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Abstract— In this paper we extend recent results on strictly
convex multiparametric quadratic programming (mpQP) to the
convex case. An efficient method for computing the mpQP
solution is provided. We give a fairly complete description of
the mpQP solver, focusing on implementational issues such as
degeneracy handling.

I. I NTRODUCTION

Parametric programming amounts to explicitly representing
the solution to an optimization problem for a range of
parameter values. In particular, in multiparametric program-
ming, a vector of parameters is considered. Much of the
recent interest in multiparametric programming has been
motivated by the need for technology to implement con-
strained optimal feedback control with a minimal amount
of real-time computations. Parametric programming solutions
allow explicit nonlinear (typically piecewise affine (PWA))
feedback control laws to replace computationally expensive
real-time numerical optimization algorithms.
A thorough treatment of multiparametric LP (mpLP) with
an algorithm to solve such problems is given in [8]. Strictly
convex multiparametric QP (mpQP) was treated in [1], in
which also a geometric algorithm to solve the problem is
presented. These ideas were modified to an mpLP algorithm
in [2]. An alternative strategy for mpQP was used in [11]. In
[14] a more efficient mpQP solver was developed, extending
the main ideas of [8] to the strictly convex mpQP case.
The main contribution of this paper is to combine the
efficiency of the active set mpQP solver [14], which handles
only strictly convex problems, with the simple degeneracy
handling of the geometric mpQP solver [1], in order to solve
mpQPs which has a positive semi-definite projection of the
Hessian onto the subspace defined by the active constraints.
Moreover, we discuss how primal degeneracies can best be
treated in the mpQP solver, and include mpQPs with equality
constraints. Note that the algorithm suggested in this paper
can also be used for mpLP, as this is a special case of convex
mpQP.

II. BASIC RESULTS

We will consider the following class of problems

V (θ) = min
x∈Rn

1

2
xT Hx + θT FT x + cT x, (1)

Aix = bi + Siθ, i ∈ E , (2)
Aix ≤ bi + Siθ, i ∈ I, (3)

whereθ ∈ R
p is a parameter of the optimization problem,

and the vectorx ∈ R
n is to be optimized for all values of

θ ∈ Θ, whereΘ ⊆ R
p is some polyhedral set. Moreover,

H = HT ∈ R
n×n, F ∈ R

n×p, A ∈ R
q×n, b ∈ R

q×1 and
S ∈ R

q×p are matrices, andE and I are sets of indices
such thatE ∪I = {1, ..., q} andE ∩I =∅. Even if the mpQP
is solved with equality constraints in this paper, note that
another possibility would be to eliminate the equalities apriori
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to solving the problem, by using standard techniques, see
e.g. [10, Chapter 15]. Moreover, if the set of feasible param-
eter values is not full-dimensional, the technique described
in [2] should be applied to obtain a full-dimensional set of
feasible parameters. Let the subscript index denote a subset
of the rows of a matrix or vector, and|·| denote the number
of elements in a set.

A. Solving the MpQP
Definition 1: Let x be a feasible solution to (1)–(3) for a
given θ. We defineactive constraints the set of constraints
with Aix− bi−Siθ = 0, andinactive constraints the set of
constraints withAix− bi − Siθ < 0. The active setA(x, θ)
is the set of indices of the active constraints, that is,

A(x, θ) = {i ∈ {1, ..., q} | Aix = bi + Siθ} .

Moreover, letN (x, θ) denote the set of inactive constraints,
that is,N (x, θ) = {1, ..., q} \ A(x, θ).
Definition 2: Let θ be given.X∗(θ) is the set of optimal
solutions to (1)–(3).
Definition 3: Let θ be given. Let the optimal active setA∗(θ)
be the set of constraints which are active for allx ∈ X∗(θ),
that is

A∗ (θ) = {i | i ∈ A (x, θ) ,∀x ∈ X∗ (θ)} =
⋂

x∈X∗(θ)

A(x, θ).

Let N ∗(θ) = {1, ..., q} \ A∗(θ).
When the mpQP is strictly convex, the optimal solutionx∗

is unique (see Theorem 2) and the active setA(x∗(θ), θ)
is the unique active set for the optimal solution. However,
Definition 3 gives a unique optimal active set also in the
convex case, when the solution is not unique.
Assume for the moment that we know the setA of active
constraints at the optimum for a givenθ. We can now
form matricesAA, bA and SA as the rows ofA, b and S
corresponding to this optimal active setA.
Definition 4: For an active setA, we say that thelinear
independence constraint qualification (LICQ) holds if the
set of active constraint gradients are linearly independent,
i.e., AA has full row rank. When LICQ is violated, this is
referred to asprimal degeneracy.
As in [1] we solve the mpQP by formulating the KKT
conditions

Hx + Fθ + c + AT λ = 0, λ ∈ R
q, (4)

λi (Aix− bi − Siθ) = 0, for all i ∈ I, (5)
Aix− bi − Siθ = 0, for all i ∈ E , (6)
Aix− bi − Siθ ≤ 0, for all i ∈ I, (7)

λi ≥ 0, for all i ∈ I. (8)

The strategy is first to fix the active setA, giving a linear
system with equality constraints only. Supposeθ is given and
A is an optimal active set, then (4), (6) and (7) lead to

[

H AT
A

AA 0

] [

x∗

λ∗

]

=

[

−c
bA

]

+

[

−F
SA

]

θ. (9)

To solve equation (9), we use the standard null-space
method [10]:



Theorem 1:Consider the mpQP (1)–(3). Consider an arbi-
trary active setA, let m = |A|, N = {1, ..., q} \ A and
assume thatA satisfies LICQ. LetZA be ann × (n − m)
matrix whose columns span the null-space ofAA, let YA

be anyn × m matrix such that[YA ZA] is nonsingular,
and assumeZT

AHZA > 0. For any θ ∈ Θ such thatA
is the optimal active set, the optimal solution and Lagrange
multipliers are given by the affine functions

x∗(θ) = Kxθ + kx, (10)
λ∗
A(θ) = Kλθ + kλ, (11)

where

Kx = Y (AAYA)−1SA − ZA(ZT
AHZA)−1

· ZT
A(F + HYA(AAYA)−1SA), (12)

kx = (YA − ZA(ZT
AHZA)−1ZT

AHYA)(AAYA)−1bA

− ZA(ZT
AHZA)−1ZT

Ac, (13)

Kλ = −(AAYA)−T Y T (HKx + F ), (14)

kλ = −(AAYA)−T Y T (Hkx + c). (15)

Moreover, the active setA is the unique optimal active set in
the interior of the critical region (CR) given by thoseθ ∈ Θ
that satisfy

Gθ ≤ g (16)

where

G =

[

ANKx − SN

(Kλ)I∩A

]

, g =

[

bN −ANkx

− (kθ)I∩A

]

. (17)

Proof: Partition the vectorx∗ (being the solution to
(4)–(8) for a givenθ) into two components

x∗ = YAxY + ZAxZ . (18)

This means thatYAxY is a particular solution ofAAx∗ =
bA + SAθ, and ZAxZA

is a displacement along these con-
straints. SinceAAZA = 0 andAAYA is a nonsingularm×m
matrix, we can substitute (18) into the second equation of (9)
to obtain

xY = (AAYA)−1(bA + SAθ). (19)

We proceed to solve (9) by substituting (18) into the first
equation of (9) and multiply byZT

A, to obtain

(ZT
AHZA)xZ = −(ZT

AHYAxY + ZT
Ac + ZT

AFθ),

xZ = −(ZT
AHZA)−1(ZT

AHYAxY

+ ZT
Ac + ZT

AFθ), (20)

and (10) can be verified by substituting (19) and (20) into
(18),

x∗ = YA(AAYA)−1(bA + SAθ) (21)

− ZA(ZT
AHZA)−1(ZT

AHYA(AAYA)−1(bA + SAθ)

+ ZT
Ac + ZT

AFθ). (22)

It is well known that the 2nd order conditionZT HZ > 0 is
sufficient for optimality. Finally, we can obtain the Lagrange
multipliers by multiplying the first equation of (9) byY T

A

Y T
A Hx∗ + Y T

A AT
Aλ∗ = −Y T

A Fθ − Y T
A c

λ∗ = −(AAYA)−T Y T
A (Hx∗ + Fθ + c)

(23)

We have now characterized the solution to (1)–(3) for a given
optimal active setA, and a fixedθ. However, as long asA

remains the optimal active set in a neighborhood ofθ, it
can be argued as in [1] that the solution (10)–(11) remains
optimal, whenx∗ is viewed as a function ofθ. Such a
neighborhood whereA is optimal is determined by imposing
the two last KKT conditions (7)–(8), and noting that (7) is
fulfilled by construction fori ∈ I ∩ A.

Aix
∗(θ)− bi − Siθ ≤ 0, for all i ∈ N (24)
(Kλ)i θ + (kλ)i ≥ 0, for all i ∈ I ∩ A (25)

The region (16) is commonly referred to as a critical
region (CR). This is a polyhedral set, whose open interior
represents the largest set of parametersθ such thatA is the
unique optimal active set. This means that if we know every
active set which is optimal in some full-dimensional region
in the parameter space, we can characterize the solution to
the mpQP as a PWA function of the parameter vector. The
main task of an mpQP solver is therefore to find every such
active set.

We would like to chooseYA in such a way thatAAYA is as
well conditioned as possible, to make (19) numerically well-
conditioned. This can be done by a QR factorization [12] of
AT

A, that is,

AT
AΠ = [Q1 Q2]

[

R
0

]

, (26)

and defining
[YA ZA] = [Q1 Q2] , (27)

which would result in a condition number forAAYA which is
not larger than that ofAA. Π is a permutation matrix, and the
Q2 and0 matrices in (26) may be empty. For ease of notation,
we explicitly form the inverses to solve the equations in this
paper. However, as the matricesYA andZA are formed by a
QR factorization, (19) (and other equations in this paper) will
be in triangular form, and the implementation exploits thisby
solving the equations by substitution rather than forming the
inverses. The matricesYA andZA may also be obtained by
a Gaussian elimination, but as the problem sizes of mpQPs
usually are sufficiently small to make the orthogonal QR
factorization attainable, this would be preferable due to the
numerical advantages.
The following theorem characterizes some properties of the
primal and dual parametric solutions, and will be useful in
the sequel.
Theorem 2:Consider Problem (1)–(3). LetΘ ∈ R

n be a
polyhedron, and supposeZT

A(x∗(θ))HZA(x∗(θ)) > 0 for all
θ ∈ Θ. Then the solutionx∗(θ) and the Lagrange multipliers
λ∗(θ) of the mpQP (1)–(3) are piecewise affine functions
of the parametersθ, and x∗(θ) is continuous and unique.
Moreover, if LICQ holds forA(x∗(θ)) for all θ ∈ Θ, λ∗(θ)
is also continuous and unique.

Proof: Follows easily from uniqueness (due to
ZT
A(x∗(θ))HZA(x∗(θ)) > 0 and LICQ) of x∗(θ) and λ∗(θ),

cf. [1], [6].

B. MpQP Solvers
After having characterized a critical region as in Theorem 1
one needs a method for partitioning the rest of the parameter
space. Such a method was proposed in [5], formally proved
and applied to mpQP in [1] and applied to mpLP in [2]. The
method is briefly summarized in Algorithm 1, and for a given
setΘ of parameters to be partitioned, this algorithm should
be applied withY = Θ.



Algorithm 1
1) Let Y be the polyhedron in parameter space to be

investigated.
2) Compute the chebyshev centerθ0 and radiusr (see [3])

of Y . If r ≤ 0, then exit.
3) Solve the QP (1)–(3) forθ = θ0 to obtain the active

set.
4) Characterize the optimal solutionx(θ), Lagrange mul-

tipliers λ(θ) and critical region where this active set is
optimal.

5) Divide the parameter space as in Figure 1b) by revers-
ing one by one the hyperplanes defining the critical
region.

6) For each new regionRi, let Y = Ri, and execute
Algorithm 1.

CR0

R4

R2

R1
CR0

R5

R3

a) b)

�0

�

Fig. 1. Parameter space exploration strategy of [1].

One advantage of this way of partitioning the parameter
space, is that handling degeneracies is relatively easy. The
mpQP solver [14] has a different exploration strategy for
dividing the parameter space. Properties of the geometry of
the polyhedral partition and its relation to the combination
of active constraints at optimum, are used to find the active
set in all critical regions which are neighbors of the current
one, as in Figure 2. Based on these results, this algorithm
avoids unnecessary partitioning of the parameter space, giv-
ing significant improvement of efficiency for solving strictly
convex mpQPs with respect to the algorithm of [1].

CR CR

�1

�2 �2

�1

Fig. 2. Parameter space exploration strategy of [14].

C. Primal Degeneracy
When LICQ is violated for an optimal active set, the optimal
Lagrange multipliers are no longer unique, giving several op-
timal combinations of active constraints. In [1] two methods
were suggested on how to handle this.

a) To obtain a linear system of full rank by removing some
active constraints, and proceed with the new reduced
active set.

b) To use a projection in the[θ, λ]-space.
It was argued that method b) would be computationally
expensive, and consequently, method a) was used. Moreover,
method a) is well suited for easy implementation with the
algorithm of [1]. However, when using the algorithm of [14],
this method leads to overlapping regions, which increases
software complexity and degrades the performance of the
solver. Example 1 illustrates some problems that arise. When
using method b), Definition 3 gives a unique active set for
a givenθ (and the optimal solutionx∗(θ)), avoiding critical
regions with mutually overlapping interiors. Moreover, the
projection needed is often through one dimension only,
which may not be more computationally demanding than
characterizing several critical regions as in method a). Hence,
we will explore method b) in more detail.
When LICQ is violated, the set of optimal Lagrange mul-
tipliers λ∗(θ) can be characterized by a polyhedron in the
(λ,θ)-space:
Theorem 3:Consider the same problem as in Theorem
1, however, assume that LICQ is violated. LetZ̄A span
null(AT

A) and ȲA be any matrix such that
[

ȲA Z̄A

]

is
nonsingular. LetYA be as defined in Theorem 1. For any
θ such thatA is the optimal active set, optimal Lagrange
multipliers are characterized by

λ∗(θ) = K̄λθ + k̄λ + Z̄AλZ̄ , (28)

where

K̄λ =− ȲA(Y T
A AT

AȲA)−1Y T
A (HKx + F ), (29)

k̄λ =− ȲA(Y T
A AT

AȲA)−1Y T
A (Hkx + c), (30)

andλZ̄ is any vector such that

ANx∗(θ)− bN − SN θ ≤ 0 (31)
(

K̄λ

)

I∩A
θ +

(

k̄λ

)

I∩A
+

(

Z̄A

)

I∩A
λZ̄ ≥ 0 (32)

The active setA is optimal in the interior of the projection
of (31)–(32) onto theθ-space.

Proof: To computex∗(θ) one can obtain a reduced
set of equations, and proceed as in Section II-A, asx∗(θ)
is still uniquely defined (due to Theorem 2). The Lagrange
multipliers can be found by partitioningλ∗ as

λ∗ = ȲAλȲ + Z̄AλZ̄ .

This means that̄YAλȲ is a particular solution of (9), while
Z̄AλZ̄ is a displacement along the constraints. We proceed
to find λ∗

Hx∗(θ) + AT
Aλ∗ = −Fθ − c (33)

AT
A(ȲAλȲ + Z̄AλZ̄) = −Hx∗(θ)− Fθ − c (34)

Y T
A AT

AȲAλȲ = −Y T
A (Hx∗(θ) + Fθ + c) (35)

λȲ = −(Y T
A AT

AȲA)−1Y T
A (Hx∗(θ)

+ Fθ + c) (36)

λ∗ = −ȲA(Y T
A AT

AȲA)−1Y T
A (Hx∗(θ)

+ Fθ + c) + Z̄AλZ̄ (37)

= K̄λθ + k̄λ + Z̄AλZ̄ , (38)

where the last equation defines̄Kλ, k̄λ andZ̄A. In particular,
the transition from (34) to (35) is valid becauseY T

A is full
row-rank. The CR (31)–(32) can be obtained by inserting
(28) into (7)–(8).



In the numerical implementation we use a QR factorization to
obtain the matrices̄ZA and ȲA to obtain a well-conditioned
system. To obtain a critical region inθ-space from (31)–(32),
a projection algorithm is needed, e.g. [7] or a Fourier-Motzkin
elimination [4]. The polyhedron to be projected is defined by
|I ∩ A| linear inequalities (only the polyhedron (32) has to
be projected), and the projection has to be done through a
number of dimensions given by the dimension of the null-
space ofAA. So even if doing projections is considered
computationally expensive in general, we emphasize that the
projection needed often is relatively simple, and needed only
in degenerate cases. This is due to the fact that when LICQ is
violated in a full-dimensional region, the row-rank ofAA is
often |A| − 1, and the required projection would be through
one dimension only. When using method a) to handle vio-
lation of LICQ, several possibly overlapping critical regions
will be found instead of the single region found by projection.
Avoiding this ambiguity has computational advantages.
Example 1:Consider the following strictly convex mpQP:

A =







1 0 −1
−1 0 −1
0 1 −1
0 −1 −1






, b = −







1
1
1
1






, S =







1 0
−1 0
0 −1
0 1






,

H = I3×3, F = 03×2, c = 03×1, I = {1, 2, 3, 4} , E = ∅.

The partition obtained from this mpQP is shown in Figure
3. In regionsR1 − R4, LICQ is violated, and the union of
these regions can be obtained by a projection, as explained
in Theorem 3. Inside this region, there are four different
combinations of active constraints which may be optimal,
each of them corresponding to a regionR1, R2, R3 or
R4. The problems connected with such overlapping regions
when using the mpQP solver of [14], can be as follows:
Assume that regionR1 is found, and the solver shall find
the neighboring region ofR1 in the direction ofR2. This
must be done using the method of [13, Appendix A], since
LICQ is violated inR1. However, when solving the QP, there
is, as far as we can see, no obvious way of preventing that
the new combination of active constraints found is the one
corresponding to regionR3 or R4. And as shown in Figure 2,
the mpQP solver of [14] depends on finding the neighboring
region of the current region, to guarantee that there are no
holes in the resulting partition. In this simple example one
may find methods for handling such problems, but in higher
dimensions having higher degrees of degeneracies, we believe
that the projection method analyzed in Theorem 3 is the most
reliable way of characterizing the solution.
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Fig. 3. Partition of parameter space, Example 1.

D. Positive Semi-definite MpQP and Dual Degeneracy
In this section, we explain how to deal with cases when
the matrix ZT

AHZA in Theorem 1 has some eigenvalues
equal to zero, that is, the positive definiteness assumption
is relaxed into positive semi-definiteness. This is referred

to as dual degeneracy, which means that the dual of (1)–
(3) is primal degenerate. In Section II-C we saw that in
the case of primal degeneracy we could obtain a partition
with mutually non-overlapping regions by using a projection
algorithm. A similar procedure can be applied in the case of
dual degeneracy. By again using the null-space method, the
optimal solution and Lagrange multipliers can be obtained
as affine functions of the parameters and some additional
variablep.

[

x∗ (θ)
λ∗ (θ)

]

= Kxλθ + kxλ + Kpp

For a positive semi-definite mpQP, one can (similar to the
procedure of section II-C) for an optimal active setA∗

characterize a polyhedron in the(θ, p)-space from the KKT
conditions (4)–(8). By construction,A∗ is in the interior
of this region the unique optimal active set according to
Definition 3. One can further apply a projection algorithm
to obtain a critical region in the parameter space.
The mpQP algorithm of [1] can fairly straightforwardly be
extended to deal with dual degeneracy and positive semi-
definite mpQP. However, we would like to take advantage of
the increased execution speed of the algorithm of [14] in parts
of the parameter space where the problem is non-degenerate.
We therefore suggest to combine these two algorithms to
solve such problems efficiently:

1) Partition Θ by using the algorithm of [14], using a
projection algorithm in regions in which the solutions
are (primal or dual) degenerate, to obtain a partition
with mutually non-overlapping regions.

2) Continue partitioning each region in which the solution
is dual degenerate, by using the algorithm of [1].

The efficiency of this method lies not only in the algorithm
of [14] being used in parts of the parameter space where
the problem is non-degenerate, but also in the fact that the
main disadvantage of the algorithm of [1] is reduced, as the
artificial partitioning induced by the algorithm is limitedto
smaller parts of the parameter space.
Example 2:An mpLP can be considered a special case of
positive semi-definite mpQP, namely the one withH = 0.
Consider Example 4-2 from [8]:

H = 02×2, F = 02×2, c
T = − [ 3 8 ] ,

AT =

[

1 5 −8 4 1 0
1 −4 22 1 0 1

]

,

bT = [ 13 20 121 8 0 0 ] ,

ST =

[

0 0 3 0 0 0
1 0 0 0 0 0

]

,

I = {1, ..., 6} and E = ∅. This mpLP was solved using
Algorithm 2, giving the partition shown in Figure 4 a). The
mpLP is non-degenerate for all the regions in the partition.
By introducing the extra inequality constraint

[3 8]x ≤ θ,

the partition of Figure 4 b) is obtained. The solution is
dual degenerate in regionsR5, R6 andR7. When using the
exploration strategy shown in Figure 2, the union of these
3 regions were obtained by a projection, as explained in
Section II-D. Then in the second phase, this larger region
was further partitioned with Algorithm 1, to obtain the shown
partition.
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Fig. 4. Partition of parameter space, Example 2.

III. A CTIVE SETS IN NEIGHBORING REGIONS

This section will give some results on how to obtain the
optimal active set in a neighboring region. Non-degenerate
cases are handled in Section III-A, while Section III-B
treats the degenerate cases. The results are straightforward
extensions of results presented in [14].

A. Non-degenerate Cases

Below, we denote byx∗,k (θ) the affine expression of the
PWA function x∗ (θ) restricted to the critical regionCRk,
wherek is an index enumerating the optimal active sets.
Definition 5: Let x∗(θ) be an optimal solution of (1)–(3) for
a givenθ, and suppose that the KKT conditions (4)–(8) are
satisfied. We say that thei-th inequality constraint isweakly
active if i ∈ A(x∗(θ), θ) andλ∗

i = 0 for all λ∗ satisfying (4)–
(8). We say that an inequality constraint isstrongly active
if i ∈ A(x∗(θ), θ) and there exists someλ∗

i > 0 satisfying
(4)–(8).
Definition 6: Let a full-dimensional polyhedronΘ ⊂ R

p

be represented by the linear inequalitiesGθ ≤ g. Let the
hyperplaneGiθ = gi be denoted byH. If Θ ∩H is (p− 1)-
dimensional thenΘ∩H is called afacet of the polyhedron.
Definition 7: Two polyhedra are calledneighboring if they
share a common facet.
Definition 8: Let a polyhedronΘ be represented byGθ ≤ g.
We say thatGiθ ≤ gi is redundant if Gjθ ≤ gj ∀j 6= i ⇒
Giθ ≤ gi (i.e., it can be removed from the description of the
polyhedron). A representation of a polyhedron isminimal if
it contains no redundant constraints.
We have seen in the previous section that when we fix
the active set, it is fairly straightforward to characterize the
optimal solution and Lagrange multipliers corresponding to
this active set, and the region in the parameter space in which
this active set is optimal. The main task for an mpQP solver
is therefore to find every active set which is optimal in some
full-dimensional region in the parameter space. We will do
this by for eachCR we identify, finding the optimal active
set in every full-dimensional neighboringCR.
Let us consider a hyperplane defining the common facet
between two polyhedraCR0, CRi in the optimal partition of
the state space. Assuming degeneracies do not occur, there
are two different kinds of hyperplanes. The first (Type I)
are those described by (24), which represent a non-active
inequality constraint that becomes active at the optimum as
θ moves fromCR0 to CRi. As proved in the following
theorem, the corresponding constraint will be activated on
the other side of the facet defined by this hyperplane. In
addition, the corresponding Lagrange multiplier may become
positive. The other kind (Type II) of hyperplanes which
bound the polyhedra are those described by (25). In this case,
the corresponding inequality constraint will be non-active on
the other side of the facet defined by this hyperplane.

Theorem 4:Consider an optimal active set{i1, i2, ..., ik} and
let CR0 be its corresponding critical region with a represen-
tation obtained by removing all non-facet inequalities from
(24)–(25). Assume thatCR0 is represented by a minimal
representation. Also assume that the mpQP is not primal
or dual degenerate for this active set. LetCRi be a full-
dimensional neighboring critical region toCR0 and assume
the problem to be non-degenerate for the optimal active set
on their common facetF = CR0 ∩ H, whereH is the
separating hyperplane betweenCR0 and CRi. Moreover,
assume that there are no constraints which are weakly active
at the optimizerx∗(θ) for all θ ∈ CR0. Then:

Type I If H is given byAik+1
x∗,0 (θ) = bik+1

+ Sik+1
θ

(whereik+1 ∈ I ∩ N ), then the optimal active set
in CRi is {i1, ..., ik, ik+1}.

Type II If H is given byλ0
ik

(θ) = 0 (whereik ∈ I ∩ A),
then the optimal active set inCRi is {i1, ..., ik−1}.

Proof: Let us prove Type I. In order for some constraint
ij ∈ {i1, ..., ik} not to be in the optimal active set inCRi, by
continuity ofλ∗ (θ) (due to Theorem 2 and LICQ), it follows
that λ∗

ij
(θ) = λ0

ij
(θ) = 0 for all θ ∈ F . Since there are no

constraints which are weakly active for allθ ∈ CR0, this
would mean that constraintij becomes non-active atF . But
this contradicts the assumption of minimality sinceλ0

ij
(θ) ≥

0 and Aik+1
x∗,0 (θ) ≤ bik+1

+ Sik+1
θ would be coincident,

and thus one of them redundant. On the other hand{i1, ..., ik}
cannot be the optimal active set onCRi becauseCR0 is
the largest set ofθ’s such that{i1, ..., ik} is the optimal
active set. Then, the optimal active set inCRi is a superset
of {i1, ..., ik}. Now assume that another constraintik+2 is
active in CRi. That meansAik+2

x∗,i (θ) = bik+2
+ Sik+2

θ
in CRi, and by continuity ofx∗ (θ), the equality also holds
for θ ∈ F . However,Aik+2

x∗,0 (θ) = bik+2
+ Sik+2

θ would
then coincide withAik+1

x∗,0 (θ) = bik+1
+ Sik+1

θ, which
again contradicts the assumption of minimality. Therefore,
only {i1, ..., ik, ik+1} can be the optimal active set inCRi.
The proof for Type II is similar.
Corollary 1: Consider the same assumptions as in Theorem
4, except thatCR0 is no longer assumed to be minimal, i.e.
two or more hyperplanes can coincide. LetJ ⊂ {i1, ..., ik}
be the set of indices corresponding to coincident hyperplanes
in CR0.

• Every constraintij where ij ∈ {i1, i2, ..., ik} \ J is
active inCRi.

• Every constraintij where ij /∈ {i1, i2, ..., ik} ∪ J is
inactive inCRi.

When, for instance, two hyperplanes are coincident, by
Corollary 1 there are three possible active sets which have
to be checked to find the optimal active set inCRi. One
should always a priori remove redundant constraints from
(2)–(3). This reduces the complexity of the mpQP, and by
this, some degeneracies may also be avoided (see Section
III-B). Theorem 4 and Corollary 1 show how to find the
optimal active set across a facet only by using the knowledge
of which kind of hyperplane the facet corresponds to, except
in degenerate cases, which is the topic of the next section.

B. Degeneracy Handling in the MpQP Solver

We assumed in Section III-A when obtaining the active set in
a neighboring region, that the the mpQP was not degenerate,
neither in the interior of the current critical region nor onits
facets. In cases when this assumption is violated, we suggest
to obtain the active set in the neighboring region by finding
a pointθ0 a small distance into the neighboring region, and



solving the QP obtained by insertingθ = θ0 into the mpQP
(1)–(3), see [13, Appendix A]. This method was in some
cases also used in [14]. However, as opposed to in [14], an
active set according to Definition 3 must be obtained. This
is done by using an interior point method to solve the QP.
Primal-dual solvers have the property that when the optimal
solution is not unique, a solution in the interior of the optimal
facet is obtained, see e.g. [9]. From this solution one can
identify the unique active set according to Definition 3.

C. MpQP Algorithm
Based on the results from the previous sections, we finally
present an efficient algorithm for the computation of the
solution to the mpQP (1)–(3). Generally, there exist active
sets which are not optimal anywhere in the parameter space
(typically, most active sets are not optimal anywhere). We
need an active set which is optimal in a full-dimensional
region to start the algorithm. Generally we can do this by
choosing a feasibleθ, and solve the QP obtained by inserting
this θ into the mpQP (1)–(3).
Let Lcand be a list of active sets which are found, but not yet
explored (i.e., are candidates for optimality) andLopt be the
set of active sets which have been explored (i.e., are found
to be optimal in some full-dimensional region).

IV. CONCLUSIONS

In this paper we have given a detailed description of an
approach to solving convex mpQP problems. The approach
covers mpQPs with a positive semi-definite projection of
the Hessian onto the subspace defined by the active set.
Special attention has been given to the handling of degenerate
cases. The proposed mpQP algorithm can be considered
a generalization of the mpQP/mpLP solvers [1], [14], [2],
combining the advantages of the solvers. The result is an
algorithm which is more general than the strictly convex
mpQP solver of [14] (as it can handle convex mpQPs), and
more efficient than Algorithm 1 (which is the convex coun-
terpart of the strictly convex mpQP algorithm in [1]). A few
examples, comparing Algorithm 1 and 2 on convex mpQP
problems, obtained from model predictive control, can be
found in [13, Chapter 3]. We consider this to be an important
step towards efficient implementation of constrained optimal
feedback control.
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[9] O. Güler and Y. Ye. Convergence behavior of interior-point
algorithms.Mathematical Programming, 60:215–228, 1993.

[10] J. Nocedal and S. J. Wright.Numerical Optimization. Springer,
1999.

[11] M. M. Seron, J. A. DeDońa, and G. C. Goodwin. Global
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