
An MPC design flow for automotive control and applications to idle

speed regulation

S. Di Cairano, D. Yanakiev, A. Bemporad, I.V. Kolmanovsky, D. Hrovat

Abstract— This paper describes the steps of a model predic-
tive control (MPC) design procedure developed for a broad class
of control problems in automotive engineering. The design flow
starts by deriving a linearized discrete-time prediction model
from an existing simulation model, augmenting it with integral
action or output disturbance models to ensure offset-free steady-
state properties, and tuning the resulting MPC controller in
simulation. Explicit MPC tools are employed to synthesize
the controller to quickly assess controller complexity, local
stability of the closed-loop dynamics, and for rapid prototype
testing. Then, the controller is fine-tuned by refining the linear
prediction model through identification from experimental data,
and by adjusting from observed experimental performance the
values of weights and noise covariances for filter design. The idle
speed control (ISC) problem is used in this paper to exemplify
the design flow and our vehicle implementation results are
reported.

I. INTRODUCTION

Model predictive control (MPC) [1], [2] is an

optimization-based closed-loop control strategy for shaping

the response of a process through minimization of a

performance criterion and for handling constraints on

system inputs, states, and outputs. The optimal input

sequence is computed during each control update cycle by

optimizing the predicted system trajectory, computed through

a suitable prediction model. The MPC controller can be

synthesized as a piecewise linear state-feedback control [3],

with no need for on-line optimization, and processes with

fast dynamics, such as the ones in automotive applications,

can be addressed, see [4]–[6] for some examples.

We describe an MPC design flow that is composed of a

sequence of procedural steps which exploit both simulation

models and experimental data in order to tune the behavior of

the MPC controller in a way that leads to fast prototyping and

experimental evaluation. We suggest to first use a simulation

model of the process, which is normally available if a

model-based control system design approach is followed,

and to generate from it a suitable prediction model for

the MPC controller. The MPC controller based on such a

model can be evaluated through simulations. For the actual

implementation, an explicit model predictive controller [3]

can be synthesized. The controller complexity can be easily

assessed, and, if needed, the prediction model structure

A. Bemporad and S. Di Cairano are with Diparti-
mento di Ingegneria dell’Informazione, Università di Siena,
bemporad,dicairano@dii.unisi.it

D. Yanakiev, I.V. Kolmanovsky and D. Hrovat are
with Ford Motor Company, Dearborn, Michigan, USA.
dyanakie,ikolmano,dhrovat@ford.com

S. Di Cairano has recently joined Ford Motor Company,
sdicaira@ford.com

can be revised to trade-off controller performance versus

complexity. Furthermore, the stability of the closed-loop

dynamics and the region where feasible commands are issued

can be easily analyzed. After a satisfactory complexity-

performance balance has been found, the prediction model

has to be tuned by means of experimental data. The effect

of noise and disturbances has to be evaluated and quantified

to be used in estimator design. Finally, the source code of

a candidate set of controllers is automatically generated and

experimentally validated.

In this paper, the design flow is illustrated on the idle

speed control (ISC) problem. For this problem we design and

synthesize MPC controllers of different structure, complexity

and performance, and we discuss their implementation on the

vehicle.

Historically, idle speed control is related to one of the old-

est closed-loop systems discussed in the controls literature,

the so called Watt’s governor (1787), which may be viewed

as a speed controller for a steam engine. The continuing

interest in ISC fo spark-ignition engines is motivated by the

opportunities to reduce fuel consumption at idle by lowering

idle speed set-point and reducing spark reserve. A higher

performing ISC based on MPC techniques may be able to

avoid engine stalls even with lower idle speed set-point and

spark reserve, thereby enabling substantial fuel consumption

improvements.

To the best of the authors’ knowledge, an MPC design

for the ISC problem was first proposed in [7]. At the time

this approach could not have been easily implemented, as

it required an optimization problem to be solved on-line in

real-time. In this paper, we complete the development and

implementation of an MPC solution for ISC by exploiting

the newly available techniques to compute the MPC law as

an explicit state feedback. In this form, the MPC solution is

easily implemented in the electronic control unit (ECU).

A. Notation

R and Z denote the set of real and integer numbers,

respectively. Z0+ denotes the set of nonnegative integer

numbers and Z[a,b] denotes the set {r ∈ Z : a ≤ r ≤ b}. In

is the identity matrix of dimension n, and 1 and 0 are vectors

or matrices entirely composed of 1 and 0, respectively. Given

a vector a, [a]i is the ith coordinate. Relational operators are

applied componentwise to vectors.

II. MODEL-BASED DESIGN: PREDICTION MODEL

Model-based design, in which the control system is devel-

oped with the help of a dynamical model of the process, is

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

ThC18.1

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 5686

uair

uspk

uδ
air

uδ
spk

yair

yspk

yrpm

Gspk(s)

Gair(s)

e
−sTspk

e−sTair +

Fig. 1. Prediction model of the engine for idle speed control design

an evolving trend in automotive engineering. The dynamical

model is usually derived from first principles, and further

refined for consistency with experimental data and strategies

implemented in the ECU. For the ISC problem considered

in this paper, a nonlinear engine and crankshaft model

that represents engine speed dynamics and torque converter

behavior was used as a starting point.

In the ISC problem, the manipulated inputs are the spark

advance uspk and the airflow uair, and the controlled output

is the engine speed yrpm. The spark advance command is

measured in degrees [deg], and it is commanded with respect

to a nominal set-point for idle, which allows about 15 degrees

reserve with respect to maximum break torque (MBT) spark.

For our problem, uspk is thus constrained in the interval

[−15, 15]deg. The airflow command is measured in pounds

per minute and it is normalized to the interval [0, 10]. The

engine speed is measured in revolutions per minute [rpm].

A set of specifications is given. The idle engine speed

reference is 650 rpm, and the engine speed must remain in

the interval [450, 2000] rpm. The idle speed controller runs

with a sampling period Ts = 30 ms. Only the signals uair,

uspk, and yrpm are available for closing the control loop.

Frequently, the simulation model is very detailed, and

it must be approximated to obtain a prediction model that

is simple enough to yield a tractable MPC optimization

problem, but that still captures the most significant dynamics.

As discussed in [8], for idle speed control the engine model

can be reduced to two transfer functions with delays, one

from each input to the output, see Figure 1. The transfer

function parameters can be easily obtained by running the

simulation model. The delays are approximately Tair =
0.12s, Tspk = 0.03s at 650 rpm.

A. Transfer function from delayed inputs

We first estimate the transfer function from the delayed

input to the output, that is, from uδ
air to yair, and from uδ

spk to

yspk in Figure 1. As pointed out in [8], the transfer function

from the delayed airflow to the engine speed has no zeros,

while the transfer function from the delayed spark advance

to the engine speed has a stable zero. Hence,

Gair(s) = k1
1

s2

ω1
+ 2 δ1

ω1
s + ω2

1

, (1a)

Gspk(s) = k2

s
a

+ 1
s2

ω2
+ 2 δ2

ω2
s + ω2

2

. (1b)

The parameters ki, δi, ωi, i = 1, 2, and a can be estimated

by analyzing the step and frequency responses of the engine

model running at 650 rpm, which is our linearization point

for linearization input uspk = 0, uair = 2.13. After sampling

with period Ts = 30 ms and converting to discrete-time state-

space form, the estimated transfer functions are expressed as

xair(k + 1) = Aairxair(k) + Bairu
δ
air(k), (2a)

yair(k) = Cairxair(k), (2b)

xspk(k + 1) = Aspkxspk(k) + Bspku
δ
spk(k) (3a)

yspk(k) = Cspkxspk(k), (3b)

where xair, xspk ∈ R
2.

B. Delay modeling

The effect of the delay can be accounted for in the

prediction model in several ways. The approach of this paper

is to model in discrete time the transfer function from the

delayed inputs uδ
air(x), uδ

spk(x), and then to introduce the

delays as additional states.

In the ISC problem, nδ
air = Tair

Ts
= 4 and nδ

spk =
Tspk

Ts
= 1

are integer valued. The discrete-time model of a generic

signal u(·) delayed by nδ ∈ Z0+ steps is xδ(k + 1) =

Aδxδ(k) + Bδu(k), uδ(k) = Cδxδ(k), where xδ ∈ R
nδ

and

Aδ =

0 · · · 0

Inδ−1

...

0

,

Bδ = [1 0 · · · 0]T ,

Cδ = [0 · · · 0 1].

Let

x
f
air(k + 1) = A

f
airx

f
air(k) + B

f
airuair(k) (4a)

y
f
air(k) = C

f
airx

f
air(k), (4b)

x
f
spk(k + 1) = A

f
spkx

f
spk(k) + B

f
spkuspk(k) (5a)

y
f
spk(k) = C

f
spkx

f
spk(k), (5b)

where x
f
air ∈ R

6, x
f
spk ∈ R

3, be the state-space models

obtained, respectively, by cascading the fourth order state-

space model of the airflow delay with (2), and by cascading

the first order model of the spark delay with (3). The resulting

linear model of the engine is

xp(k + 1) = Apxp(k) + Bpup(k), (6a)

yrpm(k) = Cpxp(k), (6b)

xp =

[

x
f
air

x
f

spk

]

, up = [
uair
uspk] , Ap =

[

A
f
air 0

0 A
f

spk

]

, (6c)

Bp =

[

B
f
air

B
f

spk

]

, Cp = [C
f
air C

f

spk] . (6d)

where xp ∈ R
9, and up ∈ R

2.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC18.1

5687

C. Models for disturbance rejection

The prediction model (6) is now extended with additional

components that relate to the specifications. In particular, in

the ISC problem offset-free tracking (rejection of constant

disturbances) and zero spark deviation uspk = 0 are desired

in steady state. In order to achieve disturbance rejection, one

can introduce integral action [9] by adding the dynamics

qrpm(k + 1) = qrpm(k) + Tsyrpm(k), where qrpm ∈ R is the

discrete-time integral of the output (such an approach can be

also applied for tracking time-varying reference signals, by

integrating the tracking error). We use this approach also to

guarantee that the value of uspk is zero in steady-state. The

resulting prediction model is

x(k + 1) = Ax(k) + Bu(k), (7a)

y(k) = Cx(k), (7b)

x =
[

xp

qrpm
qspk

]

, u = up, A =
[

Ap 0 0
TsCp 1 0

0 0 1

]

, (7c)

B =
[

Bp

0 0
0 Ts

]

, C =
[

Cp 0 0
0 1 0
0 0 1

]

. (7d)

An alternative approach to ensure offset-free tracking is

to introduce a disturbance model [10]. In particular, in [10]

the authors show that under mild technical conditions, output

additive integrated white noise can be used as a disturbance

model. An MPC controller whose prediction model is aug-

mented with such a disturbance model guarantees asymp-

totic rejection of constant disturbances. The disturbance is

estimated concurrently with the state vector, for instance by

a Kalman filter based on the estimation model

x(k + 1) = Ax(k) + Bu(k) + Ew(k), (8a)

y(k) = Cx(k) + Dv(k), (8b)

x =

[

xp

xd

qspk

]

, u = up, A =
[

Ap 0 0
0 Ad 0
0 0 1

]

, (8c)

B =
[

Bp

0 0
0 Ts

]

, C =
[

Cp Cd 0
0 0 1

]

. (8d)

where xd ∈ R
nd is the state of the disturbance model, Ad

and Cd are the matrices of the disturbance model used for

prediction, and in the case of integrated white noise nd = 1,

Ad = 1, and Cd = 1. In equation (8), w(k) and v(k) are

Gaussian white noise vectors with zero mean and covariance

matrices W and V , respectively. The noise vectors are

assumed to be zero in prediction because of the certainty

equivalence principle. However, they are important tuning

knobs for the estimator, as explained later in Section IV, and,

when the output disturbance model is used, they strongly

affect the tracking and disturbance rejection performances.

Instead, when integral action is used, the estimator noise

covariances have smaller impact in disturbance rejection

performance.

III. MPC DESIGN AND SYNTHESIS

Once a simple yet representative prediction model is

available, a model predictive controller can be designed. The

first step is to setup the MPC optimization problem

min
σ,u(k)

ωσ2 +
N−1
∑

i=0

‖y(i|k) − ry(k)‖Q
2 + ‖∆u(i|k)‖R

2 (9a)

s.t. x(i + 1|k) = Ax(i|k) + Bu(i|k), i ∈ Z[0,N−1] (9b)

y(i|k) = Cx(i|k), i ∈ Z[0,N−1] (9c)

umin ≤ u(i|k) ≤ umax, i ∈ Z[0,N−1] (9d)

∆umin ≤ ∆u(i|k) ≤ ∆umax, i ∈ Z[0,N−1] (9e)

ymin − σ1 ≤ y(i|k) ≤ ymax + σ1, i ∈ Z[0,Nc−1] (9f)

u(i|k) = u(Nu − 1|k), i ∈ Z[Nu−1,N−1] (9g)

u(−1|k) = u(k − 1) (9h)

x(0|k) = x̂(k) (9i)

σ ≥ 0, (9j)

where ‖a‖Q
2 = aT Qa, ∆u(i|k) = u(i|k) − u(i − 1|k),

x̂ is the state estimate, ry is the output reference, and

u(k) = {u(0|k), . . . , u(N |k)}. N ∈ Z+ is the prediction

horizon, Nc ≤ N the constraint horizon, and Nu ≤ N

is the control horizon. In problem (9), (9a) represents the

performance criterion to be optimized, and (9b), (9c) are the

prediction model for idle speed control, namely either (7)

or (8) (where w(k) = 0, v(k) = 0). Constraints (9d), (9e)

and (9f) are bounds on input, input variation, and output. In

particular, (9f) defines soft output constraints, that prevent

problem (9) to be infeasible, so that the control action is

always defined. Soft constraints can be violated at the price

of a penalty, modelled by the optimization variable σ ∈ R,

weighted by the large (i.e., at least two orders of magnitude

larger than the other weights) positive constant ω. Finally,

(9g) limits the free moves to Nu, and (9h) and (9i) set the

previously applied input value, and the initial state to the

value of the state estimate at time k, respectively.

Algorithm 1 (implicit MPC): At each control cycle k do:

1. read the measurements and compute the state estimate

x̂(k);
2. solve the quadratic programming problem (9) to obtain

the optimal input sequence u
∗(k);

3. apply the input u(k) = u∗(0|k);
The MPC controller that implements Algorithm 1 is tuned

in closed-loop with the simulation model. This process

requires adjusting the weights ω, Q, R and the horizons N ,

Nu, Nc in problem (9) and, possibly, revising the prediction

model, if a satisfactory performance is not achieved.

A. Explicit MPC synthesis and controller analysis

To avoid ECUs in commercial vehicles to run opti-

mization software, the explicit implementation of the MPC

controller [3] has to be computed. The explicit MPC is

an alternative way of evaluating the control action on line.

Multiparametric quadratic optimization is used off line to

pre-compute the solution of problem (9) as a function of the

parameters x̂(k), u(k−1) and ry(k). This approach provides

a piecewise affine continuous control law in the form

u(k) = Fix̂(k) + Giu(k − 1) + Tiry(k) (10a)

i ∈ Z[1,nr] : Hix̂(k) + Jiu(k − 1) + Kiry(k) ≤ 0,(10b)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC18.1

5688

where Fi, Gi, Ti, Hi, Ji, Ki are constant matrices of

suitable dimensions for all i ∈ Z[1,nr]. Inequalities (10b)

partition the (x̂, u, ry)-space into nr polyhedral regions, that

is, for any value of (x̂, u, ry) there is at most a value of

i ∈ Z[1,nr] such that (10b) is satisfied, and (10a) defines

the affine state feedback control law associated to each region

i ∈ Z[1,nr]. Control law (10) describes the region where (9)

has a feasible solution. Since soft constraints are used, for all

values (x̂(k), u(k − 1), ry(k)) there exists ı̄ ∈ Z[1,nr] such

that (10b) is satisfied for i = ı̄ by (x̂(k), u(k − 1), ry(k)).
Algorithm 2 (explicit MPC): At each control cycle k, per-

form the following:

1. read the measurements and compute the state estimate

x̂(k);
2. search for ı̄ ∈ Z[1,nr] such that (10b) is satisfied;

3. compute u(k) by evaluating (10a) for i = ı̄;

Algorithm 2 generates the same control input as Algorithm 1,

but has the following advantages: (i) it does not need an

optimization code to be executed in the ECU, (ii) the time

required to compute the command is in general much smaller,

especially for small MPC problems [2], and (iii) the worst-

case computation time of the controller is predictable. The

operations to compute the command from the explicit MPC

law (10) are sums, products, and comparisons in known

quantities. Thus, the worst case number of operations to be

executed per control cycle can be computed. Such number of

operations is often very conservative (see [6]), but it can be

still used as a conservative bound in the control architecture

design. Similarly, the memory usage of the controller can be

quantified, since the executed code is simple and fixed, and

the stored data are the matrices Fi, Gi, Ti, Hi, Ji, Ki, for

i ∈ Z[1,nr].

For idle speed control we have set N = 30, Nu = 2,

Nc = 2 in (10), where we have used (7) as the prediction

model. The constraints are defined by (9d)–(9f), where

umax =
[

10−uFF

15

]

, umin =
[

0−uFF

−15

]

,

ymax =
[

2·103
−yss

∞

∞

]

, ymin =
[

450−yss
−∞

−∞

]

,

∆umax = −∆umin = [∞
∞

] ,

where yss = 650 rpm is the engine speed around which

the linear prediction model is estimated, and uFF is the

corresponding airflow equilibrium input for uspk = 0, that is

sent to the engine as a feedforward input. For yss = 650 rpm,

the correct value of the feedforward is uFF = 2.13. After

performing some tests with the implicit MPC algorithm,

we tuned Q =
[

3 0 0
0 200 0
0 0 5

]

, R = I2, and computed the

explicit control law (10) using the toolbox [11]. In this case,

nr = 131, and the partition is over a 16-dimensional space:

11 components are the estimated state vector (6 from (4), 3
from (5) and 2 from the integral action on yrpm and uspk),

2 are previous input values, and 3 are references (engine

speed, integral of engine speed tracking error, integral of

spark command).

For the above controller the maximum number of oper-

ations per control cycle is less than 45 · 103, which leads

to 1.5 · 106 operations per second. By considering fixed

reference values, the operation number is reduced by about

20%. The data memory usage for the controller is about

100 KB. For conventional ECUs, the MPC controller use in

the worst case 1.5%− 5% of the total computational power,

resulting feasible. In fact, at idle the ECUs are under-utilized,

due to low activation rate of tasks triggered by engine events,

hence the needed computational power is available.

The MPC controller based on (9) does not guarantee

closed-loop stability. Stability guarantees can be obtained by

applying the techniques surveyed in [12]. However, those

typically require long prediction horizons and hence generate

complex controllers.

If the origin is in the interior of the feasible region of

problem (9), there exists an index ı̄ ∈ Z[1,nr] such that

the origin is also in the interior of the polyhedral region

described by (10b) for i = ı̄. Thus, in a neighborhood of

the origin, the explicit controller (10) is equal to the linear

state feedback (10a) where i = ı̄, and it can be proven that

Gı̄ = 0. As a result, considering ry(k) = 0 for all k ∈ Z0+,

the local stability of the closed-loop dynamics can be studied

by analyzing the system

x(k + 1) = Ax(k) + Bu(k) (12a)

u(k) = Fı̄x(k) + Gı̄u(k − 1). (12b)

By calling χ(x) =
[

x(k)
u(k−1)

]

, (12) is asymptotically stable

if the spectral radius ρ of the matrix Acl =
[

A+BFı̄ BGı̄

Fı̄ Gı̄

]

is smaller than 1. For the idle speed control problem, in the

MPC tuning described before, ρ(Acl) = 0.9726, ensuring

that the system is locally stable.

A global stability analysis can be performed a posteriori

by considering the piecewise affine (PWA) [13] constructed

from the prediction model (9b) in closed-loop with the

explicit MPC (10), and using the tools described in [14].

B. Closed-loop simulations

Closed-loop simulation tests were performed in

SIMULINK
r with the MPC in closed-loop with the

engine simulation model. The feedforward on the airflow

is uFF = 2.5, a value slightly different from the one

that achieves stabilization at 650 rpm, in order to test the

regulation capabilities of the controller and the effects of a

nonzero steady-state value of uair.

The controller is enabled at t = 5 when the initial transient

of the engine is completed, and it first has to regulate the

system to 650 rpm. Then, a disturbance rejection test is

performed by introducing an unmeasured torque disturbance

load τd [Nm] of 20 Nm that is subtracted from the engine

generated torque, starting at t = 8 s, and ending at t = 17 s,

simulating the effect of power steering.

Figure 2 shows the resulting closed-loop behavior. Note

that both inputs reach saturation, and that the spark input

remains saturated at its maximum until the disturbance has

been almost completely rejected.

The behavior shown in Figure 2 can be changed by tuning

the weights Q, R, in (9a). For instance, an overdamped

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC18.1

5689

5 10 15 20 25
550

600

650

700

5 10 15 20 25

−2
0
2
4
6
8

5 10 15 20 25

−10

0

10

5 10 15 20 25
0

10

20

y
r
p
m

[r
p

m
]

u
a
ir

u
s
p
k

[d
eg

]
τ

d
[N

m
]

t[s]

t[s]

t[s]

t[s]

Fig. 2. Simulation of the MPC controller for idle speed in closed-loop
with the SIMULINK engine model

behavior, where the engine speed settles more slowly without

overshoot, can be obtained. The controller tuning is in

general selected by considering requirements such as driver’s

feelings, effects on engine wear, and fuel consumption.

IV. DATA-BASED TUNING AND EXPERIMENTS

The model-based design described in Section III is im-

portant to evaluate whether the specifications can be met.

In particular, it allows one to assess whether the prediction

model is detailed enough, and also, through the explicit

controller computation, the worst-case number of operations

per control cycle, and the closed-loop (local) stability.

However, when implementing the controller on the real

process, the design may need to be revised. First of all it

is possible that the real process dynamics are quantitatively

different from the simulated dynamics. Also, in a real process

there are several disturbances acting, including sensor noise

and disturbances on the actuators. Thus, a fundamental role

is played by the estimation algorithm, that trades off between

noise rejection and convergence speed of the estimator.

For the experimental implementation we chose to apply

MPC only to the throttle input and retained the existing

control loop (of Proportional plus Derivative type) for spark.

With this approach, the implementation is further simplified

while the loss in performance is not greatly appreciable.

The MPC design strategy easily allows one to reconfigure

the design to use only the airflow as controlled variable,

by simply removing uspk from problem (9), and the corre-

sponding terms in the cost functions and constraints. The

plant model (6) is now composed only of the delayed state

space model from the airflow to the engine speed (4) (the

integral action on the input uspk has been obviously removed

from prediction model (7)). The resulting MPC controller is

significantly simpler (nr = 7 regions in a 10-dimensional

space), and the worst case number of operations per control

cycle of the explicit controller is only 450.

In order to account for the modified plant, composed

of the engine in closed loop with the spark controller, we

used experimental data to tune the numerical parameters of

prediction model (9b), (9c), without changing its complexity.

After re-tuning the MPC with the new model (and repeating

the stability analysis of Section III-A), the controller has

been tested in simulation against disturbances. We have

applied additive input disturbances and sensor disturbances

to evaluate the closed-loop behavior of the controller and

to tune the parameters of the state estimator. In simulation

we have used the linearized prediction model refined by

experimental data as plant model, since the focus of this test

is the behavior with respect to noise and disturbances. This

approach becomes particularly important if the disturbance

model approach in [10] is used, since the trade-off between

steady-state convergence speed and noise filtering is set by

the estimator parameters. In the idle speed problem, we use

the stationary Kalman filter

x̂(k+1) = [I−KfC](Ax̂(k)+Bû(k))+Kfy(k+1) (13)

where A, B, and C are the prediction model matrices, and

Kf = PCT (CPCT + V)−1 is the stationary filter gain

constructed from the solution P of the Riccati equation

P = APAT + W − APCT (CPCT + V)−1CPAT . (14)

The tuning parameters of the Kalman filter are the matrices

W and V , that in the case of a linear system subject to

Gaussian noise are set equal to the process noise and to the

sensor noise, respectively, for (13) to result in the optimal

estimator. In practice, it is very difficult to quantify W , V

a priori, as the plant dynamics are not purely linear and

the noise is not exactly white and Gaussian. Hence, the

matrices have to be tuned according to standard rules. When

‖W‖ ≫ ‖V ‖, the observer relies on measurements, and

it converges faster. When ‖W‖ ≪ ‖V ‖, the measurements

are not trusted, causing slow estimate convergence, but also

reduced sensitivity to measurement noise.

A. Experimental results for idle speed MPC control

We have tested several MPC controllers in a vehicle, in or-

der to find the best tradeoff between closed-loop convergence

performance, robustness, and actuator excitation. We mainly

performed disturbance rejection tests, since stall avoidance,

and hence quick and robust disturbance rejection, is the most

critical requirement for idle speed control.

The test vehicle is a Ford pickup truck with a V8 4.6L

gasoline engine, equipped with a developmental ECU. The

C-code for the MPC controllers is automatically generated by

the HYBRID TOOLBOX [11], and compiled in a dSPACEr

rapid prototyping system connected to the car’s ECU. The

MPC controller is compared with an available baseline

controller implemented in the ECU. The reference idle speed

ry is controlled by the ECU and may vary depending on the

engine conditions.

The results of three experiments are reported in Figure 3,

where the MPC controller (solid line) is compared to the

baseline controller (dashed line) in different disturbance

rejection tests (solid thin line, the idle speed reference). In

Figure 3(a), the vehicle is in neutral gear, and the torque

disturbances are obtained by activating power steering (PS)

at the end of the steering wheel travel. The power steering

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC18.1

5690

10 20 30 40 50 60 70 80 90
400

450

500

550

600

650

700

750

800

time (s)

y
r
p
m

[r
p

m
]

(a) Disturbance rejection test (PS)

10 15 20 25 30 35 40
300

350

400

450

500

550

600

650

700

750

800

time (s)

y
r
p
m

[r
p

m
]

(b) Double disturbance rejection test (PS+AC)

50 100 150 200 250 300 350
700

800

900

1000

1100

1200

1300

time (s)

y
r
p
m

[r
p

m
]

(c) Disturbance rejection (PS,AC,tip-in) during cold start

Fig. 3. Experimental results of the MPC for idle speed control in the test
vehicle, and comparison with a baseline controller.

is activated at t = 20s and t = 60s. The engine speed drop

is reduced by 50% and the convergence to the setpoint is

about 10s faster. Figure 3(b) shows the results of a double

disturbance test, where PS and air conditioning (AC) are

activated at t = 20s, and they are deactivated at t = 31s.

This test is executed with vehicle in drive gear, where the

idle sped reference is lower (525 rpm), and also the engine

speed lower bound for the MPC is reduced (350 rpm).

The activation/deactivation of AC is delayed by a couple of

seconds by the vehicle ECU, so that in fact the disturbances

occur sequentially (AC becomes active around t = 22s,

and inactive around t = 33s). The AC activation causes

the idle speed reference to increase to 600rpm. In this test

the superior performance of MPC is even more evident. The

MPC not only attenuates the engine speed drop due to the

disturbance, it is also much faster in recovering the setpoint.

When the second disturbance occurs the MPC has already

recovered from the first one. This is not the case for the

baseline controller, and as a consequence it oscillates heavily.

Note also that by the end of the test the baseline controller

has not reached yet the setpoint, while the MPC has settled

more than 5s before. Finally, in Figure 3(c) a cold start

test where the idle speed reference progressively decreases

is shown. Several PS and AC disturbances are introduced,

as well as two driver tip-in (around t = 150s). Even if the

engine speed is far from the linearization value (650rpm) the

MPC controller can handle the model variation.

V. DISCUSSION

We have proposed a design flow to develop model pre-

dictive controllers targeted to automotive applications, that

makes use of simulation model and experimental data to

tune the different parameters of the controller. The procedure

has been applied to idle speed control. An improved idle

speed controller can reduce the need for a spark reserve, and

hence consistently improve the fuel efficiency. The results

show that the MPC largely outperforms the available baseline

controller.

REFERENCES

[1] J. Maciejowski, Predictive control with constraints. Englewood Cliffs,
NJ: Prentice Hall., 2002.

[2] A. Bemporad, “Model-based predictive control design: New trends
and tools,” in Proc. 45th IEEE Conf. on Decision and Control, San
Diego, CA, 2006, pp. 6678–6683.

[3] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3–20, 2002.

[4] F. Borrelli, A. Bemporad, M. Fodor, and D. Hrovat, “An MPC/hybrid
system approach to traction control,” IEEE Trans. Contr. Systems

Technology, vol. 14, no. 3, pp. 541–552, 2006.
[5] P. Ortner and L. del Re, “Predictive Control of a Diesel Engine Air

Path,” IEEE Trans. Contr. Systems Technology, vol. 15, no. 3, pp.
449–456, 2007.

[6] S. Di Cairano, A. Bemporad, I. Kolmanovsky, and D. Hrovat, “Model
predictive control of magnetically actuated mass spring dampers for
automotive applications,” Int. J. Control, vol. 80, no. 11, pp. 1701–
1716, 2007.

[7] D. Hrovat, “MPC-based idle speed control for IC engine’,” in Proc.

of FISITA conference, Prague, Czech Rep., 1996.
[8] D. Hrovat and J. Sun, “Models and control methodologies for IC

engine idle speed control design,” Control Engineering Practice,
vol. 5, no. 8, pp. 1093–1100, 1997.

[9] H. Kwakernaak and R. Sivan, Linear optimal control systems. New
York: Wiley-Interscience, 1972.

[10] G. Pannocchia and J. Rawlings, “Disturbance models for offset-free
model-predictive control,” AIChE Journal, vol. 49, no. 2, pp. 426–437,
2003.

[11] A. Bemporad, Hybrid Toolbox – User’s Guide, Dec. 2003, http://www.
dii.unisi.it/hybrid/toolbox.

[12] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, no. 6,
pp. 789–814, June 2000.

[13] A. Bemporad, W. Heemels, and B. D. Schutter, “On hybrid systems
and closed-loop MPC systems,” IEEE Trans. Automatic Control,
vol. 47, no. 5, pp. 863–869, 2002.

[14] G. Ferrari-Trecate, F. Cuzzola, D. Mignone, and M. Morari, “Analysis
of discrete-time piecewise affine and hybrid systems,” Automatica,
vol. 38, pp. 2139–2146, 2002.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC18.1

5691

