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Abstract— In this paper we propose a stochastic model
predictive control (MPC) formulation based on scenario ge-
neration for linear systems affected by discrete multiplicative
disturbances. By separating the problems of (1) stochastic per-
formance, and (2) stochastic stabilization and robust constraints
fulfillment of the closed-loop system, we aim at obtaining a less
conservative control action with respect to classical robust MPC
schemes, still enforcing convergence and feasibility properties
for the controlled system. Stochastic performance is addressed
for very general classes of stochastic disturbance processes,
although discretized in the probability space, by adopting ideas
from multi-stage stochastic optimization. Stochastic stability
and recursive feasibility are enforced through linear matrix
inequality (LMI) problems, which are solved off-line; stochastic
performance is optimized by an on-line MPC problem which
is formulated as a convex quadratically constrained quadratic
program (QCQP) and solved in a receding horizon fashion.
The performance achieved by the proposed approach is shown
in simulation and compared to the one obtained by standard
robust and deterministic MPC schemes.

I. INTRODUCTION

Model predictive control (MPC) is a popular strategy
which has been widely adopted in industry as an effective
means of dealing with multivariable constrained control
problems [1], [2]. The idea behind MPC is to obtain the
control signal by solving at each sampling time an open-
loop finite-horizon optimal control problem based on a given
prediction model of the process, by taking the current state
of the process as the initial state. The control inputs are
implemented in accordance with a receding horizon scheme.

However, classical MPC formulations do not provide a
systematic way to deal with model uncertainties and distur-
bances. Many MPC control schemes have been proposed to
guarantee stability and constraint fulfillment in the presence
of disturbances. Most works are based on the min-max
approach, where the performance index to be minimized is
computed over the worst possible disturbance realization [3]–
[8]. However, min-max policies are often computationally
demanding, and the resulting control law is often too con-
servative, as no statistical properties about the disturbance
are taken into account.

A different approach is addressed by stochastic MPC,
where expected values of constraints/performance indices
and convergence in probability are considered, by exploiting
the available statistical information on the disturbance (see
e.g. [9]–[13]). A common assumption when facing uncer-
tainty with values on a continuous domain is to model the
disturbance signal as a Gaussian noise, with given mean
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and covariance matrix [14]–[17]. This allows one to state
theoretical results based on the analytical computation of
the statistical properties of the controlled process. On the
other hand, it can be a restrictive statistical assumption, as
often in real processes uncertainty has general, time-varying
characteristics which are not satisfactorily modeled by a
standard normal distribution.

When dealing with optimization problems in the presence
of stochastic data, the approximation of continuous uncer-
tainty to a discrete domain is often used, and constructed
in a way to preserve the main statistical properties of the
underlying continuous process [18]–[20]. In this framework,
the control problem formulation involves the setup of a
scenario-based optimization tree, where only the most re-
levant disturbance patterns are modeled.

In this paper, we propose a stochastic MPC formulation
based on scenario generation for linear systems with discrete
multiplicative disturbances. Our main goal is to obtain a less
conservative control action with respect to standard robust
MPC [3], [4] by restricting ourselves to consider stochastic
stability of the closed-loop system, and a stochastic per-
formance index. We provide a control scheme for a very
general class of discrete disturbances. Finally, with respect
to [11] we provide a more flexible optimization tree design
by following a maximum likelihood approach in the scenario
generation, still enforcing robust constraint fulfillment and
recursive feasibility.

The paper is organized as follows. The class of stochastic
dynamical models dealt with in the paper is described in
Section II. In Section III, two control schemes based on
stochastic MPC are proposed, for both the unconstrained and
the constrained case. Results of simulation tests are reported
in Section IV, and conclusions are drawn in Section V.

II. MODEL DESCRIPTION

Consider the discrete-time linear system

x(k + 1) = A(w(k))x(k) +B(w(k))u(k) , (1)

where x(k) ∈ Rnx is the state, u(k) ∈ Rnu is the
input, w(k) ∈ W is a random disturbance, and W =
{w1, w2, . . . , ws} ⊂ R is a known discrete set of reals. By
enumerating all the s possible realizations of w(k), (1) can
be rewritten as

x(k + 1) =


A1x(k) +B1(k)u(k) if w(k) = w1 ,
A2x(k) +B2(k)u(k) if w(k) = w2 ,

...
...

Asx(k) +Bs(k)u(k) if w(k) = ws ,
(2)
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where (Ai, Bi), i = 1, 2, . . . , s are given matrices of appro-
priate dimensions. To model the evolution of the disturbance
w, we introduce the time-varying probability vector p(k) =
[p1(k), p2(k), . . . , ps(k)]′, which defines the probability of
every disturbance realization at time k, as

pj(k) = Pr[w(k) = wj ], j = 1, 2, . . . , s, (3)

with
s∑
j=1

pj(k) = 1, ∀k . (4)

In order to characterize the available information on p we
assume the following holds.

Assumption 1: At time k, the current value of the proba-
bility vector p(k) is known. Moreover p(k) ∈ P , ∀k ≥ 0,
where P is a convex set, P ⊆ D, and

D .=

{
p : 0 ≤ pi ≤ 1, i = 1, 2, . . . , s,

s∑
i=1

pi(k) = 1

}
.

(5)
We denote with v1, v2, . . . , vm the m vertices of P , with
vj = [vj1, v

j
2, . . . , v

j
s], j = 1, 2, . . . ,m.

Note that, in the absence of a priori information on the
bounds on p(k), it is always possible to set P = D. As shown
in Section III, the size of P will affect the conservativeness
of the control action from a performance point of view.

In addition to the bounds on p expressed by P , a (time
varying) model of the time evolution of p(k) may be avail-
able. This model can have any general form, and can be
deterministic or subject to unmeasured noise. However, the
possible presence of noise in the model of p only influences
the optimality of the control action (or, in other words,
the closed-loop performance of the controlled process), but
it does not affect the stability and feasibility properties
that will be given later in the paper. In this sense we
claim that stability issues are decoupled from performance
optimization. A further discussion on this topic is given in
Section III.

Many stochastic dynamic models can be considered to
describe the evolution of p(k). A meaningful example is
given by Markov chain models, which are used in a wide
area of applications, such as physics, statistics, biology and
economics (e.g. in dynamic macroeconomics [21]). A dis-
tinctive characteristic of Markov chains is that the next state
depends only on the current state, and not on the history of
transitions that lead to the current state. They are defined by a
discrete set of nM states values {z1, z2, . . . , znM

}, a discrete
set of mM output or emissions values {y1, y2, . . . , ymM

}, a
transition probability matrix T ∈ RnM×nM , and an emission
matrix E ∈ RnM×mM , such that

tij = Pr[Zk+1 = zj |Zk = zi] , (6a)
eij = Pr[Yk = yj |Zk = zi] , (6b)

where Zk and Yk are the state and the output of the Markov
chain at time k, and tij and eij are the elements of T and E,
respectively. If p(k) is modeled by a Markov chain, we can
compute P = hull(E1, E2, . . . , Es), where Ei is the i-th
row of E, and hull(·) denotes the convex hull operator.

III. STOCHASTIC MPC DESIGN

Consider the regulation problem of driving the state x to
the origin. Our goal is to design a stochastic control scheme
for system (1) which solves this problem by exploiting the
available information on the disturbance. Stochastic control
is intended here with respect to both the performance index to
be minimized, and the kind of stability which is guaranteed.
In particular, we aim to enforce exponential stability in mean
square:

lim
k→∞

E[x(k)′x(k)] = 0 . (7)

The presence or the absence of state and/or input hard
constraints poses different issues. These two cases, which are
treated separately in the rest of this section, share the same
methodological approach: Off-line, a common stochastic
Lyapunov function is obtained to ensure stochastic conver-
gence and recursive feasibility of the controller. On-line,
the available information on the state and the disturbance
is exploited to build a time-varying optimization tree via
(partial) scenario enumeration, and an opportunely tuned
control problem is solved in a receding horizon fashion.

A. The unconstrained case

In order to prove stochastic convergence, consider the
stochastic contractivity constraint

E[Vx(k + 1|k)]− Vx(k|k) ≤ −x(k|k)′Lx(k|k) , (8)

where Vx : Rnx → R is a Lyapunov function, and L �
0. We restrict ourselves to the case of quadratic Lyapunov
functions, and define Vx = x′Px, P � 0. As shown in [22],
satisfaction of (8) for all time steps k implies condition (7).
Given p(k) ∈ P , we have

E[Vx(k+1|k)] =
s∑
j=1

pj(k)x(k+1|k, j)′Px(k+1|k, j) , (9)

where

x(k+1|k, j) = Ajx(k|k)+Bju(k|k), j = 1, 2, . . . , s. (10)

Then, by substituting u(k|k) = Kx(k|k), P = Q−1, L =
W−1, K = Y Q−1, with Q = Q′ � 0, W = W ′ � 0, and
by using Schur’s complements, a sufficient condition for the
satisfaction of (8) is given by the satisfaction of the following
LMI in the variables Q, W , Y

Q Q
√
p1(A1Q+B1Y )′ ··· √ps(AsQ+BsY )′

Q W 0 ··· 0√
p1(A1Q+B1Y ) 0 Q

...
...

. . .√
ps(AsQ+BsY ) 0 Q

�0

(11)
where the dependence on the time index k of p has been
omitted for brevity. For ease of notation, we refer to the
matrix in (11) as L(p(k)), stressing the dependance of the
LMI solution on the value of p(k). If L(p(k)) � 0 admits
a solution for all p(k), then the resulting constant feedback
control law u(k) = Kx(k), ∀k ≥ 0, guarantees asymptotical
mean-square convergence of the closed-loop state x.
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Lemma 1: Let v1, v2, . . . , vm be the m vertices of P .
Define

L(P) .= diag{L(v1), L(v2), . . . , L(vm)} (12)

and let (Q∗,W ∗, Y ∗) be a feasible solution of L(P) � 0.
Then, for any p(k) ∈ P , k ≥ 0, (Q∗,W ∗, Y ∗) is also a
solution of L(p(k)).

Proof: Easily follows by convexity arguments, noting
that ∀p ∈ P there exist αi ≥ 0 such that p =

∑m
i=1 αiv

i and∑m
i=1 αi = 1. Since (Q∗,W ∗, Y ∗) is a solution of L(P) �

0, we have
s∑
j=1

vij(Aj +BjK
∗)′P ∗(Aj +BjK

∗) � P ∗ − L∗ , (13)

i = 1, 2, . . . ,m, where P ∗ = (Q∗)−1, L∗ = (W ∗)−1, K∗ =
Y ∗(Q∗)−1. For (Q∗,W ∗, Y ∗) to be a solution of L(p) � 0,
it must satisfy

s∑
j=1

pij(Aj +BjK
∗)′P ∗(Aj +BjK

∗) � P ∗ − L∗ , (14)

or, equivalently,

m∑
i=1

αi

s∑
j=1

vij(Aj +BjK
∗)′P ∗(Aj +BjK

∗) � P ∗ − L∗ ,

(15)
which is satisfied as

∑m
i=1 αi = 1 and because of (13).

1) Off-line Lyapunov function computation: We can for-
mulate the problem of finding a common stochastic Lya-
punov function x′P ∗x and a constant feedback control law
u = K∗x to enforce (8) as the LMI problem

(Q∗,W ∗, Y ∗) = arg min
Q,W,Y

− log det(W ) (16a)

s.t. W � εInx
(16b)

L(P) � 0 , (16c)

where ε > 0 is a given parameter which specifies the mini-
mum decrease rate in expected value of Vx, i.e., L∗ � 1

εInx

in (8), with P ∗ = (Q∗)−1, L∗ = (W ∗)−1, K∗ = Y ∗(Q∗)−1.
Remark 1: If P = D, problem (16) is a robust control

problem (e.g., it is analogous to what proposed in [3]), and
its solution enforces robust convergence to the origin for all
the possible sequences of [A(w(k)) B(w(k))] ∈ Ω, where
Ω = hull([A1 B1], [A2 B2], . . . , [As Bs]). In other words,
in this context robust stability can be seen a special case
of stochastic stability, where no a priori information on
probability bounds is available. On the other hand, when
p(k) = p̄ is constant over time, we have P = {p̄} and
L(P) = L(p̄), i.e., constraint (16c) is imposed over a single
value of the probability vector p, thus providing a non-
conservative solution which enforces stochastic convergence
only for the particular p̄ considered. Hence, we see that the
size of P affects the conservativeness of the resulting control
law, which ranges from purely stochastic to totally robust,
depending on the size of P .

2) Design of optimization tree: We assume here that
an exact model of the time evolution of the probability
vector p(k) is available. The convergence properties granted
by solving problem (16) do not involve any model of the
evolution of p(k) (only the bounds described by P). On the
other hand, such a model can be exploited to improve the
closed-loop performance properties of the controlled system.

We propose a tree design scheme based on a maximum
likelihood approach, where at every time step the optimiza-
tion tree is re-build using the updated information on the
state and the disturbance. Each node of the tree represents
a predicted state which will be taken into account in the
optimization problem. Starting from the root node, a list of
possible candidates is evaluated, and the node with largest
realization probability is added to the tree. This algorithm is
repeated until a desired number of nodes nmax is reached.
Let us introduce the following quantities to formally define
the proposed design scheme:
• T = {T1, T2, . . . , Tn}: the set of the tree nodes. Nodes

are indexed progressively as they are added to the tree
(i.e., T1 is the root node and Tn is the last node added).

• xN : the state associated with node N .
• uN : the input associated with node N .
• πN : the probability of reaching node N from T1.
• m(N ) ∈ {1, 2, . . . , s}: the mode leading to node N .
• pre(N ): the predecessor of node N .
• succ(N , j): the successor of node N with mode j.
• C = {C1, C2, . . . , Cc}: the set of candidate nodes,

defined as C .= {succ(Ti, j) : succ(Ti, j) 6∈ T , i =
1, 2, . . . , n, j = 1, 2, . . . , s}.

• S ⊂ T : the set of the leaf nodes, defined as S .= {Ti :
succ(Ti, j) 6∈ T , i = 1, 2, . . . , n, j = 1, 2, . . . , s}.

The tree design procedure is listed in Algorithm 1.

Algorithm 1 Design of Optimization Tree
set πT1 = 1, n = 1, C = {succ(T1, j), j = 1, . . . , s};
while n < nmax,

for all Ci ∈ C,
compute πCi according to the dynamic model of p(k);

end
set i∗ = arg max(i:Ci∈C) πCi ;
set Tn+1 = Ci∗ ;
set T = T ∪ {Tn+1};
set πTn+1 = πCi∗ ;
set C = C\Tn+1 ∪ {succ(Tn+1, j), j = 1, 2, . . . , s};
set n = n+ 1;

end

3) Control problem formulation: We propose a formula-
tion where the objective function to be minimized relies on
an averaged value of the closed-loop performance, evaluated
as a quadratic function of state and input. This is an arbitrary
choice, however, and other types of objective functions
could also be considered, e.g., by optimizing over higher
order moments. For ease of notation, in the following the
abbreviate forms xi, ui, πi, m(i), pre(i), will be used
to denote xTi

, uTi
, πTi

, m(Ti), pre(Ti), respectively. Let
x(k|k) be the measured state and p(k) the known probability
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vector at time k. Then, the unconstrained stochastic MPC
problem can be formulated as

min
u

∑
i∈T \{T1}

πix
′
iQxxi +

∑
j∈T \S

πju
′
jQuuj (17a)

s.t. x1 = x(k|k) (17b)
xi = Am(i)xpre(i) +Bm(i)upre(i),∀i ∈ T \{T1}(17c)
s∑
j=1

pj(k)(Ajx1 +Bju1)′P ∗(Ajx1 +Bju1)

≤ x′1(P ∗ − L∗)x1 . (17d)

Problem (17) is a quadratically constrained quadratic prob-
lem (QCQP).

Theorem 1: Let Assumption 1 be satisfied and prob-
lem (16) admit a feasible solution (Q∗,W ∗, Y ∗). Then, the
state x of (1), controlled by the optimal input u∗ given by the
receding horizon solution of problem (17), is exponentially
stable in mean square.

Proof: Recursive feasibility of the receding horizon
control scheme is given by Lemma 1. In particular, it is
always possible to fulfill (17d) by imposing u1 = K∗x1,
where K∗ = Y ∗(Q∗)−1. Constraint (17d) enforces (8) for
all time steps, hence (7) is guaranteed.

Remark 2: In the borderline case where T is a complete
tree, i.e., a s-ary tree in which all the leaf nodes are at a
some depth N and all nodes but the leaf nodes have exactly s
successors, we have that the performance index (17a) is equi-
valent to E

[∑N−1
j=0

(
x′k+j|kQxxk+j|k + u′k+j|kQuuk+j|k

)]
,

where xk+j|k and uk+j|k are the predicted values of the state
and input at time k+j, respectively, given the measurements
available at time k.

B. The constrained case

Let us take into account hard constraints on both state and
input vectors1. We consider component-wise bounds on state
and input

x ∈ X .= {x : |xi| ≤ x+
i , i = 1, 2, . . . , nx} , (18a)

u ∈ U .= {u : |ui| ≤ u+
i , i = 1, 2, . . . , nu} . (18b)

While the optimization tree design previously described
is not affected by the presence of constraints (18), the off-
line Lyapunov function computation and the on-line control
problem formulation of Section III-A must be modified.

We propose a solution derived from [3]. Our goal here
is not to enlarge the feasibility solution set with respect
to the robust controller presented in [3], but to exploit the
available information on the disturbance in order to provide
a less conservative control action. Hence, the main idea is to
obtain off-line a common Lyapunov function and a constant
feedback control law such that robust convergence to the
origin is guaranteed, i.e.,

Vx(k + 1|k)− Vx(k|k) ≤ −x(k|k)′Lx(k|k) , (19)

1The approach of this paper can be extended to other kind of constraints,
such as soft or chance constraints. This will be addressed in a future work.

∀k, and to relax (19) to (8) in the on-line control scheme,
using the available information on p(k). By using Schur’s
complements, robust stability condition (19) can be ex-
pressed as the LMI

[
Q

(
L

1
2Q
)′

(AjQ+BjY )′

L
1
2Q γInx 0

AjQ+BjY 0 Q

]
� 0, j = 1, . . . , s, (20)

in the variables Q, Y , γ, where P = γQ−1, K = Y Q−1,
and L = L′ � 0. In order to take into account constraints,
we define the ellipsoid

E = {x : x′Q−1x ≤ 1} = {x : x′Px ≤ γ} , (21)

where Q, P , and γ are a solution of (20). Given a state x0,
we can express the condition x0 ∈ E as

[
1 x′0
x0 Q

]
� 0 . (22)

Note that E is an invariant ellipsoid for the closed-loop
trajectories of system (1) controlled by u = Kx, i.e.,
x(k) ∈ E ⇒ x(k + t) ∈ E , ∀t ≥ 0 (see [3]). A sufficient
condition for the satisfaction of (18) is given by the LMIs

[
Q

(
Ii

nx
(AjQ+BjY )

)′
Ii

nx
(AjQ+BjY ) (x+

i )2

]
� 0 , (23)

i = 1, . . . , nx, j = 1, . . . , s, and

[
X Y
Y ′ Q

]
� 0, Xll ≤ (u+

l )
2
, l = 1, . . . , nu, (24)

respectively, where Iinx
is the i-th row of the nx×nx identity

matrix, and Xll are the diagonal elements of the symmetric
matrix X , as shown in [3].

1) Off-line Lyapunov function computation: We can now
formulate the problem of computing a common Lyapunov
function and a constant feedback control law to enforce (19)
and (18) as the LMI

(Q̃, X̃, Ỹ , γ̃) = arg min
Q,X,Y,γ

− log det(Q) (25a)

s.t. (20), (22), (23), (24), (25b)

where x0 = x(0) is the initial state, and P̃ = γ̃(Q̃)
−1

, K̃ =
Ỹ (Q̃)

−1
. The cost function (25a) is intended to maximize

the volume of the ellipsoid E , to enlarge the feasibility set
of the on-line control problem.

2) Control problem formulation: With the same notation
of Section III-A.3, the constrained stochastic MPC problem
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at time k can be formulated as

min
u

∑
i∈T \{T1}

πix
′
iQxxi +

∑
j∈T \S

πju
′
jQuuj (26a)

s.t. x1 = x(k|k) (26b)
xi = Am(i)xpre(i) +Bm(i)upre(i) (26c)
xi ∈ X, ∀i ∈ T \{T1} (26d)
uj ∈ U, ∀j ∈ T \S (26e)
s∑
j=1

pj(k)(Ajx1 +Bju1)′P̃ (Ajx1 +Bju1)

≤ x′1(P̃ − L̃)x1 (26f)
(Alx1 +Blu1) ∈ X, ∀l : succ(T1, l) 6∈ T (26g)
(Ahx1 +Bhu1)′Q̃−1(Ahx1 +Bhu1) ≤ 1,
∀h : ph(k) > 0 . (26h)

In problem (26), constraint (26f) enforces the stochastic
stability condition (8). Moreover, (26g) makes sure that the
next state x(k + 1) satisfies (18a), even if the disturbance
realization w(k) at time k is not modeled in the current tree
T . Constraint (26h) recursively enforces the state x to lie in
E , i.e., x(k|k) ∈ E ⇒ x(k + 1|k) ∈ E . Constraint (26g) is
necessary as, in general, E 6⊂ X. Problem (26) is a QCQP.

Theorem 2: Let (Q̃, X̃, Ỹ , γ̃) be the optimal solution of
problem (25), and let P̃ = γ̃(Q̃)

−1
, K̃ = Ỹ (Q̃)

−1
. Then,

the state x(k) of (1), with initial condition x(0) = x0 and
controlled by the optimal input u(k) = u∗ given by the
receding horizon solution of problem (26), is exponentially
stable in mean square and satisfies constraints (18), ∀k ≥ 0.

Proof: By construction, P̃ satisfies (19), hence it
satisfies also its relaxation (8), equivalent to (26f). The
control law u(k) = K̃x(k) guarantees that constraints (18)
are fulfilled, i.e., it satisfies (26d), (26e) and (26g). Recursive
feasibility is provided by (26g) and (26h), which enforce the
closed-loop state trajectory to lie in E∩X. Hence, uj = K̃xj ,
∀j ∈ T \S, is a feasible solution of problem (26) at every
time step k. Stochastic convergence is provided by (26f).

IV. ILLUSTRATIVE EXAMPLE

In this section we test the performance of the proposed
stochastic MPC approach on a simple low-dimensional sys-
tem. Consider the second-order discrete-time uncertain linear
system Σ of the form (1), with Ai =

[
0.8 1
0 wi

]
, B = [ 0

1 ],
i = 1, 2, 3, where w ∈ {0.9, 1.2, 2.2}. System Σ has one
stable mode and two unstable modes. We assume that p(k)
is modeled by a time-homogeneous Markov chain with three
states, defined by the transition probability matrix T =[

0.7 0.2 0.1
0.3 0.4 0.3
0.5 0.3 0.2

]
and the emission matrix E =

[
0.6 0.3 0.1
0.2 0.6 0.2
0.1 0.3 0.6

]
, and

that the state Zk of the Markov chain at time k is known,
so that the value of p(k) can be derived (and Assumption 1
is satisfied).

The purpose of the control action is to steer the state
x of Σ to the origin, while satisfying hard state and input
constraints2 (18), defined by x+ = [5 1]′ and u+ = 1.5.

2For space reasons, an example of the unconstrained case addressed in
Section III-A is not presented here.

TABLE I
SIMULATION RESULTS

Controller µ(c) Constr. violation CPU time
RMPC 1.17 0% 342 ms
DMPC 1.05 38% 74 ms
SMPC 1 0% 371 ms

The proposed stochastic MPC (SMPC) control scheme has
been tested in comparison with the following two controllers:

- The LMI-based robust MPC (RMPC) proposed in [3],
which provides robust convergence and hard constraint
fulfillment, but does not exploit the available statistical
information on the disturbance w.

- A frozen-time deterministic MPC (DMPC) formulation
with time-varying system model, where at every step k
a nominal MPC control problem is solved based on the
dynamics mode i ∈ {1, 2, . . . , s} which is currently
the most probable, i.e., such that pi(k) ≥ pj(k),
∀j. As no a-priori guarantees on recursive constraint
satisfaction are imposed, bounds on states and inputs
are imposed as soft constraints. This control algorithm
does not grant any convergence or hard constraint
fulfillment properties, but partially takes into account
the knowledge of p(k) to obtain a less conservative
control action.

The weight matrices used in simulations are Qx = [ 1 0
0 0.1 ],

Qu = 0.1, and L = [ 0.1 0
0 0.1 ]. A maximum number of nodes

nmax = 10 has been used to design the optimization tree.
Ns = 50 simulations have been run of Ts = 10 time

steps each. At every iteration, the initial state x(0) is chosen
randomly in the region of the state set where problem (25) is
feasible, i.e., the ellipsoid E defined in (21) with Q = Q̃ =[

41.08 −1.61
−1.61 1.29

]
.

To evaluate the performance achieved by the considered
control schemes, we define the experimental cost function

J(i, c) =
Ts∑
k=1

(
xi,c(k)′Qxxi,c(k)+ui,c(k)′Quui,c(k)

)
(27)

where i = 1, . . . , Ns indexes the values related to the i-th
simulation, and c ∈ {RMPC, DMPC, SMPC} refers to the
controller used. Table I shows the simulation results in terms
of the mean µ(c) over all the simulations of the experimental
cost function (27) for every controller c, normalized with
respect to the related value obtained with the stochastic MPC
scheme, i.e.,

µ(c) =
1
Ns

Ns∑
i=1

J(i, c)
J(i, SMPC)

. (28)

The table also reports the frequency of simulations where at
least one constraint violation occurred, and the average CPU
time needed to solve an iteration of each control problem,
obtained on a Macbook 2.4GHz running Matlab 7.6, and
CVX [23]. As we can see from the results, the proposed
stochastic MPC policy achieves an average improvement in
the closed-loop performance of 17% with respect to robust
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MPC, and of 5% with respect to deterministic MPC. Both
SMPC and RMPC provide hard constraints fulfillment, as
expected, while in DMPC more that one third of the simula-
tions showed one or more constraint violations. Finally, for
this simple case study, the computation times for SMPC and
RMPC are similar, while DMPC provides a smaller CPU
burst due to its simpler structure. A comparison between the
different closed-loop trajectories is shown in Figure 1.

Fig. 1. Example of closed-loop trajectories with stochastic control (red
line), deterministic control (pink dashed line), and robust control (blue dot-
dashed line) for state components x1, x2. The black dotted line denotes the
imposed constraint on x2.

V. CONCLUSIONS

In this paper we have presented a stochastic model predic-
tive control formulation based on scenario generation for li-
near systems affected by discrete multiplicative disturbances.
By separating the problems of stochastic performance op-
timization on one hand, and stochastic convergence to the
origin and robust constraint fulfillment on the other, we set
up a control scheme which requires the off-line solution of an
LMI problem, and the receding horizon implementation of
a QCQP problem to obtain the control action. The proposed
control algorithm is suitable for application to a wide class
of discrete disturbance processes. Simulations on a low
dimension system have been run to show the performance
of our approach, in comparison with classic robust and
deterministic MPC formulations. Extensions to the case of
probabilistic constraints on the state will be addressed in
future work.
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