĉ 0 · · · 0
0 Ĉ . . . 0
...

...
. . .

...
0 0 · · · Ĉ

 d =


d1

d2

...
dm


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Ĉ ∈ RNv×Nv is the square matrix of the L2 inner products
between basis functions, [Ĉij ] = 〈φi, φj〉, and dk is given
by: dki = 〈u∗k, φi〉.

The approximated control law is calculated by solving the
following QP problem

min
w

F2(w) (13)

s.t. constraints (8), (9), (11)

In this formulation the simplicial partition determines the
approximation accuracy (i.e., the pj’s), since the number of
vertices equals the number Nv of basis functions, and the
position of the vertices influences the structure of the PWAS
function.

Since now on we will refer to the approximate controller
û(x) as

û(x) =
{
w′φ(x) if x ∈ S
FEx if x 6∈ S (14)

with S0 ⊆ X0, 0 ∈
◦
S0, where we have added a backup gain

FE outside S, that will be defined in Section V-B.

V. STABILITY ANALYSIS

Because of the approximation involved in constructing
the approximate PWAS controller (14), possible stability
properties of the original “exact” MPC controller (4) may
be lost.

The approach taken in this paper consists of three steps:
(i) synthesize a piecewise linear (PWL) Lyapunov function
around the origin; (ii) synthesize the backup gain FE and
the corresponding polyhedral invariant set ΩE containing
S; (iii) synthesize a PWA Lyapunov function on ΩE by
solving an LP problem, tailored to the special structure
of controller (14) and exploiting the double description of
simplices Si which is immediately available (i.e., hyperplane
and vertex representations).

A. Inner λ-contractive set
We exploit contractive polyhedral sets and Minkowski

functions to synthesize a PWL Lyapunov function, following
ideas in the spirit of [26].

Definition 2: For a given 0 ≤ λ ≤ 1, a set Ω ⊆ Rn

with λΩ ⊆ Ω and 0 ∈
◦

Ω is called a λ-contractive set for
system x(k + 1) = A0x(k) if for all x ∈ Ω, it holds that
A0x(k) ∈ λΩ.

A λ-contractive and finitely-generated polyhedral set Ω =
{x ∈ Rn : HΩx ≤ 1I} ⊆ S0, where 1I ∈ RnΩ is a vector of
all ones, G0 ∈ RnΩ×n and 0 < λ < 1, can be constructed
as in [27]. The following lemma is easy to prove.

Lemma 1: The largest λ-contractive set Ω contained is S0

is the maximum output admissible set for the linear closed-
loop system x(k+1) = 1

λA0x(k) under the constraint x ∈ S0

Ω = {x ∈ Rn : Ĥ0(
1
λ
A0)kx ≤ K̂0, ∀k ≥ 0} (15)

We denote by Ω = {x ∈ Rn : G0x ≤ 1I} the
minimal representation of Ω, where 1I ∈ RnΩ , nΩ ≤ n̄Ω,
G0 ∈ RnΩ×n. Then, the Minkowski function V0 : Rn → R

V0(x) = max
j=1,...,nΩ

{Gj0x}

where ()j denotes the jth row, is a PWL Lyapunov function
for the local closed-loop system x(k+1) = (A+BF0)x(k).

B. Outer λ-contractive polyhedral set

A polytopic λ-contractive set ΩE covering the given par-
tition S under a proper feedback gain FE is used here to
define the approximate control law outside S, and therefore
the dynamics of the closed-loop system outside S. A method
to determine a gain FE , to derive an associated λ-contractive
ellipsoid E ⊂ Rn containing S, and to determine a λ-
contractive polyhedron ΩE for the closed-loop system x(k+
1) = (A+BFE)x(k) is reported in [28].

C. PWA Lyapunov function

In this section we construct a PWA function V (x) such
that V (Ax + Bû(x)) ≤ λV (x), for all x ∈ ΩE . Let the
function V : ΩE → R be defined as

V (x) = max
i∈Is(x)

{z′ix+ yi} (16)

where zi ∈ Rn and yi ∈ R are coefficients (to be determined
next), and Is(x) = {i ∈ {1, . . . , nt} : x ∈ SEi }, SEi is
a properly chosen polyhedral partition of ΩE , see [28] for
details.

Denote by Ir(i) the set of indices j = 1, . . . , nt such that
SEj is reachable from SEi (cf. [29]).

Lemma 2: Let z, y, q be obtained by solving the following
LP feasibility test

min
z,y,q

0

s.t. z′ix
h
i + yi ≥ q, ∀i ∈ {1, . . . , nt − nΩ}
∀h = 0, . . . , n (17a)

z′j(Aix
h
ij + bi) + yj ≤ λ1(z′ix

h
ij + yi)

∀i ∈ {1, . . . , nt − nΩ}, ∀j ∈ Ir(i)
∀h = 0, . . . , nij (17b)

zi = Gi−nt+nΩ
0 , yi = 0

∀i ∈ {nt − nΩ + 1, . . . , nt} (17c)
q > 0 (17d)

with 0 < λ1 < 1. Then the function V : ΩE → R in (16) is
such that

V (Ax+Bû(x)) ≤ λ2V (x), ∀x ∈ ΩE
V (x) ≥ q, ∀x ∈ ΩE \ Ω, V (x) ≥ 0, ∀x ∈ Ω

where λ2 = max{λ, λ1} < 1.
Proof: See [28].

D. Stability result

Theorem 1: If problem (17) admits a feasible solution,
then the feedback control law (14) asymptotically stabi-
lizes (1) with domain of attraction ΩE , and Euû(x(k)) ≤
Gu, for all k ≥ 0, for all x(0) ∈ ΩE .

Proof: See [28].
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VI. AN EXAMPLE

We have applied the proposed approximation method to
a MIMO system. The MPC controllers and their explicit
representations, as well as Problem (13), have been solved
in MATLAB relying on the the Hybrid Toolbox [17] and
YALMIP [30]. Both the exact explicit MPC law and the
suboptimal PWAS law were implemented on a Xilinx Spar-
tan 3 FPGA (xc3s200). The exact PWA law is implemented
using the architecture based on a binary search tree proposed
in [19], whereas the PWAS law is realized by resorting to
architectures A and B in [13].

The following metrics is used to compare the trajectories
obtained by applying different control laws

Q(x0) =
T∑
k=0

x′kQxk + u′kRuk (18)

where x0 ∈ S is a given initial state and Q and R are
the same as in (2a). Then, the performances of the tested
approximations are compared by evaluating the average Q̄
of Q(x0) over a number of initial conditions x0.

Consider the problem of regulating to the origin the
discrete-time unstable multivariable system

xk+1 = [ 1.3 1
0 1.1 ]xk + [ 0 1

1 1 ]uk

yk = [ 1 0 ]xk
(19)

while minimizing the quadratic performance measure (2a)
with

R = [ 0.1 0
0 0.1 ] , Q = [ 1 0

0 1 ] , N = 4, Nu = 4, ρ = 104

and P solving the Riccati equation associated with
A,B,Q,R, in the presence of the the hard constraints[−0.5
−0.7

]
≤ u(k) ≤ [ 0.5

0.7 ]; these correspond to setting

Eu =
[

1 0
−1 0
0 1
0 −1

]
, Gu =

[
0.5
0.5
0.7
0.7

]
in (2).

1) Stability analysis: Problem (17) has been solved with
λ = 0.99 and λ1 = 0.89. The Lyapunov function for the L2

approximation obtained by solving (17) and defined over the
invariant polytope Ωε is shown in Figure 1.

2) PWA and PWAS laws: The resulting exact explicit
MPC state feedback u over the domain [−1.4, −1.5] ×
[1.5, −1.4] is a PWA vector function defined partitioned
into 50 polytopes. Problem (13) has been solved by setting
m1 = m2 = 15 obtaining a PWAS control in 64s (on a
3 GHz Pentium 4 PC with 3.25GB of RAM).

Figure 2 (b) shows the input and output signals of the
controlled system, starting from the intial condition x0 =
[0.7 1]′ under different control laws (exact MPC, L2-PWAS
approximations).

Table I shows the average performance obtained with T =
30 starting from a set of 256 intial conditions uniformely
distribuited over S. The table reports the values obtained
by considering all the trajectories, only the trajectories that
never leave S (2nd column), and the trajectories that have

x1

x2

V(x)

Fig. 1. Lyapunov function for the closed-loop system under the L2 PWAS
control.

Fig. 2. Input and output signals of the MIMO system under different
controls: MPC PWA control (blue line), L2 PWAS control (red line).

at least one point outside S. The main differences are due
to the trajectories that leave S, as outside S the backup gain
Fε is used to control the system. Note that for trajectories
living in S, the loss of performance of the PWAS laws is
quite limited, as shown in the 2nd column of Table I.

Control Q̄
all ∈ S /∈ S

MPC 4.12 2.09 13.59
L2 17.29 2.17 94.39

TABLE I
MEAN QUALITY FACTOR FOR THE EXACT MPC AND APPROXIMATED

CONTROLS. “∈ S” INDICATES THE TRAJECTORIES THAT NEVER LEAVE

S , “/∈ S” THE TRAJECTORIES THAT LEAVE S .

3) Circuit implementations of the control laws: The state
variables (circuit inputs) are coded with 12 bits words
and the PWAS controls are implemented with the digital
architectures A (smaller) and B (faster) proposed in [13]. By
using architecture A, we can calculate a control move every
186 ns and 11% of slices is occupied. By using architecture
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B, we can calculate a control move every 36 ns and the
percentage of occupied slices is 35%. If the optimal control
is implemented using the architecture based on a binary
search tree, the maximum and mean times needed to evaluate
the control are 530 ns and 430 ns, respectively, and the
percentage of occupied slices would be 25%.

This example points out a fundamental aspect of PWAS
approximations: their circuit implementation does not de-
pend directly on the parameters of the MPC problem (Q,
R, N , Nu, Gu, etc.) like the optimal solution, but their
performances in terms of latency and area occupation can
be set by the designer changing the number of partitions
along each dimension and the numerical accuracy, looking
for a trade-off between the approximation accuracy and the
circuit specifications.

VII. CONCLUSIONS AND FUTURE RESEARCH

This paper has proposed a novel approach to the approxi-
mation of MPC controllers using canonical PWA functions,
and provided techniques to prove their stabilization prop-
erties. Compared to other function approximation methods,
the resulting approximation can be implemented on chip
in an extremely fast way. The main limitation of the ap-
proach is the “curse of dimensionality” due to the simplicial
partitioning of the set of states where the control law is
approximated. In particular, the storage requirements in the
circuit implementing the PWA approximation grows with the
number Nv of vertices of the simplicial partition (i.e., of
coefficients to be stored in the memory), which increases
exponentially with the number of dimensions.

Future research will address the extension of the ideas
of this paper to nonlinear and hybrid MPC settings, and
to provide robust stability certifications in the presence of
uncertainties affecting the system.
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