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Abstract— In this paper we advocate the use of stochastic
model predictive control (SMPC) for improving the perfor-
mance of powertrain control algorithms, by optimally control-
ling the complex system composed of driver and vehicle. While
the powertrain is modeled as the deterministic component of
the dynamics, the driver behavior is represented as a stochastic
system which affects the vehicle dynamics. Since stochastic
MPC is based on online numerical optimization, the driver
model can be learned online, hence allowing the control algo-
rithm to adapt to different drivers and drivers’ behaviors. The
proposed technique is evaluated in two applications: adaptive
cruise control, where the driver behavioral model is used to
predict the leading vehicle dynamics, and series hybrid electric
vehicle (SHEV) energy management, where the driver model is
used to predict the future power requests.

I. INTRODUCTION

Modern automotive vehicles are complex systems where

the mechanical components interact with the control elec-

tronics and with the human driver. With the constant increase

in powertrain complexity, tightening of emissions standards,

increase in gas price, and the increased number of vehicle

functionalities, advanced control algorithms are needed to

meet the specification requirements while keeping sensor and

actuator costs limited.

Model predictive control (MPC) [1] is an appealing can-

didate for control of complex automotive systems, due to its

capability of coordinating multiple constrained actuators and

optimizing the system behavior with respect to a performance

objective. However, MPC requires a model of the dynamics,

and, in general, the more precisely the model represents

the real dynamics, the better the closed-loop performance

is. While suitable models are available for the dynamics of

most vehicle components [2], the overall automotive vehicle

behavior strongly depends on what the driver is doing. As

such, including a prediction model of possible future driver’s

actions may increase the closed-loop performance of MPC.

In this paper we propose to model the driver as a stochas-

tic process whose output affects a deterministic model of

the vehicle. Thus, the obtained model of the vehicle and

the driver dynamics is a stochastic dynamical system that

requires appropriate stochastic control algorithms. Stochastic

control algorithms have been already proposed in automotive
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applications to tackle the uncertainty arising from the vehi-

cle environment. Concrete examples are stochastic dynamic

programming applications to hybrid electric vehicles (HEV)

energy management [3], [4] and emission control [5], and

linear stochastic optimal control for chassis control [6].

However, stochastic linear control is often inadequate to

capture the variety of driver behaviors, while stochastic

dynamic programming is numerically intensive and cannot

be easily updated if the underlying statistical model changes.

In recent years various stochastic model predictive control

algorithms (SMPC) have been proposed, based on different

prediction models and stochastic optimal control problems,

see [7]–[9] and the references therein. In this paper, we

model the deterministic dynamics by a linear system and the

stochastic driver model by a Markov chain. The choice of

Markov chains to represent driver behaviors is motivated by

previous literature [3], [5], and by the approximation prop-

erties of Markov chains [10]. The overall model is used in a

finite horizon stochastic optimal control problem, where the

expected performance objective is optimized, subject to the

constraints on states and inputs. Concurrently, the Markov

chain modeling the driver is updated online by applying a

simple learning algorithm, based on linear filtering of the

transition frequencies. This allows the SMPC controller to

adapt to changes in the driver behavior.

The paper is structured as follows. In Section II we discuss

the driver model based on Markov chains and the correspond-

ing online learning algorithm, and in Section III we introduce

the stochastic model predictive control algorithm used in this

paper. In Sections IV and V we present the applications of

the proposed approach to the adaptive cruise control (ACC)

and to energy management in series hybrid electric vehicle

(SHEV), respectively. The conclusions are summarized in

Section VI.

Notation: R, Z, Z0+ denote the set of real, integer, and

nonnegative integer numbers, respectively. For a set A,

|A| denotes the cardinality. For a vector a, [a]i is the ith

component, and for a matrix A, [A]ij is the ijth element

and [A]i is the ith row. We denote a square matrix of size

s × s entirely composed of zeros by 0s, and the identity by

Is. Subscripts are dropped when clear from the context.

II. STOCHASTIC DRIVER MODEL AND LEARNING

ALGORITHM

We model the actions of the driver on the vehicle by

a stochastic process w(·) where w(k) ∈ W , for all k ∈
Z0+ . We assume that at time k, the value w(k) can be

measured, and, with a little abuse of notation, we denote
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by w(k) the measured realization of the disturbance at

k ∈ Z0+. Depending on the specific application, vector w(k)
may represent different quantities, such as power request in

an HEV, acceleration, velocity, angular rate applied to the

steering wheel, or any combination of the above.

For prediction purposes, the random process generat-

ing w is modelled as a Markov chain with states W =
{w1, w2, . . . , ws}, where obviously wi ∈ W , for all

i ∈ {1, . . . , s}. The cardinality |W | defines the trade off

between stochastic model complexity and its precision. The

Markov chain is defined by a transition probability matrix

T ∈ R
s×s, such that

[T ]ij = Pr[w(k + 1) = wj |w(k) = wi], (1)

for all i, j ∈ {1, . . . , s}, where w(k) is the state of the

Markov chain at time k. By using the Markov chain model,

given w(k) = wi, the probability distribution of w(k + ℓ) is

computed as

Pr[w(k + ℓ) = wj |w(k) = wi] =
[(

T ℓ
)′

ǫi

]

j
. (2)

where the ǫi is the ith unitary vector, i.e., [ǫ]i = 1, [ǫ]j = 0,

for all j 6= i.

A straightforward extension of this model is to model the

stochastic process w(·) by a set of Markov chains Tm, m =
1, . . . , µ, where, in automotive applications, the currently

active Markov chain is chosen at every instant depending

on current conditions such as velocity, temperature, or road

surface.

The Markov chain transition matrix T can be updated

online by different learning algorithms, with varying com-

plexity [10], [11]. From a batch of measurement {w(k)}L
k=0,

the Markov chain transition matrix T is estimated by

[T ]ij =
nij

ni

, i, j ∈ {1, . . . , s}, (3)

where nij = |Kij |,

Kij = {k | argmin
h∈{1,...,s}

|w(k) − wh| = i,

argmin
h∈{1,...,s}

|w(k + 1) − wh| = j},

and1 ni =
∑s

j=1 nij , for all i ∈ {1, . . . , s}. When new

values of w(·) are collected, the Markov chain is updated.

The learning procedure used here is detailed in Algorithm 1,

where N ∈ Z
s×s
0+ is used to store the measured data.

Algorithm 1 is a linear filtering algorithm that estimates

T and, if w(·) is generated by a Markov chain, it can be

shown to converge to the correct value, see, e.g., [10], [11].

The parameter λ > 0 acts as the filter constant, where a

lower value increases the convergence speed at the price of

higher sensitivity to noise.

1Note that minimizer in (4) may not be unique. For those cases, omitted
here for the sake of simplicity, a selection rule can be included. For instance,
the smallest minimizer can be chosen.

Algorithm 1 On-line driver’s model learning procedure

1: Given T , at k = 0 set:

2: N = 0s, τ = 0;

3: i = argmin
h∈{1,...,s}

|w(0) − wh|;

4: for all k ≥ 1 do

5: τ = τ + 1;

6: j = argmin
h∈{1,...,s}

|w(k) − wh|;

7: [N ]ij = [N ]ij + 1;

8: if τ = τmax then

9: for all h ∈ {1, 2, . . . , s} do

10: [T ]h = ([N ]h + λ[T ]h)(λ +
∑s

l=1[N ]hl)
−1;

11: end for

12: N = 0, τ = 0;

13: end if

14: i = j;

15: end for

III. STOCHASTIC MODEL PREDICTIVE CONTROL

In this paper we apply the SMPC formulation based on

scenario enumeration and multi-stage stochastic optimization

introduced in [12]. Consider a process whose discrete-time

dynamics are modelled by the linear system

x(k + 1) = Ax(k) + B1u(k) + B2w(k) (4a)

y(k) = Cx(k) + D1u(k) + D2w(k), (4b)

where x(k) ∈ R
nx is the state, u(k) ∈ R

nu is the input,

w(k) ∈ W is an additive stochastic disturbance. The state,

input, and output vectors may be subject to the following

constraints

x(k) ∈ X, u(k) ∈ U, y(k) ∈ Y, ∀k ∈ Z0+. (5)

To simplify the exposition, we consider hereafter a scalar dis-

turbance w. However, the approach described below is easily

extended to multi-dimensional disturbances. For predicting

the evolution of the disturbance w, a time-varying probabil-

ity vector p(k) = [p1(k), p2(k), . . . , ps(k)]′ is introduced,

which defines the probability of disturbance realization at

time k,

pj(k) = Pr[w(k) = wj ], j = 1, 2, . . . , s, (6)

with
∑s

j=1 pj(k) = 1, for all k ∈ Z0+. We model the

evolution of p(k) by the Markov chain (1). As a consequence

the complete model of plant and disturbance is

x(k + 1) = Ax(k) + B1u(k) + B2w(k) (7a)

y(k) = Cx(k) + D1u(k) + D2w(k) (7b)

Pr[w(k + 1) = wj |w(k) = wi] = [T ]ij . (7c)

The adopted SMPC problem formulation is based on a

maximum likelihood approach, where at every time-step

an optimization tree (scenario tree) is built using the up-

dated information on the system state and on the stochastic

disturbance. Each node of the tree represents a predicted

disturbance scenario which is taken into account in the
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optimization problem. Starting from the root node, which

is associated with the current measurement of w(k), a list of

candidate nodes is generated by considering all the possible

future values of the disturbance, together with their realiza-

tion probability. Then, the node with maximum probability

is added to the tree. The procedure is repeated iteratively, by

generating at every step new candidates as children of the last

node added to the tree, until the tree contains a nmax nodes.

Note that every sequence of connected nodes (i.e., a path) in

the tree represents a disturbance sequence realization, where

the number of nodes is the length of the path.

The constructed tree produces a “multiple-horizon” ap-

proach, where different paths may have different prediction

horizons. The tree generation algorithm expands the tree

in the most likely direction, so that the paths with higher

probability are extended longer in the future, since they will

have more impact in the performance optimization. Causality

of the resulting control law is enforced by allowing only one

control move for every node, except leaf nodes (i.e., nodes

with no successor) that have no associated control move. The

reader is referred to [12] for further details.

Let us introduce the following quantities to formally define

the proposed control problem:

• T = {T1, T2, . . . , Tn}: the set of tree nodes. Nodes are

indexed progressively as they are added to the tree (i.e.,

T1 is the root node and Tn is the last node added).

• xN , uN : the state and the input, respectively, associated

with node N .

• πN : the probability of reaching node N from T1.

• pre(N ): the predecessor of node N .

• succ(N , j): the successor of node N with mode j.

• S ⊂ T : the set of leaf nodes, defined as S , {Ti ∈
T , i = 1, 2, . . . , n : succ(Ti, j) 6∈ T , j = 1, 2, . . . , s}.

After the tree has been built, the following stochastic MPC

optimization problem is solved

min
u

∑

i∈T \{T1}

πi(xi − xr)Q(xi − xr)

+
∑

j∈T \S

πj(u
′
jRuj + y′

jSyj) (8a)

s.t. x1 = x(k), w1 = w(k), (8b)

xi = Axpre(i) + B1upre(i) + B2wpre(i),

i ∈ T \{T1}, (8c)

yi = Cxi + D1ui + D2wi, i ∈ T \S, (8d)

xi ∈ X, i ∈ T \{T1}, (8e)

ui ∈ U, yi ∈ Y, i ∈ T \S, (8f)

where u = {ui}
mu

i=1 is the decision vector and mu = |T |−|S|
is the number of optimization variables. Then, the decision

vector element u1 associated to the root node T1 of the tree

is used as the control input u(k).

Summarizing, the stochastic model predictive control al-

gorithm is composed of three steps. At any control cycle

k ∈ Z0+, (i) the optimization tree is built from the current

value of the state and measured disturbance, (ii) problem (8)

Fig. 1. Adaptive cruise control operation.

is solved for the obtained optimization tree, (iii) the input

vector u(k) = u1 is applied to the system.

In the next sections we demonstrate two applications of

SMPC with learning in the automotive domain.

IV. APPLICATION TO ADAPTIVE CRUISE CONTROL

Adaptive cruise control (ACC) [13] extends the function-

alities of conventional cruise control. In conventional cruise

control, the reference velocity set by the driver is tracked

by controlling the throttle, rejecting disturbances such as

road slope and air drag. Adaptive cruise control, in addition,

enforces a separation distance from the leading traffic to

increase driving comfort and safety. In what follows, we

consider two vehicles, the follower or host, which is the

vehicle equipped with an ACC system, and the leader or

target vehicle. The ACC controls the follower acceleration

in order to track the desired velocity as close as possible

without violating a minimum separation distance between

leader and follower, in spite the fact that the acceleration of

the leader is time-varying and not controllable.

As a prediction model for the MPC control problem, we

consider the scheme represented in Figure 1, where v(k)
and a(k) are the speed and the acceleration of the follower,

respectively, and vl(k) is the velocity of the leader. The

acceleration a(k) is modeled as the integrator

a(k + 1) = a(k) + Tsu(k), (9)

where Ts = 1s is the sampling period, and the control input

u(k) is the rate of change of acceleration (jerk). The leader

and follower velocities are

v(k + 1) = v(k) + Tsa(k), (10)

vl(k + 1) = vl(k) + Tsal(k), (11)

where al(k) is the leader acceleration, that is assumed to be

a stochastic disturbance. Thus, the distance d(k) between the

leader and the follower evolves as

d(k + 1) = d(k) + Ts(vl(k) − v(k)). (12)

The system dynamics are modelled by (4a) where x(k) =
[d(k) v(k) a(k) vl(k)]′, w(k) = al(k), and

A =

[

1 −Ts 0 Ts

0 1 Ts 0
0 0 1 0
0 0 0 1

]

, B1 =

[

0
0
Ts

0

]

, B2 =

[

0
0
0
Ts

]

. (13)

In order to guarantee comfort and safety, the state and

manipulated input are subject to the constraint (5), where

X , {x ∈ R
4 : [x]1 ≥ dmin(k), 0 ≤ [x]2 ≤ vref}, (14a)

U , {u ∈ R : umin ≤ u ≤ umax}. (14b)
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The minimum separation distance varies with the velocity

v(k),
dmin(k) = δ + γv(k), (15)

where δ = 3m is a constant value that models the minimum

distance for the case where v(k) = 0, and γ = 2s is the

headaway time-gap, the time needed to reach the current

position of the leader. The bound vref is desired speed set

by the driver, which shall not be exceeded, and the jerk is

bounded for guaranteeing comfort, umax = −umin = 3m/s3.

In addition, the follower velocity must be non-negative.

For the ACC control problem, in model (4) the disturbance

w(k) is the acceleration al(k) of the leading vehicle. This

is modelled by a Markov chain that can take s = 9 different

values. The Markov chain is first trained offline by (3) with

acceleration profiles from several standard driving cycles,

then the Markov chain is adapted online by Algorithm 1.

In the optimization problem (8) we set

xref =

[

dref
vref

0
0

]

, Q =

[

Qd 0 0 0
0 Qv 0 0
0 0 0 0
0 0 0 0

]

, R = Qu,

where Qd, Qv , Qu are the weights on the tracking error

of relative distance, on the tracking error of desired velocity,

and on jerk, respectively. Also the reference distance is time-

varying

dref (k) = δref + γrefv(k) (16)

where δ = 4m and γ = 3s. By the term that weighs u

in (8a), the controller tries to minimize the jerk to provide

smooth accelerations that improve comfort and reduce fuel

consumption.

We have simulated the closed-loop system, where the

European Urban Driving Cycle (EUDC) is used to model

vl, the speed reference is vref = 26m/s, the weights are

Qd = 0.1, Qv = 5, Qu = 104, and the optimization

tree which defines the optimal control problem is built with

nmax = 50 nodes. We have compared the SMPC controller

with a deterministic “frozen-time” MPC (FTMPC), where

w is assumed constant in prediction, and with a “prescient”

MPC (PMPC), where the disturbance w is exactly known

in advance on the entire prediction horizon. Figure 2(a)

shows a comparison, in terms of vehicle speed, between the

controllers. The SMPC has an intermediate behavior between

the FTMPC and the PMPC controller, where the latter knows

the variations of vl in advance. Indeed, SMPC provides better

distance and velocity reference tracking than the simpler

FTMPC. One can also notice how the SMPC anticipates

driver’s action with respect to FTPMC, especially when the

leader stops accelerating at 60s and in the long braking action

at 370s.

V. APPLICATION TO ENERGY MANAGEMENT IN HYBRID

ELECTRIC VEHICLES

As a second application of SMPC, we consider the energy

management problem of a series HEV (hybrid electric vehi-

cle) [14], where only the electric motor is directly connected

to the traction driveline. The power supplied to the motor is

the combination of the power provided by a battery, and of
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Fig. 2. Comparison between the SMPC, FTMPC and PMPC for adaptive
cruise control

the power produced by a generator connected to the internal

combustion engine (ICE). A preliminary study of SMPC

application to this problem was proposed by the authors

in [15]. Here, we extend the approach with online learning of

the Markov chain, and by considering a refined model with

both regenerative breaking (use of the motor to recharge the

battery) and non-regenerative braking capabilities.

The purpose of the energy management controller is to

minimize the fuel consumption by optimally delivering the

power requested by the motor Preq, which is a function

of the driver commands on the gas and brake pedals and

of the current vehicle conditions. The energy management

system selects how much power Pmec must be provided by

the ICE through the generator, and how much power Pel by

the battery. The power balance equation

Preq(k) = Pel(k) + Pmec(k) − Pbr(k), ∀k ∈ Z0+ (17)

is enforced, where Pbr ≥ 0 is the power drained by

conventional friction brakes, in case regenerative braking is

not sufficient to provide the desired vehicle braking power.

Since the rotational dynamics of ICE, motor, and generator

are much faster than the battery charging dynamics, the main

relevant dynamics are the ones of the (normalized) battery

state of charge

SoC(k + 1) = SoC(k) − KTsPel(k), (18)

where SoC ∈ [0 1], SoC = 1 corresponds to a fully charged
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battery, Ts = 1s is the sampling period, K > 0 is a scalar

parameter identified for a generic HEV battery. Note that a

positive value of Pel indicates that power is provided by the

battery to the motor.

The SMPC-based energy management system controls the

conventional braking power Pbr and the variation of the

mechanical power provided by the ICE , ∆P , where

∆P (k) = Pmec(k) − Pmec(k − 1). (19)

By combining (17)–(19), we get a model as in (4) with

x(k) =
[

SoC(k)
Pmec(k−1)

]

, u(k) =
[

∆P (k)
Pbr(k)

]

,

y(k) = Pel(k), w(k) = Preq(k), (20)

A =
[

1 KTs

0 1

]

, B1 =
[

KTs −KTs

1 0

]

, B2 =
[

−KTs

0

]

,

C = [ 0 −1 ] , D1 = [−1 1 ] , D2 = 1.

Power request Preq(k) is the stochastic disturbance w(k),
and battery power Pel(k) is the output, since it is uniquely

assigned by (17), given x(k) and u(k).

A. Stochastic model predictive controller design

In order to design the stochastic MPC controller, power

request, which is decided by the driver, is modeled as a

Markov chain (1), accordingly to Section II. In [15] the

authors have discussed the case where the Markov chain

model is trained offline based on multiple standard driving

cycles data, hence representing an average driver behavior,

which is an approach similar to the one used in stochastic

dynamic programming [3]. In this paper we illustrate the

case where the transition probabilities are learned online by

Algorithm 1.

SMPC has a clear advantage over stochastic dynamic pro-

gramming with respect to adaptation to changes in driver’s

behavior. Stochastic dynamic programming does not easily

allow for updates in the control law in reaction to observed

changes in the stochastic model, because of the numerically

intensive computations required to solve the dynamic pro-

gram.

With respect to using a fixed Markov chain learned offline

as in [15], we show adaptation provides improvements in

fuel economy. By learning transition probabilities on line, the

Markov chain better represents a specific drive cycle/driver,

and the prediction capabilities of SMPC improve conse-

quently. This approach is also more meaningful in “every

day driving”, which does not exactly match the standard

drive cycles, but it has indeed a specific pattern that reflects

the commonly travelled road, the local traffic flows, and the

specific driving style of the driver.

For predicting Preq, a Markov chain with s = 16 states is

used, that is initialized by T = I . We run the controller mul-

tiple times through the drive cycle used for the simulations

in Section V-B in order to learn the transition probabilities.

The stochastic MPC problem (8) is formulated based on

model (4) where the dynamic parameters are defined by (20).

By solving (8), the SMPC algorithm selects the optimal

mechanical power variation and conventional braking power.

The desired mechanical power is converted into the optimal

engine operating point by the static relation

[τ(k), ω(k)] = f(Pmec(k)),

based on the stationary optimal engine power curve. A

low-level controller provides tracking of the desired engine

operating point. In order to operate the engine always around

the optimal power curve, the mechanical power transients

should be short, which requires reduced mechanical power

variations [15]. This also reduces power losses due to inertia.

Thus, the cost at each node is

J∗(k) = r∆P ∆P (k)2 + qP (Pmec(k) − P ∗
mec)

2+

qsoc(SoC(k) − SoCref )2 + rbrPbr(k)2, (21)

where P ∗
mec is the ICE maximum efficiency power, SoCref

is the reference state of charge, the weight r∆P enforces

smooth mechanical power variations, the weight qP pushes

the system to operate closer to the maximum efficiency

power, and qsoc and rbr penalizes deviations from battery

setpoint and the use of the friction brakes, respectively.

From (21), the cost function (8a) is defined by setting

xref =
[

SoCref

P∗

mec

]

, Q =
[

qsoc 0
0 qP

]

, R =
[

r∆P 0
0 rbr

]

, S = 0.

The constraints in SMPC problem (8) are used to enforce

desired operating ranges for the variables, which result in in-

creased battery lifetime and enforced electric and mechanical

limits. In details, we impose (14) where

X = {x ∈ R
2 : SoCmin ≤ [x]1 ≤ SoCmax,

0 ≤ [x]2 ≤ Pmec,max},

U = {u ∈ R
2 : ∆Pmin ≤ [u]1 ≤ ∆Pmax, [u]2 ≥ 0},

Y = {y ∈ R : Pel,min ≤ [y]2 ≤ Pel,max}.

To guarantee that (17) is enforced at each sample time, the

constraint on ∆P (k) has been implemented as a soft con-

straint. For additional details on controller tuning see [15].

B. Simulations of the SMPC energy management controller

The quasi-static nonlinear simulation model of a light

hybrid vehicle derived from the QSS toolbox [14] is used

as for generating simulation data. The controller parameters

in the simulations are SoCmin = 0.4, SoCmax = 0.6,

Pmec,max = 20 kW, ∆Pmax = −∆Pmin = 5 kW, Pel,max =
−Pel,min = 40 kW. The constraints on SoC are set tight

around 50% of battery charge to preserve battery lifetime.

The weights in (8a) are qSoC = 500, qP = 0.2, r∆P = 0.4,

rbr = 1000, and the state references are SoCref = 0.5
and Pmec,ref = P ∗

mec = 15.87 kW. The optimization tree

defining the optimal control problem has nmax = 100 nodes.

The SMPC controller is again compared with a frozen-

time MPC controller (FTMPC) that assumes Preq to be

constant in prediction, and with a prescient MPC controller

(PMPC), that has perfect knowledge of the future power re-

quest along the entire prediction horizon. For the simulations,

we have used the New European Driving Cycle (NEDC).

Figures 3 and 4 show the mechanical power variation and the
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TABLE I

SIMULATION RESULTS ON THE NEDC CYCLE

fuel cons. [kg] % Fuel Improv.

FTMPC 0.281 −
SMPC (static) 0.243 13.5%
SMPC (adaptive) 0.199 29.2%
PMPC 0.197 29.9%

0 200 400 600 800 1000 1200
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FTMPC
PMPC
SMPC
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∆
P
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Fig. 3. Mechanical power variation ∆P for SMPC (solid line), PMPC
(dashed line), FTMPC (dash-dotted line)

battery state of charge for the three controllers, respectively.

A comparison of the resulting fuel economy on the NEDC

cycle (lasting 1220s) is reported in Table I, together with the

improvement with respect to the base FTMPC controller.

In Table I the fuel consumption of the SMPC controller

discussed in [15], where no adaptation was used, is also

shown. Even if the fuel consumption is not explicitly min-

imized, SMPC provides better fuel economy than FTMPC,

since SMPC performs better prediction of the future power

requests, and the minimization of cost function (21) forces

an efficient operation of the powertrain. In fact, the battery

power is used to mitigate the ICE power transients, that are

in general inefficient, and the controller operates the ICE on

the optimal curve, possibly close to the maximum efficiency

point P ∗
mec.

VI. CONCLUSIONS

We have developed an approach for control of complex

powertrain systems based on modeling the vehicle as a

deterministic dynamical system, and the driver as a stochastic

process, whose dynamics is updated on line. Stochastic

model predictive control is applied to optimize expected

performance over a tree of scenarios, while enforcing con-

straints on states, inputs, and outputs. From a computational

viewpoint, by assuming a linear system model we solve

the SMPC problem via standard quadratic programming.

Compared to stochastic dynamic programming, the proposed

controller is easily reconfigurable to changing stochastic

parameters and it can more easily handle high order models.

The overall procedure has been exemplified in two automo-

tive applications, the adaptive cruise control and the energy

management of hybrid electric vehicles. In both cases we

have been able to demonstrate improved performance with
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48.5

49

49.5

50

50.5

FTMPC

PMPC

SMPC

t[s]

S
o
C

[%
]

Fig. 4. State of charge SoC for SMPC (solid line), PMPC (dashed line),
FTMPC (dash-dotted line)

respect to deterministic MPC schemes, due to the ability

of SMPC of providing better predictions without violating

causality, as it happens in anticipative MPC schemes.
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