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Abstract— This paper investigates model predictive control
(MPC) techniques based on hybrid models for a multi-mass
magnetic actuator. The actuator has four operating modes
depending on the mutual interaction of two moving masses
and is modeled as a hybrid dynamical system. The control law
optimizes a performance index and enforces several types of
constraints: soft-landing during collisions to reduce mechanical
wear, current limits and consequent position-dependent nonlin-
ear bounds on the available magnetic force, and restrictions on
the positions of the moving masses. Two different approaches
are considered: (i) a hybrid MPC design based on the full two-
mass model, and (ii) a switched MPC control design, which
switches between two simpler hybrid MPC controllers, one for
the case in which the masses are moving in contact, and the
other case where the masses are decoupled, commanded by
a simple switching logic. Simulation results and performance
comparisons of the two control schemes are discussed.

I. INTRODUCTION

Magnetic actuators represent an effective technology for

high performance actuation mechanisms with high precision

and high reliability, in part due to the reduction in mechanical

stresses and friction that they provide. A large interest in

magnetic actuators exists in the automotive industry [1],

[2] to control different types of devices that are operated

several times per second. On the other hand, controlling

magnetic actuators is a challenging task. A magnetic actuator

is composed of an electrical and magnetic subsystem, and of

a mechanical subsystem. The overall dynamics are nonlinear

and stringent constraints must be enforced to ensure the

correct operation of the controlled device. Model Predictive

Control (MPC) [3] is a promising technique for control of

such devices. The MPC strategy is based on the solution of a

constrained optimization problem, which enforces constraints

on state and input variables, and optimizes a performance

index related to the desired tracking properties of the closed-

loop dynamics. The use of MPC in applications has been

traditionally limited by the computation time required to

solve the optimization problem online. Explicit MPC [4], [5]

overcomes this limitation by precomputing the solution of the

optimization problem and providing the optimal control law

in an easily implementable piecewise affine form.
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Fig. 1. Multibody magnetic actuator schematics.

Previous research [6], [7] showed that MPC can be

satisfactorily applied to magnetic actuators in which the

mechanical component is modeled as a single mass-spring-

damper system. By decoupling the nonlinear (faster) elec-

trical and magnetic dynamics from the mechanical ones, the

control problem was solved by a hierarchical controller. More

specifically, the control system can be composed of an inner-

loop controller regulating the electrical subsystem to track

the reference provided by a higher level MPC controller that

plans the dynamics of the mechanical subsystem. In [6] it

was shown that the limitations on the available magnetic

force can be modeled as a state-dependent piecewise affine

saturation function, thereby permitting the MPC controller

to be designed using hybrid MPC methodologies [5], [8].

In [7] it was shown that a single hybrid MPC controller

can be designed for the full system dynamics, obtaining

superior performance, but at a price of an excessive controller

complexity.

To move beyond the assumption of a single mass-spring-

damper mechanical subsystem, in this paper we consider a

more complex control problem, relevant to a wider class of

actuators, in which the actuator is composed by two possibly

impacting masses (see Figure 1). Each mass is subject to

a spring force and damping, one of them (m 1) can also

be attracted by the magnetic force generated by a coil.

The actuated mass m1 is used to push the other mass m2,

which represents the physical system to be displaced. Mass

m1 models a slider attracted by the coil and able to move

mass m2. Compared to the single-mass case [6], [7], the

description of the overall dynamics is much more involved

because there are different operating modes. The two masses
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may be in contact between them and/or with a mechanical

stop, or in free motion.

Hybrid dynamical systems [9], which allow the defini-

tion of different discrete operating modes, are a natural

framework to model such a multi-mass actuation system. To

mitigate the critical effect of violent impacts, soft-landing

constraints are enforced in the design. These reduce the

relative velocity (mass-to-mass or mass-to-stop) when the

impact is approaching. In this way, not only mechanical wear

and noise are prevented, but also most impacting phenomena

become negligible (for a thorough treatment of continuous-

time mechanical systems with impacts the reader is referred

to [10], [11], as well as to the SICONOS platform [12], a

software tool for modeling, simulation, control and analysis

of non-smooth dynamical systems).

This paper is organized as follows. The magnetic actuation

system is modeled in Section II as a discrete-time hybrid me-

chanical system with four different operating modes. Based

on such a model, Section III is devoted to the design of a

hybrid MPC controller which enforces all the aforementioned

constraints, and provides closed-loop simulation results. A

simpler approach is proposed in Section IV based on two

switched single-mass MPC controllers, one designed for the

two masses in contact, the other for the two masses in free

motion, and both coordinated by a simple switching logic.

The reported simulation results show that the performance

gets slightly worsened, but the complexity of the control law

is reduced.

II. HYBRID MODEL

The multibody magnetic actuator considered in this paper

is decomposed into two subsystems: a mechanical one based

on two (possibly impacting) masses, and an electromagnetic

one generating the magnetic force that actuates the system.

A. Mechanical Subsystem

The schematics of the magnetic actuator are shown in

Figure 1, where dmax = 4 mm and dmin = −0.5 mm.

The system is composed of two masses m1 = 0.08 Kg

and m2 = 0.07 Kg. Mass m1, referred to as the “active

mass”, is subject to the magnetic force Fm generated by the

coil, which can attract, but not repel, the mass. It is also

affected by a spring with stiffness k1 = 1.5 · 105 N/m and

with neutral position x̄n1 > dmax > 0, and by a damper with

friction coefficient β1 = 15 N s/m. Mass m2, referred to as

the “passive mass”, is subject to the effects of a spring with

stiffness k2 = 1.5 · 105 N/m and neutral position x̄n2 < 0,

and of a damper with friction coefficient β2 = 15 N s/m. A

mechanical stop prevents m2 to move to a negative position,

so that a preloaded spring force FPL = k2x̄n2 = 100 N is

present at the position x = 0. The two masses can interact:

The force that the active mass exercises on the passive

mass is indicated by F1,2, while the reaction force of the

passive mass on the active one is indicated by F2,1 = −F1,2.

Because of the preload force of the spring connected to m 2

at x2 = 0, a force F1,2 > −FPL is necessary to move m2.

In conclusion, the mechanical system is described by the

equations

ẍ1 =
1

m1

(

− k1(x1 − x̄n1) − β1ẋ1 − Fm + F2,1

)

ẍ2 =
1

m2

(

− k2(x2 − x̄n2) − β2ẋ2 + F1,2

)

,

(1)

where F2,1 = −F1,2 and Fm ≥ 0, as m1 can be moved only

towards the coil placed in the negative direction. When the

two masses are not in contact, the interaction forces satisfy

F1,2 = F2,1 = 0 and the dynamics in (1) become decoupled.

Instead of modelling the complex dynamics during the

interaction of the two masses (F1,2, F2,1 �= 0) the system

behavior is represented as a hybrid dynamical system with

different operating modes, under the following assumption.

Assumption 1: The impact between m1 and m2 is totally

inelastic, and immediately after the impact ẋ2 = ẋ1.

Assumption 1 is equivalent to say that m1, m2 stick and

move together immediately after the impact and is useful

to avoid modeling the transition from the decoupled to the

coupled mass dynamics. Note that this simplified model will

be used for control design, its purpose is not to reproduce

accurately in simulation the behavior of the real system.

Rather than complicating the prediction model and obtaining,

as a result, a more complex control law, modeling errors will

be dealt with by MPC feedback. Assumption 1 can also be

argued to hold thanks to our control approach which assures

soft-landing of the parts with no bounce, as it will be shown

in Section II-C.

We consider four operating modes:

M1) m1, m2 move separately in free motion,

M2) m1 moves freely, m2 is stuck at the stop (x2 = 0),

M3) m1, m2 are both stuck at the stop (x1 = x2 = 0),

M4) m1, m2 move together.

Mode M1 occurs when both masses are moving indepen-

dently (no contact between them), and are therefore treated

as separate bodies (F1,2 = F2,1 = 0 in (1)).

Mode M2 occurs when m2 is blocked at the stop, so x2 =
0, while m1 is freely moving (hence, x1 < 0). The equations

are

ẍ1 =
1

m1

(

− k1(x1 − x̄n1) − β1ẋ1 − Fm

)

(2a)

x2 = 0, ẋ2 = 0. (2b)

Mode M3 occurs when both masses are blocked at the

stop, which is possible when F1,2 ≤ FPL. The equations

describing M3 are

x1 = 0, ẋ1 = 0 (3a)

x2 = 0, ẋ2 = 0. (3b)

Mode M4 occurs when the two masses are stuck together

and move as a single body. The system equations become

ẍ1 =
1

m1 + m2

(

− k1(x1 − x̄n1)

−k2(x1 − x̄n2) − (β1 + β2)ẋ1 − Fm

)

(4a)

x2 = x1, ẋ2 = ẋ1. (4b)
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δP , δD → 0 0 0 1 1 0 1 1
δB , δC ↓

0 0 M1 M1 M1 M1
0 1 M4 M1 M4 M1
1 0 M2 M2 M2 M2
1 1 M3 M3 M4 M4

TABLE I

MODE-SELECTION TABLE

By introducing the following binary variables

[δB = 1] ↔ x2 ≤ 0, (5a)

[δC = 1] ↔ x1 ≥ x2, (5b)

[δP = 1] ↔ −Fm − k1(x1 − x̄n1) − β1ẋ1 −

k2(x2 − x̄n2) > 0, (5c)

[δD = 1] ↔
1

m1

(

− k1(x1 − x̄n1) − β1ẋ1 − Fm

)

<

1

m2

(

− k2(x2 − x̄n2) − β2ẋ2

)

, (5d)

the conditions for which exactly one of modes M1, M2, M3,

M4 is active are defined by Table I.

The meaning of the binary variables in (5) is the following:

• δB = 1 indicates that m2 has reached a stop;

• δC = 1 is verified when m1 has reached m2;

• δP = 1 means that m1 is able to push m2 to beat the

preload force −k2x̄n2;

• δD = 1 happens when the acceleration of m1 is smaller

than the acceleration of m2, so that the two masses tend

to separate.

According to Table I the following mutually exclusive

Boolean variables

c1 = (¬δB ∧ ¬δC) ∨ (¬δB ∧ δC ∧ δD) (6a)

c2 = δB ∧ ¬δC (6b)

c3 = δB ∧ δC ∧ ¬δP (6c)

c4 = (¬δB ∧ δC ∧ ¬δD) ∨ (δB ∧ δC ∧ δP ) (6d)

TRUE = c1 ⊕ c2 ⊕ c3 ⊕ c4 (6e)

identify the corresponding active mode.

In order to setup the MPC algorithm described in Sec-

tion III, the dynamics in each of the operating modes M1,

M2, M3, M4 are discretized with sampling period Ts =
0.2 ms, obtaining the switched affine dynamics

x(k + 1) = Aix(k) + BiFm(k) + fi, i = 1, . . . , 4 (7)

where x =

[ x1

ẋ1

x2

ẋ2

]

. Note that while smaller sampling periods

could have been used, this would increase the average

computational load per time unit of the model-based control

laws proposed in the following sections.

Together with the event conditions (5) and the mode

selection rules of Table I, the switched affine dynamics (7)

form a Discrete Hybrid Automaton (DHA) [13].

i x̄i
1

[mm] pi [hN/mm] qi [hN]

0 −0.50 −12.97 40.02
1 2.14 −6.55 26.29
2 2.84 −2.97 16.12

TABLE II

PARAMETERS OF PIECEWISE AFFINE APPROXIMATION (11) OF (10)

B. Electrical Subsystem

The electrical subsystem is responsible for converting the

primary system input, the voltage, into magnetic force. The

magnetic force is a function of the current feed into the coil

Fm =
kai2

(ℓ + kb)2
, (8)

where ℓ is the distance between the active mass and the coil

(ℓ = x1 + 0.5 mm), and ka and kb are physical constants

(ka = 3.74 ·10−5 Nm2/A2, kb = 4.16 ·10−5 m). The relation

between current i and voltage V for the circuit considered

is given by Faraday’s law

λ̇ = V − Ri, (9)

where λ is the magnetic flux linkage, which is in its turn

a function of i. Thus, the equation that binds V and Fm

is nonlinear and it would increase the complexity of the

problem. However, in a situation where the electrical dy-

namics are faster than the mechanical ones [6], it is possible

to decouple the control of the electrical subsystem from

the control of the mechanical subsystem. Accordingly, a

model predictive controller based on the mechanical model

generates a force reference which is fed into the controller

for the electrical subsystem to produce the current which

results in the specified force, according to a hierarchical

control strategy. The controller for the electrical subsystem

can be a standard nonlinear controller that is able to make

the force track the desired force Fm. Such a hierarchical

control approach is also used here, under the condition that

the commanded force Fm should be reproducible by the

electrical subsystem: Given the maximum current imax =
22 A due to power electronics limitations, the MPC controller

must enforce the saturation constraint

0 ≤ Fm ≤
kai2max

(ℓ + kb)2
, (10)

which is a nonconvex constraint. Note that (10) is a state-

dependent saturation. Following the approach of [6] we

approximate (10) through the piecewise affine constraint

0 ≤ Fm ≤ pix1 + qi, if x1 ∈ (x̄i
1, x̄

i+1
1 ], i = 0, . . . , 2 (11)

where x̄0
1 = −0.5 mm, x̄3

1 = 4 mm and x̄1
1 = 2.14 mm,

x̄2
1 = 2.84 mm are the breakpoints at which the linear

approximation changes. The full set of parameters of the

piecewise affine approximation is reported in Table II.

The PWA saturation function in (11) is modeled by

introducing two auxiliary binary variables

[δm1 = 1] ↔ [x1 ≤ x̄1
1] (12a)

[δm2 = 1] ↔ [x1 ≤ x̄2
1] (12b)
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with [δm1 = 1] → [δm2 = 1], and two auxiliary continuous

variables

zm1 =

{

(m0 − m1)x1 + (q0 − q1) if δm1 = 1
0 if δm1 = 0

(13a)

zm2 =

{

m1x1 + q1 if δm2 = 1
m2x1 + q2 if δm2 = 0

(13b)

so that the saturation constraint can be expressed as

0 ≤ Fm ≤ zm1 + zm2. (14)

C. Soft Landing

To prevent mechanical wear and noise due to violent

impacts, and at the same time to validate our assumption

of neglecting impact dynamics and its effects on velocities,

we want to impose a soft-landing constraint in the model,

requiring that the velocity gets smaller and smaller when

approaching a contact between m1 and m2 and between m2

and the stop at x2 = 0. Accordingly, the constraints are

defined by

[c1 = 1] ∨ [c2 = 1] → [ẋ1 − ẋ2 ≤ ksl1(x2 − x1) + hsl1]
[c1 = 1] ∨ [c4 = 1] → [−ẋ2 ≤ ksl2x2 + hsl2]

(15)

where ksl1, ksl2, hsl1, hsl2 ≥ 0. The negative sign in front

of the second equation in (15) is due to the fact that when

m2 is approaching the stop, the velocity ẋ2 is negative. Note

that we do not consider here the effects of the impacts on the

velocity after the collision. By the momentum conservation

law the velocity v of m1 + m2 after the impact satisfies

m1v1 +m2v2 = (m1 +m2)v, where v1, v2 are the velocities

of m1, m2 before the impact. In our model we assume

instead v = v1. Despite the fact that the conservation law

could be enforced by introducing a reset mode [13], such an

approach would complicate the model. Thus, we prefer to

keep a modelling error, which is anyway small because the

soft-landing constraints force the relative velocity v1 − v2

before the impact to be small, so that v ≈ v1.

Note that constraints (15) are related to the desired closed-

loop behavior and do not lead to system failures if mildly

violated. On the other hand, enforcing them ensures a certain

robustness with respect to disturbance and modelling errors.

Thus, they are treated as soft constraints, where “soft” here

means that they may be violated, although such violations

will be heavily penalized in the control setup of Section III.

Soft constraining is achieved by introducing two variables

χ1 =

{

ẋ1 − ẋ2 − ksl1(x2 − x1) − hsl1 if c1 = c2 = 1
0 otherwise

(16a)

χ2 =

{

−ẋ2 − ksl2x2 − hsl2 if c1 = c4 = 1
0 otherwise

(16b)

and by imposing that

χ1 ≤ ρ (17a)

χ2 ≤ ρ. (17b)

where ρ ≥ 0 is a slack variable that should ideally be zero

to enforce the soft-landing constraint.

D. Discrete-time Hybrid Model

The DHA described by (5), (7) and Table I, together

with the piecewise affine saturation constraint (11) and the

soft-landing constraints (16), (17) are modeled through the

modeling language HYSDEL [13]. The DHA is converted

automatically by the Hybrid Toolbox [14] into a mixed

logical dynamical (MLD) system form [8]

x(k + 1) = B3z(k), (18a)

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5, (18b)

where u(k) = [Fm(k) ρ(k)]′ ∈ R
2, δ(k) =

[δB, δC , δP , δD, c1, c2, c3, c4, δm1, δm2]
′ ∈ {0, 1}10,

and z(k) ∈ R
15 are auxiliary real-valued variables re-

quired to express (7), (11) (as described in (13)), and (15).

The inequalities (18b) include a big-M representation [8]

of (5), (12), (13), and (16), a conversion of (6) into con-

junctive normal form and then into linear inequalities [15],

and inequalities (14), (17).

E. Position Constraints

Because of the system structure, the model is valid when

dmin ≤ x1 ≤ dmax (19a)

0 ≤ x2 ≤ dmax (19b)

x1 ≤ x2 (19c)

where dmin = −0.5mm, and dmax = 4mm. Constraints (19)

will be enforced by the control strategy proposed in the next

section.

III. HYBRID MODEL PREDICTIVE CONTROL

Consider the finite-time optimal control problem

min
{u(k)}N−1

k=0

(x(N) − rx)T QN (x(N) − rx)+

N−1
∑

k=0

(x(k) − rx)T Qx(x(k) − rx)+

(u(k) − ru)T Qu(u(k) − ru) (20a)

subject to : MLD dynamics (18) (20b)

position constraints (19) (20c)

where N = 3 is the prediction horizon, rx = [rx1 0 rx2 0]
is a state reference vector, and ru = [rFm

0]′ is a consistent

input reference so that when x = rx the input to keep that

state value has null cost. The position is expressed in mm,

the velocity in mm/s, and the force in 102N. The optimizer

contains both the input Fm and the slack variable ρ that

softens the soft-landing constraints. The weights are Qx =

QN =

[

1 0 0 0
0 0 0 0
0 0 10 0
0 0 0 0

]

, Qu =
[

10−2 0
0 102

]

. The rationale behind

the choice of the weights is that the primary objective is to

have m2 tracking its reference position rx2, but we also want

m1 to track the same reference rx1 = rx2. The reason for

the latter is that when rx2 cannot be reached by m2, that
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Fig. 2. Closed-loop hybrid MPC simulation. Time axis is expressed in
seconds

is when rx2 < 0, it may be still useful to position m1 on

certain negative positions while m2 is stopped at x = 0. The

large weight 100 on ρ allows ρ to be sensibly greater than

zero only when a violation of the soft-landing constraints is

unavoidable. Note also that position and force constraints are

enforced instead as hard constraints.

The MLD hybrid dynamics (18) has the advantage of

making the optimal control problem (20) solvable by mixed-

integer quadratic programming (MIQP). At each time step

t, given the current reference values rx(t), ru(t) and the

current state x(t), Problem (20) is solved to get the first

optimal input sample F ∗
m(0), which is commanded as the

reference magnetic force to the inner-loop controller at the

lower hierarchical level.

A. Simulation Results

The behavior of the system is simulated for a given

reference profile rx2 during 0.1 s, corresponding to 500
sampling steps. The input reference is rFm

= k1(x1e−rx1)+
k2(x2e−rx2), when the position reference is feasible for both

m1 and m2, and to rFm
= k1(x1e−rx1), when the reference

is feasible for m1 only. The results are reported in Figure 2,

where we assume that the inner-loop controller is fast enough

to make the actual magnetic force perfectly track the value

commanded by the MPC algorithm.

From the simulation we see that for a given reference value

which is feasible for m1 only, rx1 = rx1 = −0.5 mm, the

controller leads the two masses at the closest feasible points

(x1 = −0.5 mm, x2 = 0 mm, respectively). The availability

of the control force Fm is ensured since hard constraint (10)

is enforced. The overshoots in the position tracking are

due to the small magnetic force available when the masses

are far from the coil. They can be reduced by increasing

the prediction horizon, through which the controller can

anticipatively detect that the breaking force will become

small, hence deciding to start breaking in advance.

The soft-landing constraints (15) are enforced. Figure 3

reports the phase plane (x2, ẋ2), the state trajectory of mass

m2 (solid line) during the interval [0.01, 0.053] s, and the

lower bound (dashed line) of the region in the plane (x 2, ẋ2)

0 0.5 1 1.5 2 2.5
−3000

−2500

−2000

−1500

−1000

−500

0

500

x2 [mm]

v
2

 [
m

m
/s

]

(x2,v2) trajectory

constraint boundary

Fig. 3. Phase plane trajectory (x2, ẋ2) and soft-landing constraint

where the soft-landing constraint of m2 with respect to the

stop is satisfied. The absolute value of the velocity is reduced

as the mass approaches 0 mm, to obtain the soft landing.

IV. SWITCHING MPC IMPLEMENTATION

The results of Section III-A (Figure 2) highlight that the

system is mainly working in modes M1 or M2, where m1

moves freely from m2, and mode M4, where the masses

move together. For comparison purposes we design two

simpler MPC controllers, one based on M1/M2 and one

based on M4, and let an external logic switch them based on

current mass positions. Although we expect the performance

of the closed-loop system to be degraded because the mode

switching is not considered in the prediction model, the

associated MIQP problems will be much simpler to solve.

The first controller (MPC1) is valid when m1 and m2 are

not in contact and it neglects the dynamics of m2. Thus, it

is based on the dynamics of m1

ẍ1 =
1

m1

(

− k1(x1 − x̄n1) − β1ẋ1 − Fm

)

. (21)

The system dynamics (21), the force constraint (11), and the

soft-landing constraint ẋ1− ẋ2 ≤ ksl1(x2−x1)+hsl1+ρ are

formulated as an MLD system. Note that when m1 and m2

move independently, only the soft-landing of m 1 towards m2

can be enforced, since only m1 can be controlled through the

magnetic coil.

The cost function minimized by MPC1 for the freely

moving mass m1 is

10(x1(3) − rx2)
2 +

2
∑

k=0

10(x1(k) − rx2)
2 +

0.01(Fm(k) − rFm
)2 + 100ρ2(k) (22)

subject to the reduced MLD model, position con-

straints (19a), (19c). It is pointless to weight the tracking

error of m2, since in the prediction model either x2 = x1,

when the two masses are in contact, or the input does not

affect x2, when the two masses are not in contact. Note

that x2, ẋ2 are treated by MPC1 as measured disturbances.

More in detail, in the prediction model of MPC1 we do not

account for the stop at 0 mm and we use a constant velocity
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Fig. 4. Switching MPC control law. Time axis is expressed in seconds

approximation of the dynamics of m2

x2(t + k) = x2(t) + ẋ2(t)kTs. (23)

The second controller (MPC2) accounts for the situation

in which the masses are moving together and the dynamics

are described by (4). In this case only the soft-landing of m 2

approaching the stop, defined by constraints (16b) and (17b),

is enforced, together with the force saturation constraint (11)

and the position constraint (19b). The same values for the

weights and horizon defined for controller MPC1 are used.

The switching logic is defined as follows: if x1 < x2 then

use MPC1, otherwise use MPC2.

We simulated the switching MPC control law under the

same initial conditions and setpoints of Section III. The input

command Fm is applied to the full MLD model (18) which

is only used for simulation purposes. The results of the

simulation are reported in Figure 4. The results are very close

to the ones obtained for the full controller. The cumulative

squared tracking error E =
∑500

k=0 (x2(k) − rx(k))2 is

Efull = 127.9 for the full controller of Section III and is

Eswitch = 147.1 for the switching controller. The degradation

of the performance amount to ≃ 15%, and one may note

that a part of the cumulative squared tracking error is due

to the one-step delay of the controller in reacting to the

reference variations. By removing this additional bias of the

tracking error, which amounts to 25.7 for the simulation

considered here and which does not depend on the choice

of the controller, the performance degradation caused by the

use of the switched controller is ≃ 19%, still close. In terms

of input action the performance degradation of the switched

controller is more evident. The squared cumulative input

action Eu =
∑500

k=0 (Fm(k)− rFm
(k))2 is Eu

full = 1.06 · 103

for the full controller of Section III and is E u
switch = 1.58·103

for the switching controller. On the other hand, the switching

MPC controller problems are much simpler to solve. The

average solution time for Problem (20) on an Intel Pentium-

M 2 GHz, equipped with 1 GB RAM and running Matlab

7 and Cplex 9.1, is 0.064s, while the average solution time

for MPC1 and MPC2 is 0.007s, i.e., 89% less. Moreover,

while the full MPC, due to the large number of discrete

variables, may be too complex for implementation as an

explicit controller [5], the switching MPC controller can

be implemented as an explicit MPC controller. The two

simplified prediction models are nothing else than mass-

spring-damper systems, with different parameters of mass,

spring stiffness and damping coefficient. The results of [7]

have shown that the explicit implementation of the MPC con-

troller that enforces state-dependent saturation, soft-landing

and position constraints on a mass-spring-damper system is

feasible within the specified sampling time.

V. CONCLUSIONS

In this paper we have considered a multibody automotive

mechatronic actuator in which the mechanical subsystem

is composed by two colliding masses. By applying hybrid

model predictive control concepts, the mass which is not

directly controlled by the magnetic force is able to track a

desired reference position signal. Two different MPC design

approaches have been investigated based on a single (more

complex, but higher fidelity) hybrid model with two masses

and four operating modes, and based on a switched MPC

design in which two simpler MPC controllers are triggered

by an external logic unit.
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