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Abstract— Flexibility, ease of deployment and of spatial
reconfiguration, and low cost make Wireless Sensor Networks
(WSNs) fundamental component of modern networked control
systems. However, due to the energy-constrained nature of
WSNs, the transmission rate of the sensor nodes is a critical
aspect to take into account in control design. Two are the
main contributions of this paper. First, a general transmission
strategy for communication between controller and sensors is
proposed. Then, a scenario with a controller and a wireless
node providing measures is investigated, and two energy-
aware control schemes based on explicit Model Predictive
Control (MPC) are presented. We consider both nominal and
robust control in the presence of disturbances, and convergence
properties are given for the latter. The proposed control schemes
are tested and compared to traditional MPC techniques. The
results show the effectiveness of the proposed energy-aware
approach, which achieves a profitable trade-off between energy
consumption of wireless sensors and loss in system performance.

I. INTRODUCTION

Wireless sensor networks (WSNs) is an emerging tech-
nology that allows the deployment of a large number of
cheap small sensors of low energy consumption and collect
amounts of measurement data that were previously cost pro-
hibitive. Some of the driving objectives for wireless sensing
in automation are to reduce the cost of cablings, and avoid
associated failures due to wear and tear. Another advantage
is the possibility to rapidly reconfigure the communications
infrastructure in case of failures or addition of system
components. The first major applications of WSNs have
been in goods and inventory tracking, and in environmental
monitoring [1].

However, compared to standard wired sensors, WSNs pose
new challenges, as the control design must take care of issues
such as energy consumption and channel reliability. While
some interesting work has been done for the latter, such as
modeling packet dropouts and addressing time delays (see
[16], [4], [3]), energy-aware control is still a rather open
problem. The limited amount of energy available and the
cumbersome replacement of batteries motivate the urge to
develop new methods of control design that, aware of com-
munication and power consumption aspects of the network,
ensure an optimized controller-sensor operation.

As pointed out in [18], [20], the communication system is
often the dominant power hog in a wireless device. Hence, it
is desirable to turn the radio off in the absence of traffic, and
activate it only when needed. For this reason, the reduction
of the data transmission rate is a crucial point when aiming
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at limiting power consumption. Previous works addressing
the trade-off between transmission rate and performance of
control systems propose to reduce the amount of transmitted
data using signal quantization and receding horizon control
[12]. In our framework this approach is not viable, since
we aim at reducing the amount of time in which the radio
chip is turned on, in order to quit the battery use. We
propose a network transmission strategy which implies a
coordinated action between controller and sensor, so that
the number of WSN transmissions (and not strictly their
size) can be reduced, thus leading to effective power savings.
Then, we design a control system which explicitly integrates
the knowledge about the transmission strategy, taking into
consideration both nominal and robust control in the presence
of disturbances.

A related methodological approach has been adopted
in [23], addressing communication between controller and
actuators under nominal conditions. The authors propose a
simple network transmission strategy, model the networked
plant as a mixed logical dynamical (MLD) system [7], and
formulate a nominal control problem based on mixed-integer
programming. With respect to these works, we wish to avoid
the need of an MLD system in order to reduce computation
complexity and to improve system performance by exploiting
two-way channel communication.

The paper is organized as follows. The proposed trans-
mission strategy is introduced in Section II. Nominal and
robust energy-aware control schemes for the networked plant
are presented in Section III and Section IV, respectively.
Proposed controllers are tested in comparison with traditional
MPC techniques, and results are reported in Section V.
Finally, conclusions are drawn in Section VI.

II. WIRELESS TRANSMISSION STRATEGY

Consider a control system which receives feedback by an
ideal wireless sensor. Considerations on practical aspects of
real sensor networks such as measurement noise, packet loss,
channel delay, multi-hop, etc., are beyond the scope of this
paper and will be addressed in future works.

Sensor transmission strategy. At time step k, a wireless
node transmits the measurement of the state vector x(k) ∈
Rnx of the controlled process if and only if

∃i ∈ {1, 2, . . . , nx} : |xi(k)− x̂i(k)| > εi (1)

where ε = [ε1 ε2 . . . εnx ]T is the vector that collects
threshold values εi for every component xi of the state x.
More compactly, condition (1) can be expressed as x(k) −
x̂(k) 6∈ E, where E = {x : |xi| ≤ εi, i = 1, 2, . . . , nx}
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is the box defined by threshold vector ε. Vector x̂(k) is a
prediction of the measured value x(k) precalculated by the
controller and transmitted beforehand to the wireless node.
We represent the transmission condition (1) as [δ(k) = 1],
where δ is a binary variable.

The communication protocol between controller and node
is defined by two types of communications. If δ(k) = 1 at
time step k, the controller receives the measurement x(k),
computes a set of M updated predictions {x̂(k + j)}Mj=1 =
{x̂(k + 1), x̂(k + 2), . . . , x̂(k +M)}, and transmits them to
the wireless node. Hence, there is a two-way communication
between controller and node when δ(k) = 1. Moreover, if
the controller does not receive any measurement for M time
steps, i.e., δ(k) = δ(k−1) = · · · = δ(k−M+1) = 0, a one-
way communication from controller to node takes place to
send M updated predictions {x̂(k+ j)}Mj=1, computed using
x̂(k) as an estimation of the current state x(k). We refer to
M as the estimation horizon.

Since values of x̂ can be calculated with any application-
dependent estimation technique, the proposed transmission
strategy is very general and can be implemented in a wide
set of frameworks. Note that the threshold logic (1) allows
one to gather information on measured variables even when
the measurement is not received: if δ(k) = 0, it means that
x(k) ∈ E⊕{x̂(k)}, where ⊕ is the Minkowski sum operator.
In other words, from the controller’s point of view a non-
measurement is a set-measurement and with an opportune
choice of the threshold ε, this can be usefully exploited in
set-membership estimation algorithms.

At this stage of work we restrict ourselves to consider the
case where all the sensors providing feedback are embedded
in one single wireless node. This simple scenario is the basis
for the more practical case of a WSN composed by several
nodes, which all measure the same variables and transmit
data in accordance to an opportune estimation algorithm. In
this case we can treat x(k) as the result of the estimation,
rather than a direct measurement from a single sensor.

III. ENERGY-AWARE CONTROL: THE NOMINAL CASE

Consider the linear time-invariant discrete-time system

x(k + 1) = Ax(k) +Bu(k) + w(k) (2)

where x(k) ∈ Rnx , u(k) ∈ Rnu are the state and input
vectors at time k, A and B are the state transition and input
distribution matrices, with (A,B) controllable. Polyhedral
constraints x ∈ X, u ∈ U on the state and input are also
given. We assume that w(k) ∈W is an unknown but bounded
disturbance, where W ⊂ Rnx is a given polytope containing
the origin.

We aim at designing a nominal controller for (2) that
regulates the state x to the origin and that is suitable for
the proposed transmission strategy. To this end, we propose
an algorithm based on Model Predictive Control (MPC).

MPC is widely spread in industry for control design of
highly complex multivariable processes under constraints on
input and state variables [10], [17]. The idea behind MPC is
to solve at each sampling time an open-loop finite-horizon

optimal control problem based on a given prediction model
of the process, by taking the current state of the process as
the initial state. Only the first sample of the sequence of
future optimal control moves is applied to the process. At
the next time step, the remaining moves are discarded and
a new optimal control problem based on new measurements
is solved over a shifted prediction horizon. An alternative
approach to evaluate the MPC law was proposed in [8]: rather
then solving the QP problem on line for the current state
vector, by employing techniques of multiparametric QP the
problem is solved off line for all state vectors within a given
range, providing the explicit dependence of the control input
on the state and reference, which is piecewise affine (PWA)
and continuous.

In our framework, explicit formulation of MPC is a natural
choice for many reasons: primarily, it can handle constraints
and can be formulated to achieve both nominal and robust
control in presence of disturbances (see Section IV). More-
over, it allows the cheap computation of future closed-loop
values x̂(k+ j), j = 1, . . . ,M by iterating the evaluation of
a simple PWA function.

Note that in nominal conditions (i.e. w(k) = 0, ∀k) there
is no prediction error, so x̂(k) = x(k) and δ(k) = 0, ∀k.
Hence, the wireless node never sends data and the forward
transmission rate is 1/M . Another notable consequence
is that the network transmission strategy and the nominal
controller are completely uncoupled: the WSN protocol does
not have to be taken into account when designing the
control system. Thus, the implementation of the proposed
transmission strategy has a low impact on the behavior of
the controlled system, as confirmed by numerical results in
Section V.

At time k the optimization problem solved by MPC is

min
u

N−1∑
j=0

(‖Qxx(k + j|k)‖p + ‖Quu(k + j|k)‖p) +

+‖QNx(k +N |k)‖p
s.t. x(k|k) = xk,

x(k + j + 1|k) = Ax(k + j|k) +Bu(k + j|k),
x(k + j|k) ∈ X ⊆ Rnx ,

u(k + j|k) ∈ U ⊆ Rnu ,

j = 0, 1, . . . , N, (3)

where N is the control horizon, Qx, Qu, QN � 0 are
weight matrices, and ‖Qx‖2 = xTQx, ‖Qx‖∞ =
maxi=1,...,nx

|(Qx)i|, ‖Qx‖1 =
∑nx

i=1 |xi|. The initial state
xk is chosen in accordance with the transmission strategy:

xk =
{
x(k) if δ(k) = 1,
x̂(k) otherwise. (4)

Problem (3) is a linear programming (LP) problem if p =
1/∞, and a QP if p = 2. The MPC formulation (3) can
be rewritten as a multiparametric program (see [8], [5] for
details), allowing one to express the MPC control law as an
explicit function of the state:

u∗(x) = Pix+ qi if x ∈ Xi, (5)
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where Pi ∈ Rnu×nx , qi ∈ Rnu and the polyhedral sets
Xi = {x ∈ Rnx : Hix ≤ ki} are a partition of X, such that
X =

⋃
i∈I Xi.

Algorithm 1 summarizes the proposed Nominal Energy-
Aware MPC (NEA-MPC) algorithm.

Algorithm 1 Energy-Aware Nominal MPC (NEA-MPC)
Offline:

solve (3) explicitly and get {Pi, qi, Xi}i∈I ,

At k = 0:
receive x(0) from the wireless node,
set x̂(0) = x(0),
set x̂(j + 1) = (A+BPi)x̂(j) +Bqi,
x̂(j) ∈ Xi, j = 0, . . . ,M − 1,

transmit {x̂(j)}Mj=1 to the wireless node.

For all k > 0:
if x(k) is received (because (1) is satisfied)

set δ(k) = 1, otherwise δ(k) = 0.
if δ(k) = 1,

set u(k) = B(Pix(k) + qi), x(k) ∈ Xi,
set x̂(k) = x(k),
set x̂(k + j + 1) = (A+BPi)x̂(k + j) +Bqi,
x̂(k + j) ∈ Xi, j = 0, . . . ,M − 1,

transmit {x̂(k + j)}Mj=1 to the wireless node.
else

set u(k) = B(Pix̂(k) + qi), x̂(k) ∈ Xi,
if x̂(k + 1) has not yet been computed,

set x̂(k + j + 1) = (A+BPi)x̂(k + j) +Bqi,
x̂(k + j) ∈ Xi, j = 0, . . . ,M − 1,

transmit {x̂(k + j)}Mj=1 to the wireless node.

IV. ENERGY-AWARE CONTROL: THE ROBUST CASE

Algorithm 1 does not take into account the presence of the
additive disturbance w. To do that the WSN communication
protocol cannot be anymore decoupled from the controller
and has to be integrated into the optimization. Thus, we can
recast (2) to include sensor logic (1), obtaining the piecewise
linear (PWL) system1

x(k + 1) = Ax(k) +Bu(k) + w(k)

x̂(k + 1) =
{
Ax(k) +Bu(k) if δ(k) = 1
Ax̂(k) +Bu(k) otherwise

(6a)

δ(k) = 1↔ [x(k)− x̂(k) 6∈ E] (6b)

Looking for a trade-off between closed-loop performance
and battery use (that is mainly due to wireless network trans-
mission rate), we want to design a robust control algorithm
for (6), which guarantees convergence properties of the state
x despite the state disturbance and network feedback. Due to
the presence of the threshold ε and of the persistent unknown
disturbance w, the state cannot be directly regulated to the
origin. Therefore, following the idea of dual mode MPC
[21], [14], our goal is (i) to obtain a (possibly time-variant)
feedback control law u = κ(x) which steers the state to
a target set X0 despite the disturbance w and the eventual

1The set of states [x(k) x̂(k)]T such that δ(k) = 1 is not convex. This
description of (6) is kept for ease of notation without loss of generality, as
it is straightforward to build an equivalent PWA system with 2 modes and
a partition of 2nx + 1 polyhedral sets.

lack of feedback on x due to ε, while satisfying the state and
input constraints (the outer control mode); and (ii) to find a
time-invariant feedback control law u = Kx which robustly
keeps the state in X0 (the inner control mode). The set X0

is designed to be robust positively invariant, according to the
following definition [9].

Definition 1: The set X0 is robust positively invariant
(RPI) for a system of the form x(k + 1) = f(x(k), w(k))
if and only if ∀x(0) ∈ X0 and ∀w(k) ∈ W the solution
x(k) ∈ X0, ∀k ∈ N.
For further details about theory and construction of RPI sets,
see [9], [13], [15]. We remark that in this work robustness is
intended with respect to additive disturbance only. Parametric
uncertainty is not taken into account. Inner and outer control
modes are defined below.

A. Inner Control Mode

Since the actual measurement x(k) is not always available,
we consider the switching feedback control law

u(k) =
{
Kx(k) if δ(k) = 1,
Kx̂(k) otherwise, (7)

to maintain x in X0. Combining the system behavior de-
scribed by (6) with (7) we obtain

[
x(k + 1)
x̂(k + 1)

]
=


[

(A+BK)x(k) + w(k)
(A+BK)x(k)

]
if δ(k) = 1,[

Ax(k) +BKx̂(k) + w(k)
(A+BK)x̂(k)

]
otherwise.

(8)
Note that Ax(k)+BKx̂(k) = (A+BK)x(k)−BK(x(k)−
x̂(k)), where −BK(x(k)−x̂(k)) can be seen as an unknown,
but bounded disturbance v ∈ V = −BKE. Then, (8) can
be recast as:

[
x(k + 1)
x̂(k + 1)

]
=


[
(A+BK)x(k) + w(k)
(A+BK)x(k)

]
if δ(k) = 1,[

(A+BK)x(k) + w(k) + v(k)
(A+BK)x̂(k)

]
otherwise,

(9)
which is nominally stable for all appropriate designs of K.
Now, we can use known methods for the computation of RPI
sets for PWL systems [2], [19], [13]. As a simpler alternative,
one can define X0 as an RPI set for the linear system

x(k + 1) = (A+BK)x(k) + w(k) + v(k) (10)

(see [9], [15], [21] for methods to obtain RPI sets in the
linear case). This is an RPI set also for (9), provided that
X0 ⊆ X and KX0 ⊆ U.

B. Outer Control Mode

For the outer controller we propose a scheme derived from
min-max MPC [6], [21], [14], where the goal is to steer the
state to the target set X0 while minimizing a given index
performance. The basic idea is to include the knowledge
about the transmission logic in the optimization problem,
so that the evolution of the prediction x̂ can be coherently
modeled into the optimizer. In the following, we show how
the common implicit formulation of min-max MPC proposed
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in [21], [14] is not viable in our framework, and how to resort
to an efficient explicit min-max [6].

Let {w`
k+j|k} denote all the possible realizations of the

disturbance, indexed by ` ∈ L. Further, let {u`
k+j|k} denote

a control sequence associated with the `-th such realization,
and {x`

k+j|k} the corresponding state value. In principle, the
min-max MPC problem can be expressed as:

min
{u`

k+j|k}
max
`∈L

N−1∑
j=0

L(x`
k+j|k, u

`
k+j|k) (11a)

s.t. (6), (11b)
x`

k+j|k ∈ X, u`
k+j|k ∈ U, x`

k+N |k ∈ X0, (11c)

x`1
k+j|k = x`2

k+j|k ⇒ u`1
k+j|k = u`2

k+j|k, (11d)

j = 0, . . . , N − 1, ∀`, `1, `2 ∈ L,

where N is the prediction horizon, x`1
k+j|k = x`2

k+j|k ⇒
u`1

k+j|k = u`2
k+j|k is the causality constraint, which enforces

a single control input for each state, reducing the freedom on
the control sequence and making the control law independent
of the path taken to reach that state, and x`

k+N |k ∈ X0 is
the terminal set constraint [21].

Assumption 1: The stage cost L(x, u) satisfies the follow-
ing conditions [21]: L(·) = 0 if x ∈ X0, L(·) is convex
over X × U, and such that L(x, u) ≥ α(d(x,X0)) for all
(x, u) ∈ (X\X0)×U, where α is a K-function.

For linear systems, problem (11) can be solved using the
extreme disturbance realizations. Due to possible loss of
convexity, this method cannot be directly applied in PWL
systems: the influence of the disturbance on the state is
dependent on the mode switching sequence, and therefore it
cannot be predicted independently of the system trajectory,
as for linear systems. An usual strategy to overcome this
problem is to restrict the admissible control sequences to only
those which guarantee that the mode of the system is unique
for every value of the disturbance w, at each time step k [22].
In our framework this approach is not viable: for instance,
if E ⊂ W then the restricted admissible input sequences
set, when not empty, would necessarily generate a switching
sequence δ(k) = 1, ∀k, because the condition x(k)− x̂(k) ∈
E could not be guaranteed at any time step. In general,
transmission rate would grow proportionally to the size of
the disturbance set W. This behavior is not admissible,
since our global aim is to obtain a good trade-off between
transmission rate and system performance. So, we propose
to look for an approximated (conservative) solution which
exploits the linearity of the process model (2), thus lowering
the computational demand and still ensuring convergence
to the target set X0. This strategy relies on the explicit
solution of min-max MPC, obtained via multiparametric
programming [6].

Let us consider the formulation of the min-max MPC
problem given by (11a) subject to (2) instead of (6). Note that
the optimal input resulting from the solution of this problem
ensures the convergence of the state x of (2) to the target
set X0 (see proof in [21]). By using p =∞ and solving N
mp-LPs as in [6], this solution is obtained in state-feedback

piecewise affine form

u∗(x) = Pix+ qi if x ∈ Xi (12)

where Pi ∈ Rnu×nx , qi ∈ Rnu and Xi = {x ∈ Rnx : Hix ≤
ki}. Now, let us suppose to apply the feedback law derived
from (12) to the PWL system (6):

u(k) =
{
Pix(k) + qi if δ(k) = 1,
Pj x̂(k) + qj otherwise, (13)

where x(k) ∈ Xi and x̂(k) ∈ Xj. It is clear that, when
δ(k) = 1, ∀k, the input (13) is safe for system (6), since
u(k) = u∗. Else, when δ(k) = 0 and the exact value of
x(k) is not known, there is a difference between the optimal
input u∗ and the input actually applied to the system: u(k) =
u∗ + Pj x̂(k) + qj − Pix(k)− qi. So, the evolution of (6) in
closed loop with (13) can be recast as

[
x(k+1)
x̂(k+1)

]
=


[
(A+BPi)x(k)+Bqi +w(k)
(A+BPi)x(k)+Bqi

]
if δ(k)=1,[

(A+BPi)x(k)+Bqi +w(k)+e(k)
(A+BPj)x̂(k)+Bqj

]
otherwise,

(14)
where

e(k) = B(Pj x̂(k) + qj − Pix(k)− qi) (15)

is the error made with respect to the safe trajectory due
to the lack of information on the exact value of x(k). The
basic idea of our strategy is to consider e as an additional
unknown but bounded disturbance, with e ∈ Q = {e ∈ Rnx :
(15), x− x̂ ∈ E}, and to find a control law which is robust
with respect to this disturbance. We cannot directly set up
a multiparametric optimization problem including e, since
the polytope Q is dependent on {Pi}i∈I , {qi}i∈I , which
are nonlinear functions of x. To overcome this issue, we
propose to design an iterative algorithm, which at every step
h computes the updated set Qh, the gains {Pi}hi∈I , {qi}hi∈I
and the partition {Xi}hi∈I as a function of the previous set
Qh−1. Let us consider the linear system

x(k + 1) = Ax(k) +Bu(k) + w(k) + e(k) (16)

and the associated min-max MPC problem

min
{u`

k+j|k}
max
`∈L

N−1∑
j=0

(‖Qxx
`
k+j|k‖p + ‖Quu

`
k+j|k‖p)

s.t. (16), (11c), (11d). (17)

together with its explicit solution in state feedback form. The
structure of the proposed offline iterative algorithm can now
be defined as in Algorithm 2.

Algorithm 2 Iterative explicit min-max MPC
1. set h = 0, Q−1 = ∅, Q0 = {0nx}.
2. while Qh 6⊆ Qh−1

2.1. solve (17) with e ∈ Qh,
get the explicit solution data {Pi, qi, Xi}hi∈I .

2.2. set Qh+1 = hull{Qh+1
ij }(i,j)∈I×I , where2

Qh+1
ij = {e ∈ Rnx : x− x̂ ∈ E, x ∈ Xh

i , x̂ ∈ Xh
j ,

e = B(Ph
j x̂+ qh

j − Ph
i x− qh

i )}.
3. set {Pi, qi, Xi}i∈I = {Pi, qi, Xi}h−1

i∈I ,
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The transmission strategy has to be slightly modified
in order to deal with the dual mode MPC coherently. In
addition to (1), the wireless node is required to transmit the
measurement also when the state x(k) and its prediction x̂(k)
lie in different control mode sets:

[δ(k) = 0] ↔ [x(k)− x̂(k) ∈ E]
∧ [[x(k) ∈ X0, x̂(k) ∈ X0]
∨ [x(k) 6∈ X0, x̂(k) 6∈ X0]].

(18)

We can finally define the structure of the Robust Energy-
Aware MPC in Algorithm 3 and state its convergence prop-
erty in the following theorem.

Algorithm 3 Robust Energy-Aware MPC (REA-MPC)
Offline:

run Algorithm 2 and get {Pi, qi, Xi}i∈I ,
compute K and X0 as in Section IV-A.

At k = 0:
receive x(0) from the wireless node,
set x̂(0) = x(0),
set x̂(j + 1) = (A+BPi)x̂(j) +Bqi,
x̂(j) ∈ Xi, j = 0, . . . ,M − 1,

transmit {x̂(j)}Mj=1 and X0 to the wireless node.

For all k > 0:
if x(k) is received (because (18) is satisfied)

set δ(k) = 1, otherwise δ(k) = 0.
if δ(k) = 1,

if x(k) ∈ X0,
set u(k) = Kx(k).

else
set u(k) = B(Pix(k) + qi), x(k) ∈ Xi,
set x̂(k) = x(k),
set x̂(k + j + 1) = (A+BPi)x̂(k + j) +Bqi,
x̂(k + j) ∈ Xi, j = 0, . . . ,M − 1,

transmit {x̂(k + j)}Mj=1 to the wireless node.
else

if x̂(k) ∈ X0,
set u(k) = Kx̂(k).

else
set u(k) = B(Pix̂(k) + qi), x̂(k) ∈ Xi,
if x̂(k + 1) has not yet been computed,

set x̂(k + j + 1) = (A+BPi)x̂(k + j − 1) +Bqi,
x̂(k + j) ∈ Xi, j = 0, . . . ,M − 1,

transmit {x̂(k + j)}Mj=1 to the wireless node.

Theorem 1: The state of (2), which receives feedback ac-
cording to (18) and is controlled with Algorithm 3, converges
asymptotically to the terminal set X0.

Proof: The proof follows from Theorem 1 in [21], not-
ing that the explicit feedback control law given by Algorithm
2 is designed to be robust with respect to both disturbance
w and feedback error e induced by the network transmission
strategy (18).

V. SIMULATION RESULTS

To illustrate the performance of the proposed algorithms
consider the second order discrete-time linear system with
sample time Ts = 0.1s, A =

[
0.9988 0.25
−0.01 0.9988

]
, B =

2In the computation of Qh the convex hull operator is used instead
of the union operator to ease computability. Whether this introduces
conservativeness is an open issue.

Fig. 1. Terminal set for RMPC (a) and REA-MPC (b).

[
0 1

]T
and threshold vector ε =

[
0.1 0.1

]T
. Limits

on state, input and disturbance variables are |xi| ≤ x̄i,
|u| ≤ ū, |w| ≤ w̄, with x̄ =

[
5 5

]T
, ū = 5, w̄ =[

0.05 0.1
]T

, i = 1, 2.
The proposed energy-aware techniques are tested in com-

parison with standard deterministic and robust MPC control
schemes, where the wireless node simply transmits the
measurement at every time step. Prediction horizons used
in nominal and robust control are Nn = 10 and Nr = 3,
respectively, and the estimation horizon is M = 10. The
weight matrices are Qx = QN = I2, Qu = 1, and p = ∞.
The constant gain K =

[
−0.2339 −0.4542

]
is used for

the inner mode both in the standard robust MPC (RMPC) and
in the REA-MPC algorithms. The terminal sets X0 for the
two controllers are depicted in Figure 1. Since the energy-
aware approach is more conservative, a larger terminal set
is used in order to preserve feasibility of the outer mode
controller (the use of the same set in Figure 1b for both
algorithms would penalize the performance of RMPC).

As a benchmark to evaluate the performance of the pro-
posed algorithms two quantities are considered: the transmis-
sion rate of the wireless node, calculated considering both
transmitted and received packets3, and the cumulated cost
function J i

exp defined as:

J i
exp =

T∑
k=1

(‖Qxx
i(k)‖∞ + ‖Quu

i(k)‖∞), (19)

where i denotes the i-th disturbance realization and T =
100 is the number of simulation time steps. J (N)i

exp and J (R)i
exp

are the cumulated costs for a standard nominal and robust
MPC algorithm, respectively, and are defined as in (19) on
the corresponding closed-loop trajectories. In simulation, the
initial states x(0) are chosen randomly among the vertices
of the feasible set of the REA-MPC controller.

Table I reports simulation results averaged over 100 re-
alizations, while Figures 2 and 3 show histograms of Jexp

and transmission rate for Energy-Aware Nominal and Robust
Energy-Aware controllers (data are given as percentage of
analogue values from standard MPCs).

NEA-MPC achieves a good trade-off, with a reduction in
transmission rate of 55.4% and a loss in experimental cost
function of 1.58%, on average, with respect to a standard
nominal MPC. REA-MPC grants similar savings in radio
utilization (−50.22%), with a higher Jexp average value in

3We assume equal power consumption in transmitting and receiving
packets, as is usual for short range wireless nodes (e.g. see [11]).
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TABLE I
ENERGY-AWARE MPC VS. TRADITIONAL MPC: SIMULATION RESULTS

Controller Jexp Tx. Rate
Standard Nominal MPC 30.39 100.00%
Standard Robust MPC 31.39 100.00%
Nominal Energy-Aware MPC 30.87 44.66%
Robust Energy-Aware MPC 34.23 49.78%
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Fig. 2. Histogram of cost function Ji
exp for NEA-MPC (a) and REA-MPC

(b), normalized with respect to J(N)i
exp and J(R)i

exp , respectively.

comparison to standard RMPC (+9.05%), owing to its more
conservative nature.

VI. CONCLUSIONS AND FUTURE WORK

This paper has investigated an energy-aware approach in
control design for systems with wireless sensor feedback,
based on a novel WSN transmission strategy and a properly
tuned MPC control algorithm. A nominal controller and a
robust controller with guaranteed convergency properties are
proposed. Energy-aware algorithms are tested in simulation
in comparison with more traditional MPC techniques with
continuous transmission rate. Results show a good trade-off
between system closed-loop behavior and transmission rate:
both the nominal and the robust control schemes provide
an average transmission rate of about 45% − 50% (which
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Fig. 3. Histogram of transmission rate for NEA-MPC (a) and REA-
MPC (b).

roughly corresponds to doubling the life of the wireless
sensor), with a narrow loss in system performance (< 2% in
the nominal case, around 9% in the robust case).

Ongoing research on energy-aware MPC control includes
aspects of real WSNs such as multiple sensing nodes, mea-
surement errors, packet losses, and multi-hop protocols.
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