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Abstract— This paper proposes a hierarchical multi-rate
control design approach to linear systems subject to linear
constraints on input and output variables. At the lower level,
a linear controller stabilizes the open-loop process without
considering the constraints. A higher-level controller commands
reference signals at a lower sampling frequency so as to enforce
linear constraints on the variables of the process. By optimally
constraining the magnitude and the rate of variation of the
reference signals applied to the lower control layer, we provide
quantitative criteria for selecting the ratio between the sampling
rates of the upper and lower layers to preserve closed-loop
stability without violating the prescribed constraints.

I. INTRODUCTION

The increasing demand for automation of large-scale
systems requires engineers to develop more complex and
scalable control designs, based on multi-layer and possibly
decentralized architectures. The control problem becomes
particularly difficult when the design must take into account
constraints on input and output variables.

Model predictive control (MPC) has been extensively used
in the process industries for control and coordination of
large-scale systems subject to constraints [1]. Traditionally,
MPC is used for generating reference signals to single-loop
controllers in order to optimize a global performance and
enforce constraints on multiple inputs and outputs. In order
to achieve this task, MPC requires a dynamical model of
the entire process, used to make predictions over which to
optimize the control signals. As a consequence, MPC suffers
from the aforementioned scalability and model maintenance
issues, exacerbated by the complexity issue of solving a
large-scale optimization problem on-line.

Decentralized and hierarchical MPC schemes have been
investigated recently to address the complexity issue of
centralized MPC. We refer the reader to the excellent recent
survey [2]. Reference governors (RG) were also proposed
to mitigate the complexity of MPC by separating the stabi-
lization problem from the constraint fulfillment problem [3]–
[7]. In the RG approach, a (global) model of the underlying
closed-loop system is exploited in a predictive manner to
provide a reference signal to the lower-level controller which
is as close as possible to the desired one, compatibly with the
given constraints. Although providing good computational
benefits, reference governors have still the drawback of
needing a detailed global dynamical model of the entire
underlying closed-loop system for on-line optimization.

In this paper we propose a hierarchical multi-rate control
approach that exploits the idea of manipulating reference

†Department of Information Engineering, University of Siena, Italy.
Email: {barcelli,ripaccioli}@dii.unisi.it
‡Department of Mechanical and Structural Engineering, University of

Trento, Italy. Email: bemporad@ing.unitn.it
This work was supported by the European Commission under project

“WIDE - Decentralized and Wireless Control of Large-Scale Systems”,
contract number FP7-IST-224168.

Process

C1

C2

Cn

u1

u2

Lower (possibly decentralized) 
control layer

r1

r2

Upper 
Control
Layer

...

desired
reference

output 
constraints

r(t)
u(t)

y(t)

TH = NTL

TL

sampling time 

sampling time 

x(t)
rny

unu
optional (partial) 
state feedback

Fig. 1. Hierarchical control scheme

signals to enforce constraints. We assume that the open-
loop process is stabilized by a linear (possibly decentralized)
controller with sampling time TL without taking care of
the constraints, whose reference signals are generated by
a higher-level controller running at a larger sampling time
TH = NTL. As in [6], the higher level controller bounds
the commanded reference signals to prevent violations of
the contraints. In this paper, however, constraints are set
also on the variations of the reference signals. In addition
we adopt a multi-rate setting, providing quantitative relations
between the maximum allowed reference variations and to
ratio N = TH/TL between the sampling times.

Multirate MPC schemes have been addressed in a variety
of papers, see e.g. the early work [8], and the application
papers [9], [10], where hybrid MPC control is used at the
higher level to enforce complex linear and logical constraints.
Two main issues arise in hierachical MPC design: the choice
of a simple (“as much abstracted as possible, but not too
much”) prediction model of the underlying subsystem, and
the choice of the sampling time TH . Rule of thumbs suggest
that the latter must be “large enough” to assume that the
adopted prediction model is “enough consistent” with the
true underlying closed-loop system, but “not too small” to
ensure enough reactiveness of the hierarchical scheme to
changes of desired references. In this paper we quantify
exactly what “large enough” should be, and free the de-
signer from concerns about the choose of the prediction
model of the underlying closed-loop system. In fact, safe
operations are guaranteed by the resulting magnitude and
rate constraints on reference signals, no matter how the
performance index (if any) is optimized on top by the higher-
level controller.

The paper is organized as follows. The proposed hierarchi-
cal control architecture is described in Section II. In Section
III the constraints on reference signals and their dependence
on the ratio between sampling times is characterized and
optimized, and used in Section IV to the define the general
hierarchical control design. A particular design for the upper
control layer based on on-line optimization is described in
Section V. Simulation results are reported in Section VI.
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II. PROBLEM SETUP

Consider the hierarchical control architecture depicted in
Figure 1. The open-loop process is stabilized by a lower-level
control layer running at a sampling frequency 1

TL
(possibly

decentralized, as depicted in Figure 1). At the higher level a
supervisor running at a lower sampling frequency 1

TH
decides

the reference signals to send to the lower layer, possibly
optimizing a performance criterion (such as an economic
criterion), so as to make sure that a certain number of
linear constraints on input and output variables are satisfied.
Hierarchical control arrangements are frequent in industrial
automation, because one can separate the concerns related
to stabilization and disturbance rejection (taken care by the
lower level controller at a high sampling frequency) and to
steady-state optimization and constraint handling (taken care
by the higher level, usually at a slower pace).

Consider the linear time-invariant (LTI) discrete-time
model of the lower-level closed-loop system x(t+ 1) = Āx(t) + B̄u(t)

y(t) = C̄x(t) + D̄u(t)
u(t) = Kx(t) + Er(t)

(1)

where x(t) ∈ Rn, y(t) ∈ Rny , u(t) ∈ Rnu , and r(t) ∈ Rny

is the reference signal. We assume that K is an asymptoti-
cally stabilizing gain, which could either be a centralized or
a decentralized one (see e.g. [11] for LMI-based synthesis of
decentralized linear controllers). We also assume that a gain
E ∈ Rnu×ny exists such that the DC-gain from r to y is the
identity,

E = ((C̄ + D̄K)(I − Ā− B̄K)−1B̄ + D̄)−1 (2)

The closed-loop system (1) can be rewritten as{
x(t+ 1) = Ax(t) +Br(t)

y(t) = Cx(t) +Dr(t) (3)

where A = Ā+ B̄K, B = B̄E, C = C̄ + D̄K, D = D̄E.
Define the following ratio N = TH/TL between the

two sampling times of the control layers, where we assume
N ∈ N.

The goal of the higher-level controller is to command the
piecewise constant vector of references r(t)

r(t) = rk, t = kN, . . . , (k + 1)N − 1, k = 0, 1 . . . (4)

to the lower-level controller u(t) = Kx(t) + Er(t) in a
way that the output vector y(t) is kept within the admissible
output polytope

Y = {y ∈ Rny : Hyy ≤ Ky} (5)

where Hy ∈ Rq×ny , Ky ∈ Rq . Note that input constraints
may be also embedded in (5) by augmenting the output
vector so that matrix [C D] includes the rows of [K E].

The main goal of this paper is to determine simultaneously
the ratio N and restrictions on rk and on the set point
changes ∆rk = rk − rk−1 so that y(t) ∈ Y . To this end, let
the reference vector r(t) be constrained within the tightened
set

R = {r ∈ Rny : Hyr ≤ Ky −∆Ky}, (6)

where ∆Ky ∈ Rq , ∆Ky > 0 component-wise, and assume
set points r(t) are changed in a way that the tracking error
e(t) , y(t)− r(t) is always within the set

E = {e ∈ Rny : Hye ≤ ∆Ky} (7)

Vector ∆Ky is a tuning knob of the proposed approach:
the smaller the components of ∆Ky , the larger is the set
R of admissible set points rk, but the smaller will be the
admissible reference increments ∆rk to maintain tracking
errors within E .

Let xr ∈ Rn be the steady-state state corresponding
to a reference signal r ∈ Rny , xr = Axr + Br, xr =
Gxr, Gx , (I −A)−1B, and define the shift of coordinates
∆x = x− xr. Then, (3) can be rewritten as{

∆x(t+ 1) = A∆x(t)
e(t) = C∆x(t) (8)

Let Ω(0) ⊆ Rn be the maximum admissible output set
(MOAS) [12] for the closed-loop system (8) under the
constraint e(t) ∈ E

Ω(0) = {∆x ∈ Rn : HyCA
k∆x ≤ ∆Ky, ∀k ≥ 0}

, {x ∈ Rn : H0∆x ≤ K0} (9)

where1 H0 ∈ Rn0×n and K0 ∈ Rn0 , and define the
reference-dependent invariant set

Ω(r) = {x ∈ Rn : H0(x−Gxr) ≤ K0} (10)

Lemma 1: Let x(0) ∈ Ω(r) and r(t) ≡ r ∈ R, ∀t ≥ 0.
Then y(t) ∈ Y , ∀t ≥ 0.

Proof: x(0) ∈ Ω(r) implies that y(t)−r(t) ∈ E , ∀t ≥ 0.
Since r(t) ∈ R, it follows that Hyy(t) = Hye(t)+Hyr(t) ≤
∆Ky +Ky −∆Ky ≤ Ky , ∀t ≥ 0.

The main idea of this paper is the following. Assume that
the reference rk ∈ R is issued at time t = kN , and that
N is large enough so that x(t + N − 1) ∈ Ω(rk). At time
t = (k + 1)N consider the new reference is rk+1 ∈ R. If
∆rk+1 = rk+1 − rk is “small enough”, then x(t + N) ∈
Ω(rk+1). The goal of the next section is to quantify the
relationship between the maximum reference variation ∆rk,
the ratio N between the sampling intervals TH , TL, and ∆Ky

such that every TH = NTL steps the state vector x(t) of the
plant is guaranteed to lie in an invariant set Ω(rk).

III. COMPUTATION OF MAXIMUM REFERENCE RATES

Assume the ratio N between the sampling times of the
upper and lower layers of control is given. Consider the
problem of determining the initial state x(0) ∈ Ω(r1) and
the minimum reference variation ∆r(N) = r2− r1 between
two reference values r1, r2 ∈ R such that the state x(N) is

1As ∆Ky > 0 and A is asymptotically stable, Ω(0) is generated by a
finite number of inequalities, as proved in [12]. We assume that (H0,K0)
are a minimal hyperplane representation of Ω(0).

5217



outside the invariant set Ω(r2):

∆r(N) = inf
r1,r2,x(0)

||r2 − r1||∞ (11a)

s.t. r1, r2 ∈ R (11b)
x(0) ∈ Ω(r1) (11c)
x(t+ 1) = Ax(t) +Br2 (11d)

t = 0, 1, . . . , N − 1
x(N) /∈ Ω(r2) (11e)

Because of constraint (11e), the optimization problem (11)
is nonconvex. However, it can be conveniently recast as a
mixed-integer linear programming (MILP) problem by in-
troducing an auxiliary binary vector δ ∈ {0, 1}n0 , satisfying
the following constraints

[δi = 1]↔ [Hi
0(x(N)−Gxr2) ≤ Ki

0] (12a)
n0∑
i=0

δi ≤ n0 − 1 (12b)

where the superscript i denotes the ith component or row.
The logical constraint (12a) can be converted to mixed-
integer linear inequalities using the standard “big-M” ap-
proach

Hi
0(x(N)−Gxr2)−Ki

0 ≤ M i
+(1− δi) (13a)

Hi
0(x(N)−Gxr2)−Ki

0 ≥ (M i
− − σ)δi + σ (13b)

where i = 1, . . . , n0, σ > 0 is a small number (e.g.: the
machine precision) and M−,M+ ∈ Rn0 are vectors of lower
and upper bounds obtained by solving the following linear
programs

M i
− = min»

x(0)
r1
r2

– [H0A
N 0 H0RG

]i [ x(0)
r1
r2

]
−Ki

0 (14a)

s.t.

H0 −H0Gx 0
0 Hy 0
0 0 Hy

[ x(0)
r1
r2

]
≤

 K0

Ky −∆Ky

Ky −∆Ky

(14b)

where RG , RN − Gx, RN ,
(∑N−1

i=0 AiB
)

, and vector
M+ is determined by changing min to max in (14). By
introducing an additional variable ε ≥ ‖r2 − r1‖∞, we
address problem (11) by solving the following MILP

∆r(N) = min
[ x′ r′1 r′2 δ′ ε ]

′
ε (15a)

s.t. ε ≥ ±(rj2 − r
j
1) , j = 1, . . . , ny (15b)

Hyr1 ≤ Ky −∆Ky (15c)
Hyr2 ≤ Ky −∆Ky (15d)
H0(x−Gxr1) ≤ K0 (15e)
Hi

0(ANx+RGr2)−Ki
0 ≤M i

+(1− δi) (15f)

−Hi
0(ANx+RGr2) +Ki

0 ≤ −(M i
− − σ)δi − σ

(15g)
no∑
i=0

δi ≤ no − 1 (15h)

δi = {0, 1}, i = 1, . . . , n0 (15i)

The quantity ∆r(N) in (15) is the smallest change of
reference vector (expressed in infinity norm) that can be
applied to the closed-loop system (3) such that, starting from
an invariant set Ω(rk), the state vector lands outside a new
invariant set Ω(rk+1) after N steps. Or, in other words, for
all reference changes ‖rk− rk−1‖∞ ≤ ∆r(N)−σ, ∀σ > 0,
the closed-loop system (3) is such that, starting from an
invariant set Ω(rk), the state vector always arrives into a new
invariant set Ω(rk+1) after N steps. Note that, because of the
constraint r1, r2 ∈ R, problem (15) may become infeasible
for large N , that is any feasible perturbation of the set-
point keeps the state within the invariant set Ω(r2) after N
steps. The following lemma shows a monotonicity property
of ∆r(N) with respect to N , for those values N ∈ N for
which ∆r(N) is defined.

Lemma 2: Let ∆r(N) be defined by the optimization
problem (15). Then for any N1, N2 ∈ N , N1 < N2, such
that ∆r(N1), ∆r(N2) are defined it holds that

∆r(N1) ≤ ∆r(N2) (16)
Proof: We first prove by contradiction that ∆r(N) ≤

∆r(N + 1), ∀N ∈ N such that ∆r(N + 1) is defined.
Assume that N ∈ N exists such that ∆r(N + 1) < ∆r(N).
This implies that there exists a state x and two references
r1, r2 ∈ R such that ∆r(N + 1) ≤ ‖r1 − r2‖∞ < ∆r(N),
x ∈ Ω(r1), AN+1x +

∑N
i=1A

iBr2 6∈ Ω(r2). Then, also
ANx +

∑N−1
i=1 AiBr2 6∈ Ω(r2), otherwise, by invariance of

Ω(r2), also AN+1x+
∑N
i=1A

iBr2 would belong to Ω(r2).
Hence, the optimality of ∆r(N) is violated, a contradiction.
The monotonicity condition (16) for generic N1, N2 easily
follows.

IV. HIERARCHICAL CONTROLLER

Assume that N has been fixed and that the upper control
layer commands set-points rk under the constraints

‖rk − rk−1‖∞ ≤ ∆r(N)− σ, ∀k = 0, 1, . . . (17a)
rk ∈ R, ∀k = −1, 0, 1, . . . (17b)

feeding the lower control layer as in (4).
Theorem 1: Let K be a lower-level feedback gain such

that Ā + B̄K is a strictly Schur matrix, and assume that
matrix E in (2) exists. Assume a vector r−1 ∈ R exists
such that the initial state x(0) ∈ Ω(r−1). Let the upper-
level controller change the set-points rk according to the
constraints (17), in which ∆r(N) is the solution of (15) and
σ > 0 is arbitrary small. Then the linear system (Ā, B̄, C̄, D̄)
satisfies the constraints y(t) ∈ Y for all t ≥ 0. If in addition
limt→∞ r(t) = r ∈ R then limt→∞ y(t) = r.

Proof: Because of (17), x(kN) ∈ Ω(rk), ∀k ≥ 0. By
Lemma 1, it follows that y(t) ∈ Y , ∀t = kN, . . . , k(N +
1) − 1, ∀k = 0, 1, . . ., that is y(t) ∈ Y , ∀t ≥ 0. To prove
convergence of y(t) to r when limt→∞ r(t) = r, similarly
to (8) define ∆x(t) = x(t)−Gxr and rewrite (3) as{

∆x(t+ 1) = A∆x(t) +B(r(t)− r)
e(t) = C∆x(t) +D(r(t)− r) (18)

As (18) is an asymptotically stable linear system it is
also input-to-state stable [13], and hence it immediately
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follows that limt→∞∆x(t) = 0, which in turn implies that
limt→∞ y(t)− r = 0.

Theorem 1 shows that any upper-level reference genera-
tion strategy satisfying constraints (17) guarantees the ful-
fillment of output constraints and asymptotic convergence to
constant set-points. The MILP (15) provides the supremum
∆r(N) of the reference variations ‖rk − rk−1‖∞ that the
higher-level controller can apply for a given ratio N =
TH/TL between sampling times. It is worth to investigate the
relation between ∆r(N) and N further. In fact, the design of
the higher control layer could be addressed from a different
point of view: given a desired ∆r, determine the minimum
N such that ∆r < ∆r(N). In practical applications N is
restricted to a range [Nmin, Nmax] of values: the upper layer
is executed at a slower pace than the lower layer (Nmin not
too small), but at the same time the upper layer should be
reactive enough to adjust set-points (Nmax not too large).
Hence, it is worth to solve the MILP (15) only within the
restricted range N ∈ [Nmin, Nmax] to characterize ∆r(N)
that, by Lemma 2, we know increases with N . In particular,
it is of interest the ratio R(N) = ∆r(N)

N which characterizes
the maximum speed of change of the reference signal. In fact,
the larger N the larger is the supremum of the variations
∆r that the supervisor can issue, but the less frequently
such variation happens, that is every NTL sampling times.
Another issue related to tuning of the upper control layer
is the choice ∆Ky: from one hand a larger ∆Ky tightens
the range of admissible references R, but on the other hand
it enlarges the size of the invariant set Ω(r), and therefore
augments the achievable ∆r(N). There is therefore a tradeoff
the designer must choose between constraints on reference
signals (R) and constraints on reference speed (R(N)).

Because of the need of enforcing constraints (17) in
the upper control layer, in the next section we propose a
model predictive control (MPC) design strategy for such a
layer, although any other constraint-handling strategy could
be employed, such as static optimization or a rule-based
selection.

V. MPC DESIGN OF UPPER CONTROL LAYER

We introduce an upper-layer MPC strategy, denoted as
HiMPC, for generating the reference signal r under con-
straints (17).

A. Prediction model

We consider an under-sampled and possibly reduced-order
model of the lower-level closed-loop model (3), evolving
with sampling time TH = NTL{

xHk+1 = AHx
H
k +BHrk

yk = CHx
H
k +DHrk

(19)

where yk = y(kN), xHk = Zx(kN), and Z is a matrix map-
ping the original state x(kN) into the new state xHk (in case
the order of the system is not reduced Z = I). Model (19)
can be easily obtained by resampling system (3) using
standard discretization methods. As a consequence, fast-
enough modal responses become negligible, which implies
that the HiMPC algorithm can exploit only an incomplete
information about the underlying closed-loop dynamics. This

0

1

Fig. 2. Mass-spring system considered in the simulation example

is a very convenient feature when HiMPC is applied to
supervise a decentralized control layer, where maintaining
a global detailed dynamical model of the entire lower-level
closed-loop process may be a hard task. In the extreme case
in which all dynamics are neglected, model (19) becomes
the following static model + one-step delay{

xHk+1 = rk
yk = xHk

(20)

where xHk = rk−1 ∈ Rny is a state buffering the reference
signal for one step TH . Model (19) is particularly appropriate
for large values of N . Note that in case model (20) is used,
no feedback from the states x of the process is required by
the upper control layer.

B. Cost function and constraints
The upper-layer MPC controller must embed con-

straints (17) on the generated references, to ensure stability
and constraint satisfaction. It may also embed additional con-
straints on the reference signals, such as mixed logical/linear
constraints (see e.g. [9]).

The MPC controller can optimize virtually any cost func-
tion of rk, ∆rk, and xHk , that may be dictated for instance
by economic objectives.

Note also that if Hy is block-diagonal (for example, Y is
a box), then R is also block diagonal, and if performance
objectives and possibly other additional constraints are also
block diagonal, so that HiMPC based on model (20) can be
implemented in a decentralized way.

Finally, note that when HiMPC is based on model (20),
a simple static optimization with respect to rk can be
setup, that possibly leads to a small-scale linear or quadratic
programming problem. In this case, multiparametric pro-
gramming algorithms can be exploited to convert HiMPC
into a piecewise affine control law [14].

VI. SIMULATION EXAMPLE

A. Problem description
We test the performance of the proposed HiMPC ap-

proach on the multi-mass-spring system depicted in Fig-
ure 2. Although the example is academic and relatively
low-dimensional, the concepts illustrated in the example are
immediately scalable to larger systems.

The process is composed by four masses moving verti-
cally, each one connected by a spring to a fixed ceiling, sub-
ject to damping due to viscous friction with the environment,
and connected to its neighbor mass by another spring. The
values of the parameters of the system are reported in Table
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I. An input force u [Nm] can be applied to each mass by the
lower-level controller. The output of the system is the vector
y collecting the vertical positions y1, . . . , y4 of the masses.

TABLE I
PLANT PARAMETERS

Physical characteristic symbol value
mass M 5 [kg]
viscous friction β 0.1 [kg/s]
vertical elastic coefficient Kv 1 [N/m]
lateral elastic coefficient Kl 0.1 [N/m]

The dynamics of the discrete-time model of the system ob-
tained by exact discretization with sampling time TL = .25 s
are described the following matrices

Ā =


1 0.25 0 0 0 0 0 0

−0.055 0.995 0.005 0 0 0 0 0
0 0 1 0.25 0 0 0 0

0.005 0 −0.06 0.995 0.005 0 0 0
0 0 0 0 1 0.25 0 0
0 0 0.005 0 −0.06 0.995 0.005 0
0 0 0 0 0 0 1 0.25
0 0 0 0 0.005 0 −0.055 0.995



B̄ =


0 0 0 0

0.05 0 0 0
0 0 0 0
0 0.05 0 0
0 0 0 0
0 0 0.05 0
0 0 0 0
0 0 0 0.05

 C̄ =
[

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

]
D̄ = 0

The lower level regulator was designed as a centralized
LQR with unit weights on all inputs and outputs, modified
by zeroing all extra block-diagonal terms to obtain the
decentralized linear gain

K =
[
−0.3102−2.1343 0 0 0 0 0 0

0 0 −0.2842−2.0997 0 0 0 0
0 0 0 0 −0.2842−2.0997 0 0
0 0 0 0 0 0 −0.3102−2.

]
.

It is immediate to verify that the closed-loop matrix Ā+B̄K
is strictly Schur and that matrix E in (2) is well posed.
The HiMPC controller is designed to enforce the output
constraint y(t) ∈ Y , where Y = {y ∈ R4 : −0.3 ≤ yi ≤
1, y2 ≤ y1 + 0.3, i = 1, . . . , 4}, or Hy =

[
I
−I

−1 1 0 0

]′
,

Ky = [ 1 1 1 1 0.3 0.3 0.3 0.3 0.3 ]′, corresponding to constrain-
ing mass positions between −0.3 and 1 m, and by preventing
mass #1 to go below mass #2 by more than 0.3 m.

HiMPC adopts a linear MPC formulation based on
model (19) or, in alternative, model (20), using the linear
MPC setup of the Hybrid Toolbox [15]. The prediction
horizon is 2, the control horizon 1, unit weights are used
on reference increments and on mass position errors, i.e., on
the deviations of yk from a user-defined reference position
signal p(t). The constraints on control signals rk ∈ R and
on their increments |rik − rik−1| ≤ ∆r(N)− σ, i = 1, 2, 3, 4
are enforced (σ=machine precision). The quantity

∆Ky = ∆0 [ 1 1 1 1 1 1 1 1 0.4 ]′

is chosen to restrict the tracking error, where ∆0 is a scaling
factor. The relation between N , ∆0, and ∆r is reported in
Table II. A “*” in the table denotes that (11) has no solution,
which means that constraints on ∆r become redundant with
respect to the condition r ∈ R. The scaling factor ∆0 = 0.3
will be used in the following simulations, as it provides a
good compromise between the size of the invariant sets Ω(r)
and the size of the admissible reference set R = {r ∈ R4 :
0 ≤ ri ≤ 0.7, i = 0, . . . , 4}.

TABLE II
∆r FOR DIFFERENT VALUES OF N AND SCALINGS FACTORS ∆0

N �∆0 0.1 0.3 0.4 0.55
21 0.04 0 0 0.20
42 0.41 0.07 0 *
44 0.41 0.22 0.14 *
46 0.44 0.38 0.50 *
48 0.46 0.66 * *
49 0.48 0.70 * *
54 1.00 * * *

40 42 44 46 48 50
0

0.175

0.35

0.525

0.7

 r

N
40 42 44 46 48 50

0

0.015

0.03

 r 
/N

Fig. 3. ∆r(N) and R =
∆r(N)

N
, obtained by solving (15) for ∆0 = 0.3

To give an example of the complexity of the MILP
optimization problem (15), this is solved in 141.2 s for
N = 49 and ∆0 = 0.3 on an iMac Intel Core 2 Duo
2.8GHz running Matlab R2009b under Windows XP. The
MPT Toolbox [16] was used for invariant set computations,
YALMIP [17] and Cplex 9.0 [18] to formulate and solve,
respectively, the MILP (15). Figure 3 shows the resulting
∆r(N) and the ratio R(N) = ∆r(N)/N as a function of
N , on the left and on the right axis respectively. The function
depicted with a continuous line in Figure 3 is nondecreasing,
in accordance with Lemma 2. Moreover Figure 3 shows the
maximum reference rate that can be generated by the upper
layer of the proposed hierarchical control scheme, which in
this particular case is also increasing with N . By inspecting
Figure 3, a good value of N is 49, where both R(N) and
∆r(N) are maximized. The resulting reference variations are
∆r(N) = 0.7.

B. Simulation results
Denote by HiMPC49 the upper-layer MPC controller run-

ning every TH = 49 · TL seconds, based on prediction
model (19), obtained by resampling (3) with sampling time
TH . Denote by HiMPC49

DC the alternative controller based on
model (20). To demonstrate the effectiveness of the proposed
hierarchical approach, we compare it to other two controllers:
“HiNone”, where the upper layer is simply bypassed and
constraints are ignored by feeding p(t) to the lower level, and
“HiQP” that selects rk according to the following quadratic
program (QP)

min
rk

‖rk − rk−1‖22 + ‖rk − p(t)‖22 (21a)

s.t. r2 − r1 ≤ 0.3 (21b)
−0.3 ≤ rik ≤ 1, i = 1, 2, 3, 4 (21c)

which completely ignores the underlying closed-loop dy-
namics, and therefore gives no guarantee that constraints on
y(t) are enforced. We assume that the user-defined reference
signal p(t) only varies at common multiples of the sampling
times, p(t) = pk, ∀t ∈ [kN, . . . , (k+ 1)N − 1], k = 0, 1 . . ..
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Fig. 4. Closed-loop trajectories showing the position of mass #1
(continuous line) and #2 (dashed line): HiMPC (blue), HiNone (black),
HiQP (purple). User defined reference p(t) (dash dotted red) and reference
constraints (dotted green) are also shown. On the right zoom of the
trajectories showing the violation of the constraint y2 − y1 ≤ 0.3

Fig. 5. References generated by HiMPC (blue), HiNone (black), HiQP
(purple) for mass #1 (continuous) and mass #2 (dashed)

Figures 4 and 5 show the closed-loop trajectories of the
positions of masses #1 and #2 and of the commanded
references, respectively, from zero initial condition x(0). The
trajectories obtained by using HiMPC49 and the trajectories
of masses #3 and #4 are not reported in the figures.
The reasons are that the HiMPC controller based on the
resampled model (19) behaves very similarly to the one
based on the static+delay model (20), due to the fact that
the sampling time TH = NTl = 12.25 s is long enough
to neglect the closed-loop dynamics; moreover, despite the
coupling due to springs, masses #3 and #4 track a constant
reference very tightly, even during setpoint variations on the
other masses #1, #2.

The unfiltered reference p1 = 0.7 applied by HiNone
during the first sample instant [0, TH ] makes mass #1 violate
the upper limit y1 ≤ 1 between time t ≈ 3 s to t ≈ 6
s. At time t = 49 s a transition from p1 = 0.7 to p1 =
0.1 is requested, while p2 is decreased to 0.6. The user
is demanding a steady-state infeasible configuration of the
masses, since p2 − p1 ≥ 0.3. Note the detail evidenced
in Figure 4 that HiNone tracks the references violating
the constraint. Since HiQP does not tighten enough the
constraints by ∆Ky , at time t ≈ 50 s a violation occurs
of the constraint y2−y1 ≤ 0.3 by 0.03. At time t = 98 s the
setpoints are set again to a feasible configuration p1 = 0.4
and p2 = 0.7.

Comparing HiNone, HiQP, HiMPC, it is apparent that
HiMPC is the most cautious, as evidenced by the commanded
reference signals depicted in Figure 5, but it is also the only
one that is able to enforce all constraints correctly.

VII. CONCLUSIONS

This paper has proposed an approach to hierarchical
multi-rate control design that enforces constraints on the
variables of the process and guarantees closed-loop stability.
By constraining both the magnitude and the variation of
the reference signals applied to the lower control layer, we
have provided quantitative guidelines for selecting the ratio
between the sampling rates of the upper and lower layers,
driven by the idea that the state of the process must always
lie in an invariant set at the sampling instants of the higher-
level controller. We believe that the approach provides good
insight in the design of hierarchical schemes for decentral-
ized control systems. Future research issues that are worth to
address include the extension of the proposed idea to handle
mixed logical/linear constraints on the underlying closed-
loop system.
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