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Abstract— Many robust Model Predictive Control (MPC)
schemes require the on-line solution of a convex program,
which can be computationally demanding. For deterministic
MPC schemes, multi-parametric programming was success-
fully applied to move most computations off-line. In this paper
we adopt a general approximate multi-parametric algorithm
recently suggested for convex problems and propose to apply
it to a classical robust MPC scheme. This approach enables
one to implement a robust MPC controller in real time for
systems with polytopic uncertainty, ensuring robust constraint
satisfaction and robust convergence to a given bounded set.

Keywords: Model predictive control; Multi-parametric pro-
gramming; Robust control; Uncertain systems.

I. INTRODUCTION

Model Predictive Control (MPC) is a control technique
that is able to cope in a direct way with multi variable
systems, constraints, and uncertainty. At each sampling
time, a finite horizon optimal control problem is solved
based on a given model of the system. One of the main
drawbacks of MPC is the time needed to evaluate the
solution of the posed optimization problem. For linear
systems, when no uncertainty is taken into account, MPC
requires the solution of a quadratic or a linear programming
problem. These are well known problems and efficient tools
are available for solving them. Recently, multi-parametric
programming has been applied with success to solve such
optimization problems off-line in order to obtain an explicit
description of the control law (see [1], [2], [3], [4]).

One approach used in robust MPC is to minimize the
objective function for the worst possible realization of the
uncertainty. This strategy is known as min-max and was
originally proposed in [5] in the context of robust receding
horizon control. In robust MPC the problem was first
tackled in [6]. For these schemes, however, the resulting
on-line computation time is significantly larger than their
deterministic counterparts.

Despite the complex nature of the problem, several
different robust MPC schemes have been proposed in the
literature. All of them have in common a high computational
burden (see [7], [8], [9], [10], [11], [12], and references
therein). However, the optimization problem associated
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with those schemes can often be posed as convex multi-
parametric programming problems.

Parametric programming considers optimization prob-
lems where the data depends on one or more parameters.
The parameter space is systematically subdivided into char-
acteristic regions where the optimal value and an optimizer
are given as explicit functions of the parameters. For linear
cost functions, robust MPC controllers have been obtained
in explicit form (see [13], [14]). This result has not been
extended to quadratic cost functions, although the piecewise
linearity of open-loop min-max MPC with quadratic cost
functions has been proved by geometrical methods in [15]
and an efficient off-line algorithm for parametric uncertain-
ties was given in [16].

Recently, approximate multi-parametric convex program-
ming solvers have been proposed in [17], [18]. The latter
is based on a general approach that obtains a subopti-
mal explicit solution for a given convex problem with a
guaranteed bound on the error. In this paper we apply
the technique of [18] to a classic MPC robust scheme,
namely the controller proposed by Kothare et al. in [7]. We
first obtain an explicit easy-to-implement piecewise affine
description of the control law with an arbitrary degree of
accuracy, and then prove that for any chosen degree of
accuracy constraints are handled robustly and the system
robustly converges to a bounded set.

Section II introduces Kothare’s controller and its prop-
erties. Section III introduces the multi-parametric convex
approach and shows how to apply it to the proposed
controller. Section IV presents the main results of the paper.
Section V proposes different modifications to the strategy.
Finally, some examples are shown in Section VI.

II. PROBLEM FORMULATION

Consider the uncertain Linear Time-Varying (LTV) sys-
tem with polytopic uncertainty:

xk+1 = Akxk + Bkuk, yk = Cxk,
[Ak Bk] ∈ Ω,

(1)

where uk ∈ Rnu is the control input, xk ∈ Rnx is the state
vector, yk ∈ Rny is the output, and Ω is the convex hull of
given matrices

[
A1 B1

]
, . . . ,

[
AL BL

]
.

System (1) is required to satisfy the input and output
constraints

|eT
r uk| ≤ ur,max k ≥ 0, r = 1, 2, . . . , nu

|eT
r yk| ≤ yr,max k > 0, r = 1, 2, . . . , ny,

(2)
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where er is the r-th column of the identity matrix of
appropriate dimension.

The controller proposed in [7], that will be referred to as
“Kothare’s controller” from now on, is based on minimizing
an upper bound of the worst case infinite time cost function

J∞(x) = max
[Ak Bk]∈Ω,k≥0

∞∑
k=0

xT
k Qcx

T
k + uT

k Rcu
T
k

with Qc and Rc simetric and positive definite, while satis-
fying (2).

Assume that a state feedback law uk = Fxk is used, and
that there exists a quadratic, strictly convex function xT Px
that satisfies

xT
k+1Pxk+1 − xT

k Pxk ≤ −xT
k Qcxk − uT

k Rcuk (3)

for all possible [Ak Bk] ∈ Ω.
By summing (3) for all k ≥ 0 and requiring that xk → 0

as k → ∞, we obtain the upper bound J∞(x) ≤ xT Px.
Kothare’s controller is based on the following result.
Property 1 (cf. [7], Theorem 2): For system (1), at sam-

pling time k with k ≥ 0, let γ, Q, Y satisfy the LMI
constraints[

1 xT

x Q

]
≥ 0, Q = QT > 0,

⎡
⎢⎢⎢⎣

Q QAT
j + Y T BT

j QQ
1

2

c Y T R
1

2

c

AjQ + BjY Q 0 0

Q
1

2

c Q 0 γI 0

R
1

2

c Y 0 0 γI

⎤
⎥⎥⎥⎦ ≥ 0,

j = 1, 2, . . . , L

[
X Y
Y T Q

]
≥ 0, with Xrr ≤ u2

r,max, r = 1, 2, . . . , nu

[
Z C(AjQ + BjY )

(AjQ + BjY )T CT Q

]
≥ 0,

with Zrr ≤ y2
r,max, r = 1, 2, . . . , ny, j = 1, 2, . . . , L

(4)
where Mrr = eT

r Mer. Let F � Y Q−1 and P � γQ−1.
Then γ ≥ xT

k Pxk and the constraints (2) and (3) are
satisfied for the feedback matrix F and the matrix P .

At each time step k, given the current state xk, Kothare’s
control algorithm solves the following SDP problem:

V ∗(x) = min
γ,Q,Y,X,Z

γ

s.t. (4)
(5)

From the optimizer γ∗(xk), Q∗(xk), and Y ∗(xk), the
optimal feedback gain F ∗(xk) = Y ∗(xk)Q∗(xk)−1 is
obtained as well as the matrix P ∗(xk) = γ∗(xk)Q∗(xk)−1

which defines an upper bound on the worst case infinite
time cost function for the given feedback law, that is,

J∞(xk) ≤ xT
k P ∗(xk)xk ≤ V ∗(xk).

The following property will be used in the sequel.

Property 2 (cf.[7], Lemma 2): Any quintuple Y , Q, γ,
Z, X satisfying (4) at time k also satisfies (4) at time k+1
if uk = Y Q−1xk is applied.

III. MULTI-PARAMETRIC CONVEX PROGRAMMING

Problem (5) is an SDP problem and efficient tools exist
for solving it. However, the computational burden may
be still too high in many real applications. An efficient
suboptimal off-line implementation was presented recently
in [16] and is based on the computation of invariant ellip-
soids. Here we take a different route and propose to use
multi-parametric techniques. More precisely, we consider
the algorithm suggested in [18], designed to obtain, in
explicit piecewise affine form, a suboptimal solution of the
multi-parametric convex optimization problem

W ∗(x) = min
z

{W (z, x) : gi(z, x) ≤ 0, i = 1, . . . , p} (6)

where z ∈ Rnz are the decision variables, x ∈ X ⊆ Rnx are
the parameters, and W and gi are jointly convex functions
of the optimization variables and the parameters, so that W ∗

is a convex function (see [19], [20]). The multi-parametric
approach of [18] consists of an algorithm for defining a
suboptimal solution ẑ(x) that is a piecewise affine function
of the parameters. The solution is defined for a given full
dimensional polyhedron S = {x ∈ Rnx |Ax ≤ b} of pa-
rameters for which (6) is feasible. The suboptimal solution
is a piecewise affine function defined over a partition of S
made out of nr critical simplices CSi

ẑ(x) = ẑi(x) = Hi
zx + hi

z, ∀x ∈ CSi, i = 1, 2, . . . , nr.

The algorithm proposed in [18] is divided in two phases.
In the first phase, the polyhedral region S to be charac-
terized is triangulated into a minimal set of simplices. In
the second phase, the simplices are subdivided into smaller
ones until an upper bound on the maximum error inside
each simplex is smaller than a given accuracy threshold
ε. Because of the recursive nature of the algorithm and
of the method for subdividing each simplex, the explicit
suboptimizer is a piecewise affine function of the parameters
that is organized in a tree structure for evaluation (see
[18] for details). Hence, the on-line computational burden
depends only on the maximum tree depth Td and on
the dimension of the parameter vector nx. The maximum
number of linear inequalities that must be evaluated in order
to find the solution is linear in the state dimension and in
the maximum depth of the tree.

Property 3 ([18]): For all state vectors inside S, the
suboptimal solution ẑ(x), obtained by applying the approx-
imate multi-parametric convex programming algorithm of
[18] to solve Problem (6) with a fixed ε > 0, satisfies

gi(ẑ(x), x) ≤ 0, i = 1, 2, . . . , p,
W ∗(x) ≤ W (ẑ(x), x) ≤ W ∗(x) + ε.

(7)
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A. Convex Problem Associated with Kothare’s Controller

Kothare’s controller is evaluated at each time step k
by solving an SDP problem that depends on the current
state xk. As SDP is a convex problem, the above multi-
parametric technique can be applied. Before proceeding
further, let us introduce the following notation:

• The parameter vector x is defined as the current state
vector, x = xk.

• The optimizer vector consists of the free variables z =
{γ, Q, Y, X, Z} of Problem (5).

• The objective function is linear, W (z, x) = γ = cT z.
• The constraints gi(z, x) are defined by (4). They are

convex, as they are defined as linear matrix inequality
constraints.

The approximate multi-parametric convex programming al-
gorithm defines a piecewise affine function for the subop-
timizer z of Problem (5) with a fixed error bound ε. It
is important to note that matrices X and Z are not used
for defining the multi-parametric control law, so in the
following they will not be taken into account in the solution.
Instead, we define the following piecewise affine functions
of interest

γ(x) = γi(x) = Hi
γx + hi

γ , ∀x ∈ CSi,
Q(x) = Qi(x) = Hi

Qx + hi
Q, ∀x ∈ CSi,

Y (x) = Y i(x) = Hi
Y x + hi

Y , ∀x ∈ CSi,
i = 1, 2, . . . , nr,

(8)

where nr is the number of critical simplices generated by
the multi-paramtetric algorithm.

Following Property 3, the suboptimizers
γ(x), Q(x), Y (x) are feasible for Problem (5), matrices
F (x) = Y (x)Q(x)−1 and P (x) = γ(x)Q(x)−1 satisfy (2)
and (3), and the following inequalities hold

V ∗(xk) ≤ xT
k P (xk)xk ≤ V ∗(xk) + ε. (9)

IV. PROPERTIES OF THE PROPOSED APPROACH

Lemma 1: Consider a system of the form (1) and the
feedback gain given by F (x) = Y (x)Q(x)−1, where γ(x),
Q(x) and Y (x) are taken from a suboptimizer of (5) over
a set S with a given bound on the error ε > 0 and have the
form (8). For all states xk ∈ S, if uk = F (xk)xk then the
following inequality holds

V ∗(xk+1) − V ∗(xk) ≤ −xT
k Qcxk + ε, (10)

for all possible [Ak Bk] ∈ Ω.
Proof: For each xk ∈ S the multi-parametric

convex programming algorithm provides a suboptimizer
γ(xk), Q(xk), Y (xk) of (5) in xk such that (3) and (9)
hold for F (xk) and P (xk) = γ(xk)Q(xk)−1. By Property 2
γ(xk), Q(xk), Y (xk) are also a feasible solution of (5) for
all possible xk+1, so that V ∗(xk+1) ≤ xT

k+1P (xk)xk+1.
As Rc > 0, by replacing xT

k P (xk)xk with V ∗(xk) + ε
and xT

k+1P (xk)xk+1 with V ∗(xk+1) in (3), we obtain
inequality (10).

Theorem 1: Consider the control law

uk = F̂ (xk)xk�
F̂ (xk) P̂ (xk)

�
=

�
[F (xk) P (xk)] if xk ∈ S�
F̂ (xk−1) P̂ (xk−1)

�
otherwise,

(11)
where S is a full dimensional polyhedron containing the
origin in its interior, F (x) = Y (x)Q(x)−1 and P (x) =
γ(x)Q(x)−1 where γ(x), Q(x), Y (x) is a suboptimizer of
(5) over S with an error bound ε > 0 for xk. Then, if
x0 ∈ S, the controller defined by (11) robustly regulates
the system to a bounded set Ωα of the state space while
satisfying (2) for all possible uncertainties, where Ωα =
{x ∈ Rnx |V ∗(x) ≤ α(ε)}, α(ε) = max

x∈Φε

{V ∗(x) + ε −

xT Qcx}, and Φε = {x ∈ S| xT Qcx ≤ ε}.
Proof: In order to prove that the closed loop system is

ultimately bounded we will first prove convergence to Φε

by Lyapunov arguments. Then, we will show that once the
state lands in Φε, even if it may leave it again in no case it
will go outside the set Ωα, from which it will return again
to Φε. In this way, Ωα is an invariant set for the system.

Let xk �∈ Φε. By Lemma 1, if xk ∈ S, then V ∗(xk+1) <
V ∗(xk), for all [Ak Bk] ∈ Ω. If xk ∈ S for all k ≥ 0 then
clearly the system converges to Φε because V ∗(x) acts as a
Lyapunov function. Suppose instead there exists k such that
xk ∈ S and xk+1 �∈ S. For all h ≥ 1 such that xk+j �∈ S
(j = 1, 2, . . . , h), by (11) we have F̂ (xk+h) = F̂ (xk) and
P̂ (xk+h) = P̂ (xk). Since F̂ (xk) and P̂ (xk) are defined by
the suboptimizer of (5) for x = xk, taking into account
Property 2 and Equation (3) the following inequality hold

xT
k+h+1P̂ (xk)xk+h+1 < xT

k+hP̂ (xk)xk+h,

for all possible [Ak Bk] ∈ Ω.
This means that xT

k+hP̂ (xk)xk+h keeps decreasing while
xk+h �∈ S. As S contains a ball centered in the origin,
using Lyapunov arguments it is easy to see that there exists
a finite h̄ such that xk+h̄ ∈ S. Then either xk+h̄ ∈ Φε or
not. In the latter case, in order to prove convergence to Φε

using Lyapunov arguments, V ∗(xk+h̄) must be lower than
V ∗(xk). Again, taking into account that F̂ (xk) and P̂ (xk)
are defined by a suboptimizer of (5) for x = xk, which
is also feasible for all xk+j with j ≤ h̄, using Property 2,
(9) and (3), the following inequalities can be stated for all
j ≤ h̄ and uncertainty realization:

V ∗(xk+j) ≤ xT
k+jP̂ (xk)xk+j

xT
k+jP̂ (xk)xk+j ≤ xT

k P̂ (xk)xk − xT
k Qcxk

xT
k P̂ (xk)xk − xT

k Qcxk ≤ V ∗(xk) + ε − xT
k Qcxk.

(12)
By taking into account that xk �∈ Φε, it can be seen

that V ∗(xk+h̄) < V ∗(xk). As V ∗(x) is a convex function,
Φε ⊆ Ωα because α(ε) ≥ max

x∈Φε

V ∗(x). This way is also

proved convergence to Ωα. Now we will prove that once in
Φε, the state will remain inside Ωα.

As Φε ⊆ S, Lemma 1 holds for all xk ∈ Φε so
V ∗(xk+1) ≤ α(ε). This means that if xk ∈ Φε then
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TABLE I

NUMERICAL RESULTS FOR SYSTEMS OF DIFFERENT ORDERS

(S = {x : ‖x‖∞ ≤ xmax}, TD IS THE TREE DEPTH, nr IS THE

NUMBER OF REGIONS, TLMI (S) IS THE AVERAGE TIME FOR SOLVING

THE LMI (5), Tmp (S) THE TIME FOR EVALUATING THE PIECEWISE

AFFINE LAW)

nx nu xmax TD nr TLMI Tmp

2 1 1 4 44 0.5 0.001
2 1 2 6 180 0.5 0.001
2 1 5 8 500 0.5 0.008
2 1 10 10 928 0.5 0.005
3 2 1 5 248 0.6 0.009
3 2 2 8 3374 0.6 0.04
3 2 5 12 25512 0.7 0.05
4 2 1 8 3056 1.0 0.04
4 2 2 12 3717 1.2 0.05

xk+1 ∈ Ωα. Following the previous ideas, using (9) and
(12), it is easy to see that if xk ∈ Φε and xk+1 �∈ Φε the
system will enter again Φε without leaving Ωα.

Robust satisfaction of the constraints is assured because,
by (11) and Property 1, at each time step a feedback gain
obtained from a feasible solution of (5) is applied.

A. Complexity

In general it is not possible to bound a priori the number
of regions of a multi-parametric solution given by the
proposed approach (see [18] for a discussion). However,
it is possible to give an upper bound of the computational
burden of evaluating the parametric function organized on a
tree structure. The maximum number of linear inequalities
that must be evaluated in order to find the solution is linear
in the state dimension and in the maximum depth of the tree
(nxTd). The complexity of the controller is both measured
by the number of regions (memory constraints) and the
maximum depth of the tree (time constraints). Numerical
results for three systems (omitted for brevity) are reported
in Table I for different state constraints ‖x‖∞ ≤ xmax and
for a fixed error bound ε = 1. It is apparent that the average
time TLMI for solving the LMI (5) with the Matlab LMI
Toolbox is sensibly larger than the time Tmp for evaluating
the piecewise affine function, despite the high number of
regions.

V. EXTENSIONS

In this section, different extensions are presented to
the proposed approach. These extensions are based on
modifying both the multi-parametric algorithm, and the
implementation of the control law.

A. Modified Error Bound

Proposition 1: Consider controller (11) based on an ap-
proximate solution (8) of the multi-parametric convex pro-
gram (5) on S, where S is a full dimensional polyhedron
containing the origin in its interior, such that the error inside
each simplex CSi is less than εQSi = min

x∈CSi

xT Qcx. If

x0 ∈ S then (11) robustly stabilizes system (1).

Proof: For any state vector inside CSi ⊆ S Lemma 1
holds, and therefore if xT

k Qcxk > εQSi then V ∗(xk+1) −
V ∗(xk) < 0, ∀[Ak Bk] ∈ Ω. Following the same ideas as
in the proof of Theorem 1, it is easy to see that if the state
leaves the set S, the controller assures that it will enter
again with a lower value of V ∗(x). Following Lyapunov
arguments, as S contains a ball centered in the origin,
it is immediate to prove that the closed loop system is
regulated to the origin. Robust satisfaction of the constraints
is assured because, by (11) and Property 1, at each time step
a feedback gain obtained from a feasible solution of (5) is
applied.

The approximate multi-parametric convex programming
algorithm can be modified to assure the error bound εQSi

bymodifying the stopping criterion of the second phase of
the algorithm in [18]. A given simplex is then subdivided if
the upper bound on the error is greater than or equal to εQSi

which can be evaluated solving a quadratic programming
problem. The state space partition obtained is more complex
around the origin (where εQSi 
 0). In fact, to obtain a
finite partition, an additional subdivision criterion must be
added to deal with the simplex that contains the origin. In
this work, a minimum volume criterion is adopted.

B. Controller with Memory

Proposition 2: Consider the control law

uk = F̂ (xk)xk�
F̂ (xk) P̂ (xk)

�
=

�
[F (xk) P (xk)] if δ = 1�
F̂ (xk−1) P̂ (xk−1)

�
otherwise,

{δ = 1} ↔

�
xk ∈ S and
xT

k P (xk)xk ≤ xT

k P̂ (xk−1)xk

(13)
where S is a full dimensional polyhedron,
F (x) = Y (x)Q(x)−1 and P (x) = γ(x)Q(x)−1 where
γ(x), Q(x), Y (x) is taken from a suboptimizer of (5) over
S with an error bound ε > 0 for xk. If x0 ∈ S then (13)
robustly stabilizes the system while satisfying (2) for all
possible uncertainties.

Proof: By (13) and Property 2 at each time step F̂ (xk)
and P̂ (xk) are defined by a feasible solution of (5) for x =
xk so (3) holds and xT

k P̂ (xk−1)xk < xT
k−1P̂ (xk−1)xk−1.

By (13) if xT
k P (xk)xk > xT

k P̂ (xk−1)xk or the
state leaves S, no update is made. This assures that
xT

k P̂ (xk)xk < xT
k−1P̂ (xk−1)xk−1 so following Lyapunov

arguments, it is easy to prove that the closed loop system
converges to the origin. Robust satisfaction of the con-
straints is assured because, by (13) and Property 1, at each
time step a feedback gain obtained from a feasible solution
of (5) is applied.

When using the introduced control law with memory
(13), robust stability and constraint handling is assured for
any given error bound of the suboptimizer. The error bound
then affects only the performance of the controller, not the
stabilizing properties.
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C. Relative Error Bounds

The control strategies mentioned in the previous sec-
tion are based on absolute error bounds. In alternative, a
controller can be constructed using an approximate multi-
parametric convex programming algorithm that assures a
bound εR on the maximum relative error evaluated as
(V̂ (x) − V ∗(x))/V ∗(x). This is easily obtained by mod-
ifying the stopping criterion of the second step of the
algorithm, so that a given simplex CSi is subdivided if the
upper bound on the relative error is greater than εR. For
all simplices that do not contain the origin, the maximum
relative error can be overestimated as

max
x∈CSi

εR(x) ≤
εi

min
x∈CSi

V ∗(x)
,

where εi is the maximum absolute error on CSi and the
minimum of V ∗(x) is evaluated by solving Problem (5)
with the state treated as an additional optimization vector
constrained in CSi.

As in the modified error bound case, the state space par-
tition obtained when a relative error bound is used is more
complex around the origin (where V ∗(x) 
 0). In fact, to
obtain a finite partition, an additional subdivision criterion
must be added to deal with the simplex that contains the
origin. In this work, a minimum volume criterion is adopted.
It is important to note, that using the introduced control law
with memory (13), robust stability and constraint handling
is assured.

VI. NUMERICAL EXAMPLES

In this section we exemplify the ideas developed above on
the following simple LTV second order uncertain system:

A1 =

[
0.9 0.9
0 0.9

]
, A2 =

[
0.9 0.5
0 0.5

]
, B =

[
0
1

]
,

(14)
with ‖x‖∞ ≤ 2, ‖u‖∞ ≤ 1, Qc = I and Rc = 1.

For this system, Figures 1(a) and 1(b) respectively show
the optimal upper bound V ∗(x) defined by Kothare’s con-
troller and the corresponding optimal control law u∗(x).
Note that the value of V ∗(x) goes up to 30. Table II shows
the number of regions in the state partition for different
ε. Figure 2(a) shows the state partition obtained with an
absolute error bound ε = 0.1. The state partition is more
complex near the boundary of the feasible region. This is
due to the fact that towards the boundaries the optimal
cost function to be approximated has a larger gradient. In
order to lower the complexity towards the boundary, an
approximate solution with a bound on the relative error can
be used, but in that case the state space partition obtained is
more complex around the origin (where V ∗(x) 
 0). Figure
2(b) shows the state partition obtained with a relative error
bound εR = 0.1.

A way to obtain low complexity partitions is to modify
the stopping criterion in the second phase of the multi-
parametric algorithm, in order to assure that either the

TABLE II

NUMBER OF REGIONS nr OF THE STATE PARTITION FOR DIFFERENT

VALUES OF THE ERROR BOUND ε FOR SYSTEM 14.

ε 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
nr 70 86 124 148 170 176 248 379 766

absolute error is below a given bound or the relative error is
below a given bound. Figure 2(c) shows the state partition
that assures a maximum relative error εR = 0.1 or a
maximum error ε = 0.1.

Using the introduced control law with memory (13),
robust stability and constraint handling is assured. It can
be noticed that the partition of Figure 2(c) is less complex
than the ones of Figures 2(a) and 2(b).

Figure 2(d) shows the state partition of a suboptimizer
which assures a bound on the error on each simplex lower
than εQSi as in Section V-A. It can be noticed how the
partition is rather complex around the origin (as for the
relative bound case) but less towards the boundary.

VII. CONCLUSIONS

Multi-parametric quadratic and linear programming the-
ory has been applied with success for implementing de-
terministic MPC controllers. In this note we have pro-
posed to apply the approximate multi-parametric convex
programming solver of [18] to the robust MPC control
scheme proposed in [7] and have analized the effecs of
the approximation errors on robust stability. An explicit
description of the control law is obtained for ease of
implementation. The control law assures robust constraint
handling and robust convergence to a given bounded set.
Also, alternative approaches were given in order to assure
convergence to the origin and explicit descriptions with
reduced complexity.
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Fig. 2. State space partition corresponding to the approximate solution
with absolute error bound ε = 1 (a), with relative error bound εR = 0.1
(b), with absolute error bound ε = 0.1 or relative error bound εR = 0.1
(c), and to the stabilizing criterion described in Section V-A (d).
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