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Abstract— In this paper we examine a relationship ex-
isting among linear hybrid automata (LHA) and piecewise
affine (PWA) systems. While a LHA is an autonomous non-
deterministic model, a PWA system is a deterministic model
with inputs. By extending continuous-time PWA models to
include the dynamics of discrete states and resets, we show in
a constructive way that a LHA can be equivalently represented
as a PWA system, where equivalent means that the two systems
generate the same trajectories. The key idea is to model the
uncertainty associated with LHA transitions as an additional
vector of input disturbances in the corresponding PWA model.
By linking the LHA modelling framework (popular in computer
science) with the PWA modelling framework (popular in
systems science), our equivalence result allows one to expand
the use of several existing control theoretical tools (for stability
analysis, optimal control, etc.) developed for PWA models to a
much wider class of hybrid systems.

I. INTRODUCTION

Hybrid systems can be considered as a cross-point between
computer science and control theory: they can be seen as a
discrete system (an automaton) that reacts to a continuous
system (a physical process) by influencing its evolution, or,
by switching the point of view, as a physical process whose
parameters change according to a discrete dynamics, which
in turn is influenced by the process itself.

A large variety of mathematical models have been pro-
posed for hybrid systems with different modelling capabil-
ities and different purposes. In particular, control theorists
have mainly focused on piecewise affine (PWA) systems [1],
mixed logical dynamical (MLD) systems [2], and other
classes of hybrid systems like (extended) linear complemen-
tarity systems (ELC/LC) and min-max plus scaling (MMPS)
systems (see [3] and the references therein). In parallel, sev-
eral models have been proposed also by computer scientists,
among them hybrid automata (HA) [4] are probably the
most powerful model. System theoretical properties of HA
were investigated in [5]. Linear hybrid automata (LHA) [4],
[6] and timed automata (TA) [7] are also popular in the
computer science community. Different models have differ-
ent purposes, in particular computer scientists are mainly
concerned with simulation and verification [8], [9], while
control theorists are mainly concerned with stability analy-
sis [10], identification [11], model predictive control [2], and
reachability analysis/verification [12].

Equivalence relations between MMPS, ELC, LC, MLD
and PWA systems were shown, under mild conditions, in [3].
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A precise relation between HA, LHA and TA was shown
in [4]. In this paper we connect the above two sets of
equivalent models by showing that, under mild assumptions,
a LHA can be represented as a PWA system. We give a
constructive proof of this by explicitly showing how an
equivalent PWA system of a given LHA can be defined.
The constructive procedure is also invertible, namely a PWA
system obtained through it can be converted back to the
original LHA.

In Section II we introduce LHA models and in Section III
we describe PWA models and their extension to include
discrete dynamics and resets. The representation of the con-
tinuous and discrete LHA dynamics in the PWA formalism is
described in Section IV. A discussion of the results concludes
the paper in Section V.

A. Notation

In this paper we adopt the formalism typically used in
computer science for describing LHA, and the formalism of
control theory for PWA systems. Sets of reals and general
linear subspaces are indicated with calligraphic letters (such
as X ). The domains of Boolean variables is {0, 1}, the
set of reals is R, the set of positive reals is R+, and the
set of nonnegative reals is R0. The symbols ≤, ≥, >,
< denote componentwise inequality relations when used
between vectors. The symbols ∧ and ∨ denote logical and
and logical or, respectively. Predicates are logical functions
of pure Boolean variables and of Boolean conditions repre-
senting the result of a comparison between real variables.
The notation [P (X1, . . . Xr)|X1 ← x1, . . . Xr ← xr] is
used to evaluate the predicate P when the free variables
X1, . . . Xr take values x1, . . . xr, respectively. For instance
given P (X1,X2) = ((X1 < 1) ∧ (X2 > 4)) we ob-
tain [P (X1, X2)|X1 ← 0, X2 ← 5] = TRUE while
[P (X1, X2)|X1 ← 2, X2 ← 5] = FALSE. Given a matrix H ,
Hi denotes the i-th row of H; given a vector x, xi denotes
the i-th component of x.

II. LINEAR HYBRID AUTOMATA

A linear hybrid automaton (LHA) [4], [13] is a tuple

H = {X,V,E, flow, inv, init, jump, event,Σ}, (1)

where X = {X1,X2, . . . Xn} is the (ordered) collection of
continuous (real-valued) states, the couple (V,E) defines a
graph in which V = {v1, v2, . . . , vl} is the set of vertices (the
discrete states of the LHA), each one representing a control
mode, and E is the set of directed edges, representing the
way control modes are allowed to switch (i.e., the discrete
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dynamics). Each of the vertex labelling functions flow, inv

and init assigns a predicate to each control mode, defining
the allowed continuous state evolutions, the invariant set
in which the continuous states must remain when in that
mode1, and the allowed values for initial states, respectively.
Functions jump and event are edge labelling functions:
jump defines the conditions for changing the control mode,
event associates events from the finite set Σ to control mode
switches. The free variables in the predicates of init and inv

are from X , the ones of flow are from the set of derivatives
Ẋ = {Ẋ1, Ẋ2, . . . , Ẋn} of continuous states. Resets of
continuous states are defined by the predicates assigned by
the jump function to the vertices. The free variables on such
predicates are from X ∪ X ′, where X ′ is the set of values
of state variables after a discrete transition. If the predicate
[jump(v1, v2)|X ← x,X ′ ← x] = TRUE then the transition
from the control mode v1 to the control mode v2 when
the continuous state is x and is reset to x is allowed. For
linear hybrid automata the init, inv, flow and jump predicates
are the conjunction of linear inequalities2. Given a generic
predicate P acting on a finite set Z of free variables, for any
assignment of the variables in Z1 ⊂ Z there may exist more
than one assignment of the variables in Z \ Z1 such that
P holds. From a system theoretical point of view, such an
ambiguity may map into nondeterministic state evolutions.

The flow function associates to each control mode j the
conjunction of predicates

rj∧
h=1

[
p(j)

h
≤

N∑
k=1

q
(j)
h,k · Ẋk ≤ p

(j)
h

]
, (2)

where rj is the number of ranges defining the flow. The
predicate takes value TRUE for the values ẋ ∈ Ẋ , vj ∈
V such that the inequality (2) is satisfied. Predicate (2)
could also contain strict inequalities, that we skip here for
compactness of notation.

The set of initial states (X0 × V0) ⊆ (Rn × V ) contains
couples (x0, vi) such that [init(vi)|X ← x0] = TRUE. The
state of the LHA evolves in the following way. From an
initial state (x0, vi) at time t0 such that [init(vi)|X ← x0] =
TRUE, the continuous state evolves for t ∈ T0 = [t0, t0]
in such a way that ∀t ∈ T0, [flow(vi)|Ẋ ← ẋ(t)] ∧
[inv(vi)|X ← x(t)] = TRUE. The first clause is a condition
on feasibility of the dynamics, the second on feasibility of
the state trajectory. Let the instant t0 = t1 be the control
switch instant so that ∃e = (vi, vj) ∈ E : [jump(e)|X ←
x(t0), X

′ ← x(t1)] = TRUE and [inv(vj)|X ← x(t1)] =
TRUE. Then the evolution proceeds from x(t1) through a
continuous flow for t ∈ T1 = [t1, t1], when a new switch
occurs. Thus, the evolution of the linear hybrid automaton is
obtained as a sequence of epochs Ti = [ti, ti], (ti = ti−1),
of continuous evolutions interleaved by discrete events, at
which the control mode changes and the continuous state

1Note that the invariant set defined for LHA is not “invariant” in the
system theoretical sense, namely the dynamical system is not supposed to
remain in the set indefinitely.

2As pointed out in [6, footnote 7], a disjunction of predicates can be
implemented by splitting control modes and transitions.

is reset, introducing discontinuities on the continuous state
dynamics. Such a sequence of epochs T = [T0, T1, . . .] is
called a time trajectory.

III. PIECEWISE AFFINE SYSTEMS

Piecewise affine (PWA) systems [1], [10] are dynamical
systems defined by the relations

ẋc(t) = Ai(t)xc(t) + Bi(t)uc(t) + fi(t), (3a)

i(t) : Hi(t)xc(t) + Ji(t)uc(t) ≤ Ki(t), (3b)

H̃i(t)xc(t) + J̃i(t)uc(t) < K̃i(t). (3c)

where xc(t) ∈ R
nc is the state vector at time t, and

uc(t) ∈ R
mc is the input vector3. The index i(t) ∈ I �

{1, . . . , s} labels the active mode of the system, which

is uniquely determined by the condition
[

x(t)
u(t)

]
∈ Pi(t),

where the polyhedral region Pi(t) ⊆ R
nc+mc is defined

by inequalities (3b)–(3c). A PWA system is well-posed if
Pi∩Pj = ∅, ∀i �= j, and

⋃
i∈I

Pi ⊆ R
nc+mc . In the discrete-

time case, ẋc(t) is replaced by xc(t+1) in (3a). In this paper
we only focus on continuous-time PWA models.

Given an initial state x0, an initial instant t0 and an input
function uc : [t0, tf ] → R

mc , the PWA system (3) evolves
as follows. Let i0 be the active mode at t0, that is i0 ∈ I

such that (3b), (3c) are satisfied for i(t) = i0, xc(t) = x0,
t = t0 and uc = uc(t0). For t ∈ [t0, t0) where t0 > t0 is
the smallest instant such that (3b), (3c) are not satisfied with
i = i0 (or, alternatively, for t ∈ [t0, t0] where t0 > t0 is the
largest instant up to which (3b), (3c) are satisfied non-stop
with i = i0), the state evolves according to the dynamics
ẋc(t) = Ai0xc(t) + Bi0uc(t) + fi0 . Thus, at time t0 = t1
the mode switches to the new active mode index i1 ∈ I

such that (3b), (3c) are satisfied for the current state and
input vectors. Note that the trajectory xc(t) is continuous,
since mode switches only introduce discontinuities in the
state derivatives (no resets are considered so far).

For discrete-time PWA models, Boolean states, inputs
and outputs are considered in [14], resulting in discrete-
state transitions that only occur at multiples of the sampling
period. The variables of the system in (3) become x(t) =[

xc(t)
xb(t)

]
∈ R

nc×{0, 1}nb , u(t) =
[

uc(t)
ub(t)

]
∈ R

mc×{0, 1}mb ,
and the Boolean state update function is modelled as a mode-
dependent constant (either 0 or 1, given by the truth-table of
the state-update function of Boolean states). In [15] resets
have been introduced for discrete-time PWA systems by
exploting the equivalence with MLD systems [3].

Due to system trajectory discontinuities, the incremental
form is more correct than the differential one to represent
continuous-time PWA systems with discrete dynamics and
resets (the trajectory is not differentiable at time instants
t0, t1, . . . ). By extending the analysis from the discrete-
time PWA case, the update of Boolean states, determined
by a transition of the associated asynchronous finite state
machine, can be defined in continuous-time as xb(t + dt) =

3An output vector yc(t) = Ci(t)xc(t) + Di(t)uc(t) + gi(t) ∈ R
pc is

also usually defined in dynamics (3).
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T b
i(t), where dt is an infinitely small time interval and T b

i(t)

is a mode-dependent binary vector. Particular care must be
taken into account when using such a Boolean state update
equation to avoid multiple switches at the same time instant.
In fact, the system mode i depends on the Boolean state
xb, which in turn depends on i, with an infinitesimal delay.
In [16], [17], the discrete dynamics have been introduced
as an event-driven asynchronous finite state machine by
exploiting the concept of events, associated to mode switches
and changes of input values. The effect of such an approach
is that both the discrete state and the system mode switch at
event instants and remain constant until the next event.

Resets associated to mode switches can be modelled in
the same way. We define additional reset modes Ir =
{s + 1 . . . sr} [16] which are added to the normal evolution
modes I = {1 . . . s} and we include additional terms in the
continuous state dynamics equation (3a). The system evolves
as follows. At time t̄, let the state be x̄, the input ū = u(t̄),
and assume the active mode j ∈ I becomes inactive. Then
a reset mode h ∈ Ir is activated, the state is immediately
reset to a value x̂ which forces also the mode to change
to an evolution mode k ∈ I. In the incremental form the
continuous state dynamics can be modelled as

xc(t + dt) = (Ai(t)xc(t) + Bi(t)uc(t) + fi(t))dt+

Si(t)xc(t) + Ri(t)uc(t) + Ti(t),
(4)

where Ai, Bi, fi are zero for i = s + 1, . . . , sr, Ri, Ti are
zero and Si is the identity for i = 1, . . . , s. Note that the
first term in (4) is responsible for the continuous part of the
state trajectory, while the remaining terms are responsible
for discontinuities. For the ease of notation we reformulate
the system dynamics using the “+” operator that indicates
“immediately after” (i.e., z+(t) = z(t + dt)). We obtain

ẋc(t) = Ai(t)xc(t) + Bi(t)uc(t) + fi(t), (5a)

x+
c (t) = ẋcdt + Si(t)xc(t) + Ri(t)uc(t) + Ti(t), (5b)

x+
b (t) = T b

i(t), (5c)

i(t) : Hi(t)

[
xc(t)
xb(t)

]
+ Ji(t)uc(t) ≤ Ki(t), (5d)

i(t) ∈ I ∪ Ir.

The complete formulation would also require nonstrict in-
equalites in the mode selection (5d), we skip them here for
compactness of notation. Clearly if the state trajectory is
continuous (5) reduces to (3). Note also that possible Boolean
exogenous inputs ub(t) ∈ {0, 1}mb could be taken into
account in (5d) to model externally-forced mode switches,
but they are not needed in this paper to model LHA in PWA
form.

IV. TRANSLATION OF LHA IN PWA FORM

In this section we show that the LHA model (1) is a special
case of the PWA model (5). For a given LHA generating
trajectories (x(t), v(t)), we will construct a PWA system
generating a trajectory (xc, xb), where x(t) = xc(t) and a
proper binary encoding of v(t) coincides with xb(t), ∀t ∈ R.

A. Continuous and discrete states

The continuous states xc of the equivalent PWA model are
the continuous states x of the LHA, with dimension nc = n.

The control modes V = {v1, . . . , vl} map into Boolean
states xb = {0, 1}nb . To do so, we introduce the encoding
cod : V → {0, 1}nb which associates to each v̄ ∈ V a value
x̄b ∈ {0, 1}nb . The inverse cod−1{0, 1}nb → V may be a
partial function (i.e., it may be undefined for some values on
its domain). Thus, ∀v ∈ V , xb = cod(v) and ∀xb ∈ {0, 1}nb

such that cod−1(xb) is defined, v = cod−1(xb). A convenient
choice for the function cod is the “one-hot” coding, namely
the i-th vertex vi is associated with xb = ei, where ei is
the i-th column of the identity matrix of order l. We assume
such an encoding for the rest of this paper, and hence nb = l.

When evolving in control mode vj , the continuous state
x of the LHA must satisfy the invariant condition inv(vj),
namely x ∈ IS(j), where IS(j) is the invariant set for
control mode vj , that is the set of all x ∈ R

n such that
[inv(vj)|X ← x] = TRUE. Since the inv predicate is defined
by clauses constituted by linear inequalities, IS(j) is the
polyhedron described by the inequalities

Ljxc ≤ Mj , (6)

where Lj ∈ R
kj×n and Mj ∈ R

kj , and kj is the number of
inequalities describing a (minimal) hyperplane representa-
tion of IS(j) (we avoid distinguishing between strict and
nonstrict inequalities in (6) for compactness of notation).
The continuous dynamics associated to vj are defined by the
zeroth-order linear differential inclusions (2). By introducing
a constrained input uc(t) ∈ R

n that models the uncertainty
associated with the actual value of state derivatives, we
transform (2) into

ẋci(t) = uci(t) (7a)

p(j)
h

≤
N∑

k=1

q
(j)
h,k · uck ≤ p

(j)
h , h = 1 . . . rj , (7b)

which can be expressed as

ẋc(t) = uc(t) (8a)

p
j

≤ Qjuc(t) ≤ pj , (8b)

where Qj ∈ R
rj×n is the matrix whose (h, k)-th element is

q
(j)
h,k and p

j
, pj ∈ R

rj are vectors whose h-th components

are p
(j)
h and p

(j)
h , respectively. Summarizing, in the j-th

control mode the dynamics are described by

ẋc(t) = uc(t) (9a)

x+
b (t) = cod(vj) (9b)

p
j
≤ Qjuc(t) ≤ pj , (9c)

Ljxc(t) ≤ Mj , (9d)

−α ≤ xb(t) − cod(vj) ≤ α (9e)

until the mode eventually switches, where α is any vector
of positive scalars smaller than 1

2 , and hence (9e) represents
the condition xb(t) = cod(vj).
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B. Discrete transitions

So far we have described the dynamics of the continuous
states of the LHA under the assumption that the control
mode remains constant. In this case there is a one-to-one
relation between the control modes of the LHA and the
partitions of the equivalent PWA system, which are defined
by the linear conditions (9c)–(9e). Dynamics (9) describes
the trajectories of the continuous states of the LHA except
for a zero-measure set of time instants, namely the set of
switching instants T = {t0, . . . , tn, . . .}. In order to translate
the discrete dynamics we need to introduce additional modes
in the PWA system to select the successor discrete state,
whenever a discrete transition occurs.

Assumption 1: ∀(vi, vj) ∈ (V × V ), jump(vi, vj) ≡
enab(vi, vj) ∧ res(vi, vj), where the free variables in enab
are from X while the ones in res are from X ∪ X ′.

Assumption 2: ∀j ∈ V , ∀x : [enab(i, j)|X ← x] =
TRUE, ∃x̄ : [inv(j)|X ← x̄] ∧ [res(i, j)|X ← x,X ′ ← x̄].

Assumption 1 states that the jump predicate can be
decomposed into two predicates, the first concerning the
enabling of the discrete transition, the second concerning
the reset after such a transition. The first predicate depends
only on the actual state, the second depends on the actual
and successor state. Since jump is composed by linear
inequalities, the same will be for both enab and res. Note
that Assumption 1 is usually satisfied for realistic systems,
where the enabling of discrete transitions does not depend
on the state after the transitions. Assumption 2 requires
that when a transition is enabled, there exists at least one
feasible successor state after the reset. Even this condition
is quite natural for real systems, and, if not satisfied, usu-
ally the model of the system should be revised. However,
while Assumption 1 is needed because of the transformation
mechanism we introduce next, Assumption 2 is only needed
to ensure that the system does not reach a deadlock.

We say that a transition e = (vi, vj) is enabled at a
state x if [enab(vi, vj)|X ← x] = TRUE. Accordingly we
define the enabling set of the transition from vi to vj as
ES(i, j) = {xc ∈ IS(i) : [enab(vi, vj)|X ← xc] = TRUE}.
A discrete transition will occur at any time instant t such that
the transition is enabled, generating the following behavior.
Let the system start from a state in which the discrete
transition ē = (vi, vj) is disabled, and evolve into a state at
which ē becomes enabled. Then the discrete transition will
occur at any time instant, until ē becomes disabled again.

In PWA systems mode switches are deterministic events
that occur when the system state crosses the boundaries
of the currently active region. A nondeterminism can be
obtained by introducing further additional inputs acting as
disturbances on region boundaries. By letting the disturbance
variables change arbitrarily, the switching hyperplanes of the
PWA systems move, causing transitions nondeterminism.

Example 1: An intuitive example of this behavior is
shown in Figure 1 for a one-dimensional system, with state
xc ∈ R and initial value xc(t0) = 0. The state evolves
in region v0 with ẋc = c > 0 (c is a given scalar,
so no additional inputs uc are needed here to represent a

differential inclusion). The control mode can switch ∀xc ∈
[xm, xM ], and the invariant set for this mode is IS = {xc ∈
X : 0 ≤ xc ≤ xM}. Let us introduce an additional input
w ∈ R. The partitions of the extended PWA system are
defined in the lifted (x, w)-space R

2. The region j in the
extended PWA system is defined by Pj = {(x,w) ∈ R

2 :
0 ≤ x ≤ xm + w, 0 ≤ w ≤ xM − xm}. Let w(t0) = w̄

and assume that w(t) remains constant up to next switching
instant, that occurs when x = xm + w̄. For different values
of w̄, the mode switch occurs at different state values (see
the two trajectories A and B shown in Figure 1), covering
the whole range of possible values [xm, xM ] as w spans
[0, xM −xm]. When Pj is projected back onto the state space
R, the partition can be decomposed into a region (thin line)
in which the system certainly does not switch and a region
(thick line) in which the system will switch at some time.

Consider a LHA in control mode vj and let IS(j) be
defined as in (6). Suppose that the control switches from vj

to vi are enabled for i = 1, . . . , lj , and that, for simplicity,
the enabling condition is the single linear inequality hj,ixc >

kj,i. We associate the holding set HS(j) to each control
mode vj , which is the set of continuous states such that all
the linear inequalities in enab(vj , vi), ∀i = 1 . . . lj , are false.
Then, HS(j) is defined by the linear inequalities

hj,ixc ≤ kj,i, i = 1 . . . lj , (10a)

Ljxc ≤ Mj . (10b)

The continuous dynamics cannot change while xc ∈ HS(j).
However, HS(j) is in general only a subset of the region of
the PWA system where mode j is active, because otherwise
a transition would be forced to occur as soon as one of
enabling conditions becomes true, which is not consistent
with the general LHA semantics4. A discrete transition will
occur at some time t such that xc(t) ∈ IS(j) \ HS(j).
In order to represent such a nondeterminism in the exact
transition by using a deterministic PWA model5, again we
introduce additional continuous input variables {wj,i}

lj
i=1 to

relax constraints (10a) in hj,ix ≤ kj,i + wj,i. The effect
of wj,i ∈ [0,+∞) is to enlarge the halfspace of a band
having width wj,i

‖hj,i‖2

. Note that we have lifted the dimension
of the PWA partition, thus obtaining polyhedra that are not
overlapping. The projection PS(j) back onto the x-space of
the set

hj,ix ≤ kj,i + wj,i, i = 1 . . . lj (11a)

Ljx ≤ Mj , wi,j ≥ 0 (11b)

is clearly IS(j). Note that by fixing wj,i = w̄j,i, (11)
becomes a set in the x-space contained in between HS(j)
(for w̄j,i = 0) and IS(j) (for w̄j,i → ∞ or large enough,
see Eq. (14) below).

4In verification tools based on linear hybrid or timed automata such as
HYTECH or UPPAAL it is often possible to specify transitions that occur
as soon as they become enabled. Those are called urgent events. In case
the regions of the PWA translation are defined as in (10), the PWA model
represents an LHA in which all the transitions are urgent events.

5One could define PWA models with overlapping regions to represent the
nondeterminism, but this is not in the spirit of this paper.
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ẋc = c

x ∈ [0, xM ]

x > xm

. . .

(a) LHA with an uncertain transition

w

xc
xm xMx1 x2

wM

A

B

Projection of Pj onto R

(b) Equivalent PWA representation

Fig. 1. Uncertain LHA transitions can be represented by a PWA system with additional disturbance inputs

We now define in the lifted PWA space the discrete
dynamics equivalent to the one of the LHA. Introduce lj +1
PWA modes associated to the LHA control mode vj

Pj,0 = {(xc, xb, w) ∈ R
n+l+lj : (11) hold for x = xc

and − α ≤ xb − cod(vj) ≤ α}
(12)

and for f = 1, . . . , lj

Pj,f = {(xc, xb, w) ∈ R
n+l+lj :

hj,fxc > kj,f + wj,f , (13a)

hj,ixc ≤ kj,i + wj,i, i = 1, . . . , lj , i �= f (13b)

Ljxc ≤ Mj , wi,j ≥ 0 (13c)

−α ≤ xb − cod(vj) ≤ α}. (13d)

The above sets Pj,f , f = 0, . . . , lj are polyhedral non-
overlapping cells associated to the original control mode
vj of the LHA. Cell Pj,0 represents the situation in which
the current mode remains active, while Pj,f corresponds
to the occurrence of the transition enabled by constraint
hj,fxc > kj,f , for f = 1, . . . , lj .

The definition of sets Pj,f allows the PWA system to
represent discrete transitions (vj , vf ) that occur at any state
value xc ∈ ES(j, f). Consider a transition (vj , vf ) occurring
when x̄c ∈ ES(j, f). Let w̄ ∈ R

lj
0 be a vector such that

(x̄c, cod(vj), w̄i) ∈ Pj,f . Let t be the time instant at which
the evolution in control mode vj begins and t̄ > t be the
time instant such that xc(t̄) = x̄c. Thus, assuming that
xc(t) ∈ IS(j) and (xc(t), xb(t), wj(t)) ∈ Pj,0, ∀t ∈ [t, t̄],
if wj(t̄) = w̄, at time t̄ the system enters Pj,f .

Remark 1: Variables wj,i could be upper-bounded without
affecting the definition of sets Pj,f , f = 0, . . . , lj . In fact,
by solving the linear programming problem,

w∗
j,i = sup

x
hj,ixc − kj,i (14a)

subject to Ljxc ≤ Mj (14b)

and by letting the upper-bound be w̄j,i = w∗
j,i (with possibly

w̄j,i = +∞ if the set IS(j) is unbounded), the constraint
wj,i ≥ 0 can be equivalently replaced by 0 ≤ wj,i ≤ w̄j,i.
The supremum is taken in (14) to account for possible non-
closed sets IS(j).

Remark 2: The above approach can be extended to more
complex enabling conditions, provided that they can be
expressed by the conjunction of linear inequalities. In this
case variables wj,i become vectors with one component for

each linear inequality in the predicate enab(vj , vi). Note also
that the enabling conditions hj,ixc > kj,i can be generalized
to any combination of strict and nonstrict inequalities.

Example 2: Consider the LHA with two continuous states
and four modes represented in Figure 2(a). Let the LHA
control mode be 0 and assume it can switch to modes 1,
2 or 3. Thus, the lifted PWA system is defined in the 9-
dimensional space R

2+4+3 after introducing variables w0,1,
w0,2 and w0,3. Figure 2(b) shows the polyhedral partition
projected onto the continuous state-space R

2. In the holding
set HS (white) the system cannot switch. The sets S1 [S2,
S3] correspond to ES(0, 1) [ES(0, 2), ES(0, 3)] in which
the system can either continue its evolution in mode 0 or
switch to control mode 1 [2,3]. The value of the continuous
state when the switch occurs depends on the value taken by
w1 [w2, w3]. In the darker set S1,3 the system can either
continue evolving in mode 0 or switch to control mode 1 or
3, depending on the value taken by variables w0,1 and w0,3.
Note that even if the system behavior looks nondeterministic
in the projected two-dimensional space, in the lifted space the
behavior is deterministic with respect to both the “jump/not
jump” decision and to the control mode after the jump.

When the active region is Pj,0, the Boolean state xb

remains constantly equal to cod(vj), while when the system
is in one of the regions Pj,f , f = 1, . . . , lj , the Boolean state
changes. In a PWA model the successor Boolean state x+

b (t)
can be easily defined by a region-dependent constant [14].
Let vf be the Boolean state after the transition e = (vj , vf )
enabled by hj,fxc > kj,f occurs. Thus, we define the
following discrete state-update piecewise constant dynamics

x+
b (t) =

⎧⎨
⎩

cod(vj) if (xc(t), xb(t), w(t)) ∈ Pj,0

cod(vf ) if (xc(t), xb(t), w(t)) ∈ Pj,f ,

f = 1, . . . , lj .
(15)

The cells Pj,i are also used to model resets:

x+
c (t) = Sj,fxc + Tj,f if (xc(t), xb(t), w(t)) ∈ Pj,f ,

j = 1, . . . , nb, f = 0, . . . , lj
(16)

where Sj,i, Tj,i define the reset condition and Sj,0 = I ,
Tj,0 = 0. In this case Equation (16) defines deterministic
resets as affine functions of the state. Nondeterministic LHA
resets can be represented by a technique similar to the one
used in (7), thus by adding an additional input vector ur

which models the reset uncertainty.
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(b) PWA switching Behavior

Fig. 2. Uncertain transition representation in the extended PWA

C. Equivalent PWA reformulation

The PWA dynamics can be obtained by collecting the
dynamics (9a), (16) of the continuous states, the dynam-
ics (15) of the discrete states, the constraints in (9c), and the
constraints in (12), (13), defining the switching conditions
on xc, xb and w. Hence, the PWA model in the form (5)
equivalent to the given LHA is⎧⎨
⎩

ẋc = uc

x+
c = S�xc + T�

x+
b = b�

if

⎧⎨
⎩

(xc(t), xb(t), w(t)) ∈ Pj,i

p
j
� Qjuc � pj

wj,i ≥ 0,

� = (j, i) j = 1, . . . , l, i = 0, . . . , lj
such that (j, i) ∈ E

(17)
where for all j = 1, . . . , l we have S(j,0) = I , T(j,0) =
0, b(j,0) = cod(vj), and S(j,i) = Sj,i, T(j,i) = Tj,i,
b(j,i) = cod(vi) for i = 1, . . . , lj . Only modes � = (j, i) ∈
E are defined in (17), hence the number of partitions is
card(V )+card(E).

The PWA system (17) is equivalent to the given LHA be-
cause for every state trajectory of the latter there exists a pro-
file of w, uc producing the same state trajectory through (17).
Additional elements of the LHA, the event function and
the Σ set are mainly used for verification purposes, for
associating variables to the transition, and are not considered
here. They can be added as Boolean outputs associated to the
sets Pj,i, which model the discrete transitions. The init set
can be defined by additional constraints on the initial state
of the PWA model, possibly introducing an initial mode.

V. DISCUSSION

In this paper we have proposed a way for representing a
linear hybrid automaton as a piecewise affine system with
discrete dynamics and resets. This result creates a bridge
between the hybrid models exploited in computer science
and hybrid models exploited in control theory. The practical
advantages are related to the possibility of exploiting dif-
ferent models in different design phases of a hybrid control
system. The LHA can be recovered from the equivalent PWA
system (17) by performing the operations described in the
previous sections backwards. The problem of generating a
LHA from a generic PWA system (5) will be investigated in
future research, based on the insight provided by this paper.
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