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Abstract— Electronic Stability Control (ESC) and Active
Front Steering (AFS) have been introduced in production ve-
hicles in recent years, due to improved vehicle maneuverability
and the effects in reducing single vehicle accident. We propose a
hybrid Model Predictive Control (MPC) design for coordinated
control of AFS and ESC. By formulating the vehicle dynamics
with respect to the front and rear tire slip angles and by
approximating the tire-force characteristics by piecewise affine
functions, the vehicle dynamics are formulated as a linear
hybrid dynamical system. This model is used to design a hybrid
model predictive controller. The proposed model formulation
allows one to visually analyze the stability region of the closed-
loop system and to assess the stabilizing capability of the hybrid
MPC controller. Simulations of the controller in closed-loop
with an accurate nonlinear model are presented.

I. INTRODUCTION

Electronic Stability Control (ESC) [1] and Active Front
Steering (AFS) [2] have been introduced to many production
vehicles in recent years, due to their capability of reducing
single vehicle accidents. Both have drawn a lot of attentions
in research literature [1]–[4].

Since both AFS and ESC are driver-assist systems that
improve vehicle yaw and lateral stability, it is innate for
one to ask how the two can be best combined together in
system design, or how the actuations of the two systems, if
individually designed, would be best arbitrated. One concept
that has been demonstrated with some successful results in
double lane change maneuvers [5] is to decouple the two
systems. A different approach is to utilize linear MIMO
control synthesis by applying µ-synthesis to a transformed
model of the vehicle, and by optimizing the control objective
under structured model uncertainties [3].

In this paper, we propose a hybrid Model Predictive
Control (MPC) design for the coordinated control of the two
actuators. The major advantage of MPC is the capability of
handling in a single framework multiple inputs and outputs,
constraints on inputs, states, and outputs, and optimization
with respect to a predefined performance criterion [6].

In recent years, MPC has been successfully applied to
problems related to vehicle dynamics and handling [7], [8].
Recently, in [8] a nonlinear MPC approach was proposed for
coordination of active steering and braking in an autonomous
vehicle navigating along a known trajectory. Due to the
computational burden of nonlinear MPC, the same authors
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have proposed a linear time varying formulation of the MPC
problem, which can be solved as a quadratic program. This
reduces dramatically the amount of time required by the opti-
mization algorithm, so that the controller can run at a higher
rate and an improved performance is achieved. However, this
approach still requires the optimization algorithm to run on
line, therefore setting high requirements for CPU power and
memory of the vehicle ECU, as well as the need to execute
the optimization software in the ECU.

In this paper we consider a similar yet different problem
in which the control objective is to force the vehicle yaw rate
to track a given reference. Such a reference, not known in
advance, is computed from the position of the steering wheel
as actuated by a human driver, and from the current vehicle
velocity. Hence, the steering wheel works as a reference
generator, but it is the controller that physically actuates
at the same time the steering and the differential braking
system, resulting in a drive-by-wire architecture.

In Section II we formulate the vehicle dynamics using
the front and rear tire slip angles as the states, and the
vehicle yaw rate as the output. By assuming a constant
longitudinal velocity and approximating the functions that
relate the tire force to the tire slip angles by a piecewise
affine maps, the vehicle dynamics are reformulated as a
linear hybrid system in piecewise affine (PWA) form. By
transforming the PWA model in an equivalent mixed-logical
dynamical (MLD) system [9], the obtained vehicle dynamics
formulation is used as a prediction model in a hybrid model
predictive control setup [10], in Section III. After adding
integral action and constraints on system states, inputs and
outputs, the behavior of the nonlinear vehicle dynamics in
closed-loop with the hybrid MPC controller is analyzed in
simulation in Section IV. By simply looking at the phase-
plane plots of the tire slip angle trajectories for the open-
loop and closed-loop dynamics, one can directly visualize
the stable regions of the vehicle dynamics. Controller ro-
bustness is tested in simulation with respect to variations
of model parameters, namely the road friction coefficient
and the vehicle longitudinal velocity. The introduced integral
action, besides providing zero steady-state tracking errors,
guarantees a remarkable degree of robustness with respect
to parameters variations.

II. VEHICLE MODEL

In this paper we consider the control of the passenger
vehicle dynamics, where two inputs are available for the
controller, the front steering angle, and the yaw moment ge-
nerated by differential braking. The steering wheel controlled
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by the driver is decoupled from the wheels. The steering
wheel position is read from a sensor and, combined with
information regarding vehicle velocity, is converted into a
reference yaw rate. The purpose of the controller is to track
the above indicated reference, hence providing the driver
with the desired yaw rate.

For modelling vehicle dynamics in high speed turns1 a
bicycle model of the vehicle is appropriate [11], which is
presented in Figure 1. We consider a reference frame that

Fig. 1. Schematics of the bicycle model of the vehicle.

moves with the vehicle. We set the reference frame origin
in the vehicle center of mass, where the x-axis is along the
longitudinal vehicle direction, the y-axis is transversal to the
vehicle direction, and the z-axis is pointing upwards, so that
angles increase counterclockwise. The tire slip angle is the
angle between the tire direction and the velocity vector at the
tire.2 Hence, in the bicycle model, two tire slip angles are
defined, αf [rad] and αr [rad], at the front and at the rear
tires, respectively. Note that according to the used reference
frame the front and rear tire slip angles in Figure 1 are
negative.

Since the longitudinal component of the velocity at the
wheels is the same than the one at the center of mass vx

[m/s], and the lateral velocity is computed by adding to the
lateral velocity at the center of mass vy [m/s] the contribution
due to the rotation, the tire slip angles can be expressed as

tan (αf + δ) =
vy + ar

vx
, (1a)

tanαr =
vy − br
vx

, (1b)

where a [m] and b [m] are the distances of the front and rear
wheel axes from the vehicle center of mass, respectively,
δ [rad] is the steering angle, and r [rad/s] is the vehicle

1Turns that are performed in normal “on-road” driving are referred to as
high speed turns. Low speed turns are those turn manoeuvres that occurs
for instance when parking and merging [11].

2In some works the tire slip angles are defined with the opposite sign with
respect to the one used here. This is obviously just a matter of convention
and does not affect the validity of the approach and the results presented in
this paper.

yaw rate. In this paper we will avoid to explicitly show the
dependance in time of the variables, when not needed. The
front and rear tire forces Ff [N], Fr [N], respectively, are
nonlinear functions of the tire slip angles αf , αr and of the
longitudinal slip3 s ∈ [0, 1]. We use a model of the tire forces
which, for a constant longitudinal slip s, is piecewise linear

Ff (αf ) =
{

−cfαf if −p̂f ≤ αf ≤ p̂f ,
−(dfαf + ef ) if αf > p̂f ,

(2a)

Fr(αr) =
{

−crαr if −p̂r ≤ αr ≤ p̂r ,
−(drαr + er) if αr > p̂r ,

(2b)

where cf,r = c̃f,r(1 − s), df,r = d̃f,r(1 − s), ef,r =
p̂f,r(c̃f,r− d̃f,r) are empirically identified, and all have mea-
surement unit [N/rad]. The complete models of the tire force-
slip angle relations will require additional affine equations
for the cases αf < −pf , αr < −pr. However, model (2)
is appropriate for clockwise turns, while counterclockwise
turns can be handled by opportunely inverting the sign of
the inputs and of the system variables, and recasting the
trajectory of a counterclockwise turn as a clockwise one.
The force equation (2) is simplified in order to reduce the
complexity of the dynamical model.

Since the tire slip angles are small for high speed
turns [11] we can approximate tanα ' α, hence getting

αf =
vy + ar

vx
− δ , (3a)

αr =
vy − br
vx

. (3b)

Assume now that during the turning manoeuvre the longi-
tudinal velocity vx is constant. Then, by differentiating (3),
we obtain

α̇f =
v̇y + aṙ

vx
− δ̇ , (4a)

α̇r =
v̇y − bṙ
vx

. (4b)

From (3), αf − αr = vy+ar
vx
− δ − vy−br

vx
, so that a relation

between the tire slip angles αf , αr and the vehicle yaw rate
r is obtained,

r =
vx

a+ b
(αf − αr + δ) . (5)

When the longitudinal velocity vx is constant, the vehicle
acceleration can be decomposed into the acceleration related
to as if the vehicle frame were rotating with constant yaw
rate r, and the lateral acceleration at the center of mass.
Since the only acting forces on the vehicle are the forces at
the front and rear tires Ff and Fr, respectively, we have

v̇y =
Ff cos δ + Fr

m
− rvx . (6)

3The longitudinal slip is defined as the normalized difference between
the wheel axle velocity and the velocity at the wheel. The condition s = 0
indicates the two to be equal, which means perfect (ideal) adhesion to the
road surface.
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TABLE I
NUMERICAL VALUES OF PARAMETERS

Parameter Value Parameter Value
p̂f 0.101 rad p̂r 0.057 rad
cf 9.059·104 N/rad cr 1.651·105 N/rad
df -9.059·103 N/rad dr -1.651·104 N/rad
ef 1.005·104 N/rad er 1.033·104 N/rad
a 1.47 m b 1.43 m
m 1891 kg Iz 3213 kgm2

vx 20 m/s s 0

The yaw acceleration is computed from the torques acting
on the vehicle

ṙ =
aFf cos δ − bFr + Y

Iz
, (7)

where Iz [kg m2] is the vehicle inertia computed with respect
to the center of mass, and Y [Nm] is the yaw moment applied
by differential braking. For small steering angles δ, cos δ '
1, hence substituting (5), (6) and (7) into (4), and neglecting
the (typically small) contribution of δ̇ we obtain

α̇f = Ff +Fr

mvx
− vx

a+b (αf − αr + δ) + a
vxIz

(aFf − bFr + Y ),

α̇r = Ff +Fr

mvx
− vx

a+b (αf − αr + δ)− b
vxIz

(aFf − bFr + Y ).
(8)

The vehicle dynamics model defined by Equations (2), (5),
(8) is a second order system with states αf , αr, inputs δ, Y ,
and output r. The numerical values of the parameters for
the vehicle model considered in this paper are reported in
Table I.

A. Piecewise affine model

In the model defined by (2), (5), (8), the only nonlinearities
are due to the tire force - tire slip angle relation (2) which, for
constant longitudinal slip s, are piecewise affine functions.
Thus, the overall dynamics can be formulated as a PWA
system, which is a suitable prediction model for a hybrid
model predictive control strategy.

Let x = [αf αr]′ and u = [Y δ]′ be the state and the
input of the system. In order to represent the nonlinearities
in (2), we define two Boolean variables γf , γr ∈ {0, 1} by
the switching conditions

γf = 0 ↔ αf ≤ p̂f , (9a)
γr = 0 ↔ αr ≤ p̂r . (9b)

Thus, the piecewise affine dynamics are

ẋ(t) = Ac
ijx(t)+Bc

iju(t)+ f c
ij if (γf = i∧γr = j), (10)

i, j ∈ {0, 1}, where matrices Ac
ij , Bc

ij , and vectors f c
ij are

obtained from (8) and (2) for the angles αf , αr in the region
where γf = i, γr = j. The system matrix Ac

ij in (10) is
stable only in the case i = 0, j = 0, as it is obvious from
the dynamics of the forces acting on the tires.

The piecewise affine dynamics (10) are discretized in
time using a sampling period Ts = 100ms, resulting in the

following discrete-time PWA model with four regions

x(k + 1) = Aix(k) +Biu(k) + fi , (11a)
i ∈ {1, . . . , 4} : Hix(k) ≤ Ki , (11b)

where Ai, Bi, fi directly follow from (10), while Hi, Ki, are
the inequalities describing the polyhedral regions associated
to different linear expressions in force equations (2), as
defined in the right hand side of (9). The discrete-time PWA
model (11) can be formulated as an MLD system [9], [10]
and used in a hybrid MPC control algorithm.

III. HYBRID MPC DESIGN

In this section, we propose a formulation of the feed-
back control problem within a hybrid system framework.
Hybrid systems provide a unified framework for describing
processes that evolve according to continuous dynamics,
discrete dynamics, and logic rules [12], [13]. The interest
in hybrid systems is mainly motivated by the large variety
of practical situations where physical processes interact with
digital controllers, as for instance in embedded systems. Se-
veral modeling formalisms have been developed to describe
hybrid systems [9], including PWA and MLD systems. The
language HYSDEL (HYbrid Systems DEscription Language)
was developed in [14] to obtain MLD models from a high
level textual description of the hybrid dynamics. HYSDEL
models are used in the Hybrid Toolbox for Matlab [15] for
modeling, simulating, and verifying the safety properties of
hybrid systems and for designing and prototyping hybrid
MPC controllers.

Hybrid model predictive control has been recently applied
to problems in automotive systems [7], [16], [17]. In the
MPC strategy, at each sampling instant a finite horizon open-
loop optimal control problem is solved, by using the current
state as the initial condition. The optimization results in an
optimal control sequence, where only the first element is
actually applied to the system, while the remaining ones are
simply discarded. At the next sampling instant a new opti-
mization problem is solved, where the updated information
on the system, for instance obtained from new measurements,
is exploited, thereby introducing a feedback mechanism.

A. Reference generation

In our framework, the purpose of the controller is to
stabilize system (11) at the equilibrium obtained from the
time-varying driver’s steering command δ̂(k), read by an on-
board sensor, while minimizing the use of the brake actuator
(i.e., Ŷ (k) = 0, for all k). By computing the equilibrium
state of (10) in the linear region (i.e., γf = γr = 0), with
δ = δ̂, Y = Ŷ , we obtain the equilibrium condition

α̂r(k) = α̂f (k)
acf
bcr

. (12)
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Using (5), (10), and (12), we define the set-points of our
control problem as follows

α̂f =
mṽ2

xbcr δ̂

mṽ2
x(acf − bcr)− cfcr(a+ b)2

, (13a)

α̂r = α̂f
acf
bcr

, (13b)

r̂ =
ṽx

a+ b
(α̂f − α̂r + δ̂) , (13c)

where time dependency is omitted for brevity, and ṽx is
the current available measurement of the real longitudinal
velocity of the vehicle. In general, the value of ṽx will be
different from vx, the longitudinal velocity used in the MPC
prediction model.

B. Hybrid prediction model

The main goal of the control action is to track the yaw
rate set-point r̂, which retains information about the driver’s
desired trajectory, by manipulating the steering angle δ and
the vehicle’s yaw moment Y . According to model (5), r is the
output of our system. In order to reject constant disturbances,
reduce the effect of model inaccuracies, and ensure a zero
tracking error in steady state, we add integral action on the
yaw rate tracking. In details, we extend system (11) by

Ir(k + 1) = Ir(k) + r(k)− rs(k) , (14a)
rs(k + 1) = rs(k) , (14b)

where Ir is the cumulated sum of yaw rate tracking errors,
and rs is the yaw rate set-point, which is assumed to be
constant along the prediction horizon, since preview infor-
mation on the human driver action is not available. Then, by
defining z = [αf αr Ir rs]′, u = [Y δ]′, y = r, the hybrid
dynamical model used for prediction in our controller is

z(k + 1) = Ãiz(k) + B̃iu(k) + f̃i ,

y(k) = C̃z(k) + D̃u(k) ,
i ∈ {1, . . . , 4} : H̃iz(k) ≤ K̃i ,

(15)

where

Ãi =

[
Ai

0 0
0 0

vx
a+b

−vx
a+b 1 −1

0 0 0 1

]
, B̃i =

[
Bi

0 vx
a+b

0 0

]
, f̃i =

[
fi
0
0

]
,

C̃i =
[

vx

a+b
−vx

a+b 0 0
]
, D̃i =

[
0 vx

a+b

]
,

H̃i =
[
Hi 0 0

]
, K̃i = Ki .

C. Constraints

The control action is subject to the following constraints,
related to physical limits of the actuators,

|[u]1(k)| ≤ 1000 [Nm] ,
|[u]2(k)| ≤ 0.35 [rad] , (16)

where for a vector a, [a]i indicates the i − th component
of the vector. Moreover, as mentioned in Section II-A, for
simplicity we restrict to consider a subset of the tire slip
angles space, by imposing

[z]1(k) ≥ −p̂f ,
[z]2(k) ≥ −p̂r .

(17)

D. Finite horizon optimal control problem

At any time step k, the optimal control problem to be
solved is formulated as

min
uk

N−1∑
j=0

{
(zk+j|k − ẑ)′Qz(zk+j|k − ẑ)

+(yk+j|k − ŷ)′Qy(yk+j|k − ŷ)
+(uk+j|k − û)′Qu(uk+j|k − û)

}
(18a)

s.t. (15), (16), (17), (18b)
zk|k = z(k) , (18c)

where N is the control horizon, uk = (uk|k, . . . , uk+N−1|k)
is the sequence of control input that is the optimization
problem decision variable, z(k) and y(k) are the measured
state and output of system (15) at time k, ẑ = [α̂f α̂r 0 0]′,
ŷ = r̂, û = [Ŷ δ̂]′ are the set-points, which are recomputed
at every sample time from the measured values of δ̂ and ṽx,
and Qz , Qu, Qy are positive semidefinite weight matrices
of appropriate dimensions. Using HYSDEL and the Hybrid
Toolbox, problem (18) is translated into a mixed-integer
quadratic program (MIQP), i.e., into the minimization of a
quadratic cost function subject to linear constraints, where
some of the variables are constrained to be integer (binary,
in our specific case). According to the receding horizon
mechanism, the first move u∗k|k of the optimizer u∗k of (18)
is used as control input at time k, i.e.,

u(k) = u∗k|k . (19)

IV. SIMULATION EXAMPLES

The proposed control scheme was tested in simulation
on a nonlinear vehicle model, which takes into account the
dynamics of yaw rate, longitudinal and lateral dynamics, and
steering actuation dynamics. A detailed description of this
nonlinear simulation model is beyond the scope of this paper
and it is omitted, also for brevity. The control horizon used
in simulation is N = 3, which after a calibration process
resulted in a good performance and an acceptable compu-

tational burden. The weight matrices are Qz =
[

.1 0 0 0
0 .1 0 0
0 0 1 0
0 0 0 0

]
,

Qu = [ 1 0
0 1 ], Qy = 1. In the following, the driver’s steering

command δ̂ has been considered constant over the whole
simulation interval.

A first set of tests is carried out in nominal conditions,
i.e., with the parameters in the nonlinear simulation model
having the same numerical value than the parameters used to
build the control-oriented hybrid prediction model (11). Even
under nominal conditions the control strategy has to cope
with the errors due to linearization of the nonlinear dynamics
(e.g., in (1)), which affect the simulated trajectories. We have
analyzed the ability of the vehicle to recover from poor
initial conditions on the tire slip angles (αf (0), αr(0)) =
(0.05, 0.15), for which the corresponding matrix of the
PWA system (10) is unstable. Figure 2 shows a comparison
between closed-loop and open-loop performance in terms of
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Fig. 2. Closed-loop (blue line), open-loop (red dashed line), and set-point
(black dotted line) trajectories of rear tire slip angle αr and yaw rate r,
with αf (0) = 0.05, αr(0) = 0.15, and δ̂ = 0.

rear tire slip angle αr and yaw rate r trajectories.4 While
in open-loop the vehicle is led into spinning, in the closed-
loop simulation the controller achieves a fast stabilization
and a correct tracking of the desired yaw rate. Stability
of the vehicle behavior at various initial tire slip angles is
illustrated in Figure 3, where one can see that the control
action increases the stable region despite the destabilizing
effect introduced by the integral action, which is in fact an
additional non asymptotically stable dynamics.

Then, we tested the robustness of the control action
with respect to mismatches between the modeled parameters
values and their actual value in simulation. Figures 4, 5 illus-
trate the closed-loop behavior in the case of different values
of the real longitudinal velocity ṽx, and the related optimal
inputs trajectories. The values of ṽx are still assumed to be
measured, so that the set-points can be computed properly.
Again, the plots show the stability of the closed-loop and a
fast tracking response. Note also that at steady state the value
of the differential braking actuator is different from 0, and
depends on the type of disturbance. This indicates that the
controller selects this actuator to counteract the parameter
variations.

Finally, we analyzed the behavior of the controlled vehicle
in a turning manoeuvre under perturbed initial conditions
on the tire slip angles and a non-ideal longitudinal slip
s > 0, caused for instance by slippery road surface. Yaw
rate trajectories related to different values of s, plotted in
Figure 6, show a good degree of robustness with respect to
model mismatches.

The simulations have been executed on a Macbook
2.4GHz with Matlab 7.6 and CPLEX 9.0. We obtained an
average computation time of 17 ms per time step (63 ms
in the worst case). This encourages the viability of the
proposed approach for experimental tests, although on-line

4Front tire slip angle trajectories are analogous and are omitted for lack
of space.

Fig. 3. Stability region of the vehicle behavior in (a) open-loop, and (b)
closed-loop, at various initial tire slip angles. Blue circles and red stars
denote stable and unstable behavior, respectively. In (a) tire slip angles
trajectories in time are shown. In (b) the set of open-loop stable initial
conditions is plotted in grey for comparison.

optimization should be avoided in the implementation in
standard automotive ECU. By employing multiparametric
programming techniques, we can solve the MIQP control
problem off-line for all state vectors and references within
a given range. The state-times-reference space is subdivided
into polyhedral regions. In each of these regions, the control
law is defined by a (possibly) different piecewise affine
function of the state and the reference. In this way, the
control input is computed by evaluating a PWA function with
possibly overlapping partitions, see [18] for a recent survey
on explicit MPC techniques.

The explicit solution of problem (18) requires a large
number of regions to be stored (namely, around 5000).
Our preliminary tests have shown that this number can be
substantially reduced (more than halved) just by carefully
selecting the operating range of the slip angles. However,
an approximation might be needed to further reduce the
memory occupancy requirements on the ECU. Viable ap-
proaches are either the approximation of the explicit control
law by interpolation methods, or the implementation of a
suboptimal switched linear MPC law, which is currently
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Fig. 4. Closed-loop trajectories of rear tire slip angle αr and yaw rate r
at different values of real longitudinal velocity ṽx (blue line: ṽx = 15m/s,
red dashed line: ṽx = 25m/s, black dotted lines: set-points), with nominal
velocity vx = 20m/s, αf (0) = αr(0) = 0.1, and δ̂ = −0.05.

Fig. 5. Closed-loop actuation profiles of steering angle δ and yaw
moment Y at different values of real longitudinal velocity ṽx (blue line:
ṽx = 15m/s, red dashed line: ṽx = 25m/s), with nominal velocity
vx = 20m/s, αf (0) = αr(0) = 0.1, and δ̂ = −0.05.

being developed.

V. CONCLUSIONS

In this paper we have proposed a hybrid model predictive
control approach for coordinating the active front steering
and the electronic stability control actuators. By formulating
the vehicle dynamics with respect to the front and rear
tire slip angles, and by approximating the tire force cha-
racteristics by piecewise affine functions, the optimization
problem of the MPC controller is formulated as a mixed-
integer quadratic problem. The proposed model formulation
allows to visually analyze the stability region of the closed-
loop dynamics. Simulations in nominal and non-nominal
conditions have been shown, which suggest hybrid MPC as
a promising and viable candidate for the application.

Fig. 6. Closed-loop trajectories of yaw rate r at different values of real
longitudinal slip s̃, with nominal value s = 0, αf (0) = αr(0) = 0.1, and
δ̂ = −0.05.
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