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Abstract— For a rather broad class of financial options, this
paper proposes a stochastic model predictive control (SMPC)
approach for dynamically hedging a portfolio of underlying
assets. By employing an option pricing engine to estimate
future realizations of option prices on a finite set of one-step-
ahead scenarios, the resulting stochastic optimization problem
is easily solved as a least-squares problem at each trading
date with as many variables as the number of traded assets
and as many constraints as the number of predicted scenarios.
After formulating the dynamic hedging problem as a stochastic
control problem, we test its ability to replicate the payoff at
expiration date for plain vanilla and exotic options. We show
not only that relatively small hedging errors are obtained in
spite of price realizations, but also that the approach is robust
with respect to market modeling errors.

I. INTRODUCTION

Issuing derivative contracts requires dynamically trading a
self-financing portfolio of more liquid and simpler securities
so as to match the option payoff for every possible state of
the market. A popular and well studied class of derivatives
are European vanilla options: a call (put) option gives the
holder the right to buy (sell) the underlying asset at a given
expiration date in the future for a predetermined strike price.
From the point of view of an investment firm the problem of
writing an option amounts to jointly determining (i) the price
the customer must pay to get the right to exercise the option,
and (ii) the dynamic strategy for managing this money
by creating a portfolio and for periodically changing its
composition during the life of the option. The strategy should
make the value of the portfolio equal to the payoff amount
to be paid to the customer at the expiration date, regardless
of the realized price evolution of the assets underlying the
option and composing the portfolio.

The seminal works [1], [2] and their extensions to models
with stochastic volatility [3] aim at perfect hedging by
eliminating the risk at each time instant through a proper
rebalancing of assets in the portfolio, usually continuously in
time. Simulation is another method often used by investment
firms to price options [4], [5]. A (large) set of scenarios for
the future prices of the underlying assets is generated by
Monte Carlo simulation; the final value of the asset price
of each scenario is used to compute the payoff value; the
average of such payoff values, discounted by the interest rate,
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provides the option price. In view of such a current practice
for option pricing, in this paper we focus our attention only
on the hedging problem.

Approaches that instead look at the entire life of the option
aim at minimizing risk at expiration date. The problem can
be cast as a stochastic optimal control problem and rely
on the Hamilton-Jacobi-Bellman partial differential equation.
This category includes multi-stage stochastic programming
approaches, in which the pricing and hedging problem is
solved as a stochastic linear programming problem [6]–
[8]. The approach is often limited by numerical reasons.
In fact, the number of nodes in the tree is exponential in
the number of trading periods, which typically limits the
number of branches at each node to two or three. Stochastic
dynamic programming approaches [9], [10] also discretize
the probability space and solve the pricing and hedging
problem backwards in time. While the method is appealing,
its main limitation is due to numerical explosion when the
number of trading periods is large and several assets are
traded.

This paper attacks the hedging problem from a feedback
control viewpoint and proposes stochastic model predictive
control (SMPC) ideas [11]–[13] to design a dynamic hedging
strategy. SMPC can be seen as a suboptimal way of solving a
stochastic multi-stage dynamic programming problem: rather
than solving the problem for the whole option-life horizon, a
smaller problem is solved repeatedly from the current time-
step t up to a certain number N of time steps in the future
by suitably re-mapping the condition at the expiration date
into a value at time t+N .

SMPC has been proposed in financial applications only
very recently, such as in [14] for portfolio optimization, and
in [15], [16] for option pricing and hedging.

In this paper we propose a novel SMPC approach to
dynamic option hedging based on a minimum variance
criterion that requires a simple least-squares optimization
to evaluate the optimal trading moves, by extending results
proposed in [17]. To be able to handle very general stock
price models and exotic payoffs, for which no analytic
hedging policy exist, a pricing engine is used on-line to
generate a finite number of future scenarios of option prices,
rather than analytically deriving expected values from pricing
models as in [14], [15]. To evaluate each option price, the
pricing engine employs either Monte Carlo simulation (on-
line computations), or off-line function approximation to
approximate the option value as a function of the state of
the market (such as the price of the underlying stock), so
that on-line evaluation is very fast.
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The paper is organized as follows. In Section II we intro-
duce the dynamical models that we adopt in the paper for
asset prices, for the synthetic option and its payoff, and for
the wealth of the portfolio. In Section III we state the hedging
problem as a stochastic model predictive control problem,
and formulate a solution algorithm. The performance of the
approach and its robustness with respect to modeling errors
of the underlying asset market are tested in Section IV on a
European call and on two exotic options.

II. MODEL FORMULATION

A. Asset price dynamics

Consider the problem of dynamically hedging a European
option1 O defined over n spot prices xi of underlying assets,
i = 1, . . . , n, satisfying the stochastic differential equations
in the real-world probability measure

dxi(τ) = µxi (xi(τ), yi(τ))dτ + σxi (x(τ), y(τ))dzxi (1a)
dyi(τ) = µyi (yi(τ))dτ + σyi (y(τ))dzyi (1b)

where zxi (τ), zyi (τ) are Wiener processes, namely dzxi , dzyi
are correlated Gaussian variables with zero mean and vari-
ance dτ . In (1) we assume xi ≥ 0, ∀i = 1, . . . , n, ∀τ ≥ 0.
Model (1) is a rather general form that covers several popular
models, including the log-normal stock price model

dxi(τ) = (µdτ + σdzxi )xi(τ) (2)

and Heston’s model [3].
In this paper we are interested in evaluating xi(τ), yi(τ) at

certain trading dates τ = t∆T , where t ∈ Z, t ≥ 0, denotes
a discrete-time index2. To this end, we need to discretize (1)
into difference equations either through the exact integration
of (1), for example

xi(t+ 1) = e(µ− 1
2σ

2)∆t+σ
√

∆tzx
i (t)xi(t) (3)

or by numerical integration. In the sequel we denote by
x(t) = [x1(t) . . . xn(t)]′ ∈ Rn the vector of asset prices,
and by y(t) = [y1(t) . . . yn(t)]′ ∈ Rn the associated vector
of additional state variables of the asset price models.

B. Option price and payoff function

We assume that the portfolio associated with option O
is updated every ∆T units of time, and denote by T the
maturity of O expressed in terms of number of sampling
steps. The payoff p(T ) of O is described by a function P:

p(T ) = P(m(T )) (4)

of the state m(T ) of the considered asset market at expiration
date, for example m(T ) = x(T ). We denote by p(t) the price
of the hedged option at a generic intermediate time t∆T ,

p(t) = (1 + r)t−N Ẽ [P(m(T ))|m(t)] (5)

where m(T ) is the state of the market at time t and P(m(T ))
is the expected value of the payoff in the risk-neutral

1The approach can be easily extended to other options as described in
[9], such as to Asian options.

2The results presented in this paper can be immediately extended to non-
uniform trading intervals ∆T .

measure, given the market at time t. In (5) r = era∆T − 1
is the return of the risk free investment over ∆T , and ra
is the annualized continuously compounded interest rate,
which we assume to be constant (Equation (5) can be also
restated recursively as p(t) = (1 + r)−1Ẽ[p(t + 1)|m(t)]).
For instance, for a European call option on a single stock x
with strike price K, we have

p(T ) = max{x(T )−K, 0} (6)

m(t) = {x(t), y(t)}, and p(t) =
e−r(N−t)Ẽ [max{x(T )−K, 0}|x(t), y(t)]. In particular,
for log-normal price models, m(t) = x(t). For “Napoleon
cliquet” path-dependent exotic options

p(T ) = max
{

0, C + min
i∈{1,...,Nfix}

x(ti)− x(ti−1)
x(ti−1)

}
(7)

where ti, i = 1, . . . , Nfix are the fixing dates, and C is a fixed
value. In this case m(t) = {x(t0), . . . , x(tk), x(t), y(t)},
where k is the fixing index such that tk ≤ t < tk+1. For
weak path-dependent “Barrier” exotic options

p(T ) =
{

max(x(T )−K, 0) if x(t) < xu, ∀t ≤ T
0 otherwise

=
{

max(x(T )−K, 0) if x`(t) = 0
0 if x`(t) = 1

(8)
where xu define the upper barrier level, and x`(t) ∈ {0, 1}
is a logic state with dynamics x`(t+ 1) = x`(t) OR [x(t) ≥
xu], x`(0) = 0. In this case m(t) = {x(t), x`(t), y(t)}.

C. Portfolio dynamics

Assume that a portfolio W constituted by assets xi, i =
1, . . . , n, and risk-free investments is dynamically managed
by the option writer. Let ui(t) denote the number of assets
i, i = 1, . . . , n, contained in the portfolio during the time
interval [t∆T , (t + 1)∆T ), t = 0, . . . , T , and let u0(t) be
the amount of wealth allocated to risk-free investments. The
trading moves ui(t), i = 0 . . . , n are decided at time t∆T .
The total wealth w(t) of W in money units invested at time
k∆T is

w(t) = u0(t) +
n∑
i=1

xi(t)ui(t) (9)

where xi(t) is the spot price of asset i at the trading time-
instant (we assume that the value of xi is continuous across
the time-instant the asset is traded, and therefore is the
same immediately before and immediately after the trading).
By assuming the standard self-financing condition (that is,
the wealth of the portfolio is always totally reinvested),
and rearranging terms, we obtain the following dynamical
equation for the wealth of W

w(t+ 1) = (1 + r)w(t) +
n∑
i=1

bi(t)ui(t) (10)

where bi(t) , xi(t+ 1)− (1 + r)xi(t). The initial condition
w(0) is set equal to the price paid by the customer of option
O, w(0) = (1 + r)−N Ẽ[p(T )|x(0), y(0)].
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We remark a few features enjoyed by the stated model: (i)
the assets dynamics (1) do not depend on trading decision
ui(t), a reasonable assumption if the volumes traded in W
are negligible with respect to the volumes exchanged on the
entire market; (ii) as a consequence, also the option price
P , and therefore its expected value Ẽ[P], do not depend on
ui(t); (iii) dynamics (10) is a first-order linear stochastic
discrete-time system.

III. STOCHASTIC MPC FORMULATION

Based on the models developed in Section II, the dynamic
option problem can be reformulated in system theoretical
terms as a stochastic reference tracking and disturbance
rejection problem, in which the wealth w(t) ∈ R is the
state and output of the regulated process, the traded asset
quantities u(t) ∈ Rn are the manipulated variables, and the
option price p(t) the target reference for w(t). In particular,
the control objective is to make w(T ) as close as possible
to p(T ), for any possible realization of the asset prices x(t).

By defining the tracking error e(t) , w(t) − p(t), the
objective can be restated as minimizing e(t) for all possible
asset price realizations. This can be achieved by minimizing
the variance of the hedging error, that we address next in a
stochastic model predictive control (SMPC) setting.

We employ a stochastic programming approach to SMPC
as in [18] to formulate the minimum variance problem by
enumerating a certain number M of scenarios (or, alter-
natively, of tree nodes) of future asset price realizations.
Each scenario corresponds to the realization of a certain
sequence of stochastic variables and has a probability πj
of occurring, j = 1, . . . ,M , πj > 0, πj ≤ 1,

∑M
k=1 πj = 1.

To limit the number of scenarios, one could discretize more
roughly in the probability space. Another way of reducing
complexity is to decrease the optimization horizon from
[t, T ] to [t,min{t + N,T}], N ≥ 1. Such a practice is
used typically in receding horizon control (also called model
predictive control, MPC). In this paper we choose the special
case N = 1, and adopt the terminal condition of “perfect
hedging” between time t + 1 and T . At a generic trading
time t = 0, 1, . . . , T − 1 let the portfolio composition u(t)
be chosen by solving the following finite-time stochastic
dynamic optimization problem

min
{u(t)}

Varmt+1 [w(t+ 1,mt+1)− p(t+ 1,mt+1)](11a)

s.t. w(t+ 1,mt+1) = (1 + r)w(t)

+
n∑
i=0

bi(t,mt+1)ui(t) (11b)

In (11) mt+1 represents a generic realization of the state of
the considered asset market at time t+1. This is determined
by the stochastic noise realization z(t+1), corresponding to
the realization of future asset prices x(t + 1). Expectations
(i.e., the variance of the final hedging error being minimized)
are taken in the real-world measure with respect to the
current state m(t) of the market, conditioned on the values
z(0), . . . , z(t) already realized.

Problem (11) is a one-step-ahead minimum variance prob-
lem. The reason for focusing on the formulation (11) is that

only one vector u(t) is optimized, which drastically limits the
number of optimization variables to the number of trading
assets n. Hence, the number M of scenarios can be quite
large, as no further branching takes place after time t + 1.
By optimizing the sample variance of w(t + 1) − p(t + 1),
problem (11) can be rewritten as the following very simple
least squares problem

min
u(t)

M∑
j=1

πj

(
ej(t+ 1)−

(
1
M

M∑
i=1

ei(t+ 1)

))2

(12)

where ej(t + 1) = wj(t + 1) − pj(t + 1), wj(t + 1) =
(1 + r)w(t) +

∑n
i=0 b

j
i (t)ui(t) are the future wealths of the

portfolio for each scenario j = 1, . . . ,M , and πj is the
corresponding probability, πj ≥ 0,

∑M
i=1 π

j = 1.
Each scenario corresponds to a different realization of the

disturbance [zx(τ), zy(τ)] in the time interval [t∆T , (t +
1)∆T ) given the current market state m(t). The option
pricing engine is used to generate the corresponding future
option prices pj(t+ 1), j = 1, . . . ,M . The proposed SMPC
algorithm is summarized by Algorithm III.1, which is solved
at each trading instant t = 0, . . . , T − 1.

1. Let t=current hedging date, w(t)= current wealth of portfolio,
m(t)=current market state;

2. Generate M scenarios of future market states m1(t + 1), . . .,
mM (t+ 1), with corresponding probabilities π1, . . . , πM ;

3. Use a pricing engine to generate the corresponding future option
prices p1(t+ 1), . . ., pM (t+ 1);

4. Solve the least square problem (12) to minimize the sample vari-
ance of w(t+ 1)− p(t+ 1);

5. Rebalance the portfolio according of the optimal solution u∗(t) of
problem (12);

6. End.

Algorithm III.1: SMPC algorithm for dynamic option hedg-
ing

A. Scenario generation

The values bji (t) = xji (t + 1) − xi(t) can be obtained
through Monte Carlo simulation of the dynamical model (1)
and πj = 1

M . Alternatively, future asset scenarios can be
generated based on the discretization (computed off-line)
of the normal distribution of [zx(τ), zy(τ)]. Consider for
simplicity the special case of a log-normal prediction model
(zy(t) = 0) with a single asset. We use model (3) to compute
discrete probabilities associated with scenarios, under the
assumption that zx(t) has a normal Gaussian distribution
π(z) = 1√

2π
e−

1
2 z

2
(zero mean, unit variance). For a fixed

grid z̄j , j = 1, . . . ,M , z1 = −∞, zj = −3σ
(

1− 2(j−2)
M−3

)
,

zM = +∞, we obtain
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(a) payoff function p(T ) and final
wealth w(T ) (e) as a function of
the stock price x1(T ) at expira-
tion (e)

(b) Sample trajectories of wealth
w(t) and option price p(t)

Fig. 1. Hedging a European call using SMPC based on Heston’s model
(values in e)

πj =

Z z̄j+1

z̄j

π(z)dz =
1

2

„
erf

„
z̄j+1√

2

«
− erf

„
z̄j√

2

««
xj(t+ 1) =

1

πj

Z z̄j+1

z̄j

x(z)π(z)dz

= x(t)
k1

2πj
e

k2
2

„
erf

„
z̄j+1 − k2√

2

«
− erf

„
z̄j − k2√

2

««
pj(t+ 1) =p(t+ 1,m(zj)) (13)

where k1 = eµ−
1
2σ

2∆t, k2 = σ
√

∆t, x(z) = x(t)k1e
k
2z, and

m(z) is the state of the asset market.

B. Pricing future option values
An option pricing engine is needed at step 3. of Algo-

rithm III.1, which may be a bottleneck of the proposed
SMPC approach for exotic options. Several approaches exist
to option pricing, such as those based on Monte Carlo
simulation. In alternative, off-line function approximation
techniques can used to construct a function that returns
the option price as a function of m(t). In this paper
we use a function approximation inspired by the Monte
Carlo method of Longstaff and Schwartz [19] for pricing
American derivates, in which the continuation value (the
option value at a future date) is estimated by a regression
of the discounted payoff on a base of functions of some
state variables. This methodology proved to have superior
performance with respect to other classical general purpose
function approximation methods.

C. Simulation results
In this section we test the SMPC algorithm III.1 on

different options and asset price models. All simulation were
performed on an Asus 1.70 GHz Intel Pentium R proces-
sor and 2 Gb RAM running MATLABTM R2007b under
Windows XP, using the following parameters: M = 100
scenarios (unless specified differently), prediction horizon
N = 1, ∆T = 1 week is the time interval between
consecutive reallocations of the portfolio, T = 24 weeks
is the maturity of the option, ra = 4% is the annualized
continuously compounded interest rate so that r = e0.04 1

54−1
is the return of the risk free investment over ∆T . In each
example the hedging strategy is tested over Ns = 1000
simulations of randomly generated market evolutions.

We consider a single stock x1(t) with initial spot price
x1(0) = 100 e. For European call options (6), we consider
the strike price K = 100 e. The number of traded assets is
n = 1 when only the underlying stock is traded, or n = 2
when also the European call option with expiration at time
t∆T and strike price x1(t)(1 + r)T−t is also traded in the
portfolio. For “Napoleon cliquet” options (7), we consider
Nfix = 3 fixing dates, with t0 = 0, t1 = 8, t2 = 16, t3 = 24
weeks, and coupon C = 0.1. For barrier options, we consider
an UP-AND-OUT option with barrier xu = 120 e, where
the barrier level is checked only at trading instants. When
Monte Carlo simulation is used to price “Napoleon cliquet”
and Barrier options, L = 1000 simulations are evaluated to
compute each expected payoff value.

We consider the log-normal stock price model (2) with3

µ = ra, dzx1 ∼ N (0, 1) and volatility σ = 0.5, which will be
also referred to as Black-Scholes (BS) model, and Heston (H)
model [3], with initial variance y1(0) = 0.25, and parameters
θ1 = 0.25, κ1 = 1, ω1 = 0.3, ρ1 = −0.5. In all simulations
we assume that the value of market volatility is estimated
exactly.

1) European call option: We first test the SMPC strat-
egy (12) to replicate a European call option, only trading the
risk-free asset and the underlying stock (n = 1). Heston’s
model [3] is used both in the MPC formulation and to
generate actual market prices in simulation. Only the risk-
free asset and the underlying stock are traded (n = 1). The
analytical pricing formula [3] is used to compute future asset
values pj(t+ 1), j = 1, . . . ,M . The results are depicted in
Figure 1, where only the first 50 simulations are reported in
Figure III-B and 4 simulations in Figure III-B. The empir-
ical distribution of the hedging error4 computed on all Ns
simulations is depicted in Figure 2 (purple line). The average
CPU time to execute Algorithm III.1 is 81.2 ms. The average
hedging error E[e(T )] = −0.0511 e, E[|e(T )] = 1.9907,
max |e(T )| = 14.5699. For comparison, Figure 2 also shows
the error distribution when delta hedging5 is applied (green
line), which takes an average CPU time of 2.5 ms per time
step. In each simulation, the difference between the hedging
error e(T ) achieved by SMPC and the one obtained by delta
hedging is within ±3.75 e.

2) Exotic options: The advantage of using the SMPC
strategy becomes more evident when replicating exotic op-
tions. We use again Heston’s model [3] both as a market
model and a prediction model for stock prices. For the
“Napoleon Cliquet” option, we only consider the case n =
2 and we use Longstaff-Schwartz’s off-line approximation
(calibrated in 251.5310 s) to estimate the option price p(t)
as a function of the spot price x1(t), its variance y1(t), and
of the spot prices at past fixing dates x1(t0), . . . , x1(tk),

3In this particular case, the probability measure used for asset price
and portfolio dynamics coincides with the risk-neutral one. However, the
reader should notice that the approach of this paper relies on the real-world
probability measure for asset price and portfolio dynamics.

4Hedging errors are sampled with the Freedman-Diaconis rule [20].
5By letting ∆ = ∂p

∂x
, in Delta hedging at each time step the portfolio

contains a quantity −∆ of asset x. In our simulations ∆ is computed by
differentiating the pricing formula [3] numerically.

6092



with tk ≤ t < tk+1. On-line CPU time is 0.4391 s per
time step (for comparison, when using on-line Monte Carlo
simulation to compute future options CPU time is 2.49 s).
Hedging results are reported in the third and fourth rows of
Table I, where for comparison in the fifth row we also show
the results obtained through delta hedging.

For the barrier option, off-line pricing approximation takes
114.016 s to estimate p(t) as a function of x1(t) and its
variance y1(t). On-line CPU time is 428.8 ms (n = 2).
Hedging results are reported in the last two rows of Table II.

SMPC model E[e(T )] E[|e(T )|] max |e(T )| CPU (ms)
Fixed Black 0.0031 0.0080 0.0561 1256.28
Implied Black 0.0031 0.0079 0.0560 1293.7
Heston (MC) 0.0032 0.0075 0.0516 6717.48
Heston (LS) 0.0025 0.0110 0.4159 439.1
∆ hedging -0.0032 0.0176 0.1344 33.7

TABLE I
NAPOLEON CLIQUET OPTION (FINAL HEDGING ERROR e(T ) IN e,

MC=MONTE CARLO ONLINE PRICING, LS=LONGSTAFF&SCHWARTZ

OFFLINE OPTION PRICE APPROXIMATION)

SMPC model E[e(T )] E[|e(T )|] max |e(T )| CPU (ms)
Fixed Black -0.0324 0.6965 14.5866 113.12
Implied Black -0.0320 0.6956 14.5829 155.64
Heston 0.1936 0.7961 16.0870 363.76
∆ hedging -1.3060 2.4335 18.9145 103.0

TABLE II
BARRIER OPTION (FINAL HEDGING ERROR e(T ) IN e)

IV. ROBUSTNESS WITH RESPECT TO MARKET MODELING
ERRORS

Generating future scenarios of asset prices requires a
model of their stochastic and dynamic evolution. Getting
such a model is often a complex task and unavoidably
affected by inaccuracy. This is due to the fact that we are
trying to enclose a huge net of complicated relationships, in
addition to a large source of randomness, in a small box.
As complicated as the model can be, one will never be
able to catch the exact dynamics of the assets, and in any
case a very complicated model would lose the advantages
of modelization. Therefore, in general, the asset price model
will always be different from the way the real world behaves,
and one must find a compromise, by using a simple enough
model which allows one to keep computational complexity
as low as possible.

In the previous sections we have assumed that the actual
prices behave according to the same model we use to
predict their evolution (nominal conditions). The hedging
error was exclusively due to randomness. In this section we
test numerically the robustness of the SMPC algorithm not
only with respect to price stochasticity, but also when real
and prediction model mismatch. In particular, we assume
that real assets evolve following Heston’s model [3], while
the simpler Black and Scholes model (2) is used to generate
future scenarios in SMPC.

The tool that will be used to concile the two models is
the calibration of the lognormal model (2) using the so-called
implied volatility, which is the market’s view of future actual
volatility and is updated at each trading period from observed

Fig. 2. Comparing the empirical distribution of hedging errors among the
four methods: Heston, Implied BS, Fixed BS and Delta Hedging.

market prices of plain vanilla options (generated by the
Heston’s model [3] in our setting) by inverting (numerically)
the Black-Scholes pricing formula. Such a value of implied
volatility will be used in our simple prediction model (3).

A. Simulation results

Assume the real market evolves according to Heston’s
model with initial volatility σ = 0.5 (y1(0) = 0.25), and that,
to avoid bias in hedging errors due to wrong initial pricing,
the initial wealth of the portfolio is computed correctly using
Heston’s model and exact y1(0). For SMPC we consider
instead three different models:

1) Fixed Black-Scholes: The log-normal model (2) is
used to generate future scenarios in SMPC, setting the
volatility to a fixed arbitrary value, different from the
actual;

2) Implied Black-Scholes: at each prediction step the
estimated implied volatility is used in (2);

3) Heston: nominal case, both the SMPC model and the
real market model coincide, and the actual volatility is
observed exactly.

1) European Call: We first test the robustness of the
SMPC algorithm on a European call option, only trading
the risk-free asset and the underlying stock (n = 1). The
analytical pricing formula [3] is used to compute future
asset values pj(t + 1), j = 1, . . . ,M . Figure 2 shows
the empirical discrete density function of the hedging error
e(T ) = w(T ) − p(T ) in the presence of modeling errors.
Note that all four distributions are bell-shaped. We can easily
see that the density of Fixed BS (red line) has fatter tails
than the others and that Implied BS (blue line) better follows
the distribution of Heston (=the exact model, purple line).
While Fixed BS and Implied BS take approximately the same
CPU time (9.6 ms and 10.2 ms per time step, respectively),
Heston (nominal conditions) takes 81.2 ms per time step.
Standard delta hedging is faster: only takes 2.5 ms per time
step, because it simply uses finite differences.

The benefits of resorting to the discretization of the normal
distribution as in (13) with respect to Monte Carlo simulation
πj = 1

M are highlighted in Table III, where the Implied
BS method is used to hedge in the SMPC algorithm. Note
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that the average final hedging error and the average absolute
hedging error obtained when only 3 scenarios, weighted
with the corresponding probabilities as in (13), are used in
SMPC are very similar to the case with M = 100 scenarios
generated by Monte Carlo, but with evident savings of CPU
time.

2) Exotic options: The robustness with respect to model-
ing errors in the case of path-dependent “Napoleon cliquet”
options with payoff (7) is highlighted in (the first and second
rows of) Table I, where we use M = 100 equally probably
scenarios generated by using Longstaff-Schwartz’s off-line
approximation. For exotic options we only consider the case
n = 2, that is, trading both the asset and its associated call
option. While all methods perform similarly, it is apparent
the computational benefits of hedging using the log-normal
model, in spite of the modeling error. Note that, although
delta hedging is the fastest algorithm, its performance in
terms of E[|e(T )|] deteriorates by almost 50% with respect to
Implied Black and almost 60% with respect to SMPC based
on Heston’s model; partly this is because delta hedging does
not include options in the portfolio (n = 1). Similar results
are obtained on the UP-AND-OUT Barrier option, as shown
in Table II.

V. CONCLUSIONS

After recasting the dynamic hedging problem of financial
options as a stochastic control problem, in this paper we
have proposed a stochastic model predictive control approach
based on a minimum variance criterion to rebalance period-
ically the portfolio underlying the option. We showed that
the tool is very versatile for dynamic option hedging, as
it can handle multiple assets, very general exotic options
and payoff functions, and rather general stock price models,
and is also robust with respect to market modeling assump-
tions. The computational demand of the SMPC approach is
mostly due to pricing future option values, a task which
can be alleviated in three ways: (i) by approximating the
pricing function off-line, (ii) by using a simplified log-
normal model (with implied volatility), and (iii) by sampling
the uniform distribution instead of generating random and
equally probably samples using Monte Carlo simulation. In
this paper we assumed that transaction costs are negligible.
Current research is extending the results of this paper to cope

M πj E[e(T )] E[|e(T )|] max |e(T )| CPU (ms)
100 1

M
-0.0587 2.0296 15.0929 10.2

8 1
M

-0.1177 3.7149 18.2113 3.4
8 Eq. (13) -0.0914 2.1517 13.7776 4.4
5 1

M
-0.1763 5.3472 20.4058 3.2

5 Eq. (13) -0.0962 2.1697 13.5410 3.8
3 1

M
-0.1717 5.2603 20.5207 3.1

3 Eq. (13) -0.0501 2.0153 15.2368 3.4

TABLE III
MONTECARLO VS. DISCRETIZATION OF PROBABILITY DENSITY

FUNCTION IN GENERATING SCENARIOS (EUROPEAN CALL, ERRORS

EXPRESSED IN e)

with transaction costs, based on either quadratic or linear
programming formulations of the SMPC problem.

The potential use of SMPC by financial institutions is
twofold. It can be used on-line to suggest trading moves to
traders, or off-line to run extensive simulations and quantify
the average hedging error for a given market model and
option type.
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