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Abstract—In this paper we extend recent results on strictly to solving the problem, by using standard techniques, see
convex multiparametric quadratic programming (mpQP) to the e g. [10, Chapter 15]. Moreover, if the set of feasible param

convex case. An efficient method for computing the mpQP eter yalues is not full-dimensional, the technique desctib
solution is provided. We give a fairly complete description of

the mpQP solver, focusing on implementational issues such asin [2] should be applied to obtain a full-dimensional set of
degen%?acy handling. 9 P feasible parameters. Let the subscript index denote a subse

of the rows of a matrix or vector, and denote the number
|. INTRODUCTION of elements in a set.

Parametric programming amounts to explicitly representin, Solving the MpQP

the solution to an optimization problem for a range OE)' o ) . .

parameter values. In particular, in multiparametric papgr Definition 1: Let z be a feasible solution to (1)(3) for a

ming, a vector of parameters is considered. Much of ti§&ven ¢. We defineactive constraintsthe set of constraints

recent interest in multiparametric programming has be¥fith Aiz —b; —5;6 = 0, andinactive constraintsthe set of

motivated by the need for technology to implement cogonstraints withA,z —b; — 5,0 < 0. Theactive set.A(z, 0)

strained optimal feedback control with a minimal amouri® the set of indices of the active constraints, that is,

of real-time computations. Parametric programming sohsti 1 o — b _

allow explicit nonlinear (typically piecewise affine (PWA) Alz,0) ={i € {1,...a} | Aiw = bi + 5i6} .

feedback control laws to replace computationally expensiMoreover, let\ (z, #) denote the set of inactive constraints,

real-time numerical optimization algorithms. that is, NV (z,0) = {1, ...,q} \ A(x,0).

A thorough treatment of multiparametric LP (mpLP) wittDefinition 2: Let # be given. X*(6) is the set of optimal

an algorithm to solve such problems is given in [8]. Strictlgolutions to (1)—(3).

convex multiparametric QP (mpQP) was treated in [1], iDefinition 3: Leté be given. Let the optimal active sdf*(6)

which also a geometric algorithm to solve the problem ise the set of constraints which are active foraalt X*(6),

presented. These ideas were modified to an mpLP algorittimat is

in [2]. An alternative strategy for mpQP was used in [11]. In o ;

[14] & more efficient mpQP solver was developed, extendiry (0) = {i i € A(z,0) Vo € X* ()} = () Alx,0).

the main ideas of [8] to the strictly convex mpQP case. z€X*(0)

The main contribution of this paper is to combine th N*0) = {1 A (0

efficiency of the active set mpQP solver [14], which handl tN*(0) = {1, ..., q} \ A*(6). . .

only strictly convex problems, with the simple degeneracyNe" the mpQP r:s strictly convexh the optimal solutich

handling of the geometric mpQP solver [1], in order to solg Unidue (see Theorem 2) ?]nd the acl:tlvel S&r™(0),0)

mpQPs which has a positive semi-definite projection of tg the unique active set for the optimal solution. However,
: ; ; Hefinition 3 gives a unique optimal active set also in the

Hessian onto the subspace defined by the active constraifffS, 9 q ot pu .

Moreover, we discuss how primal degeneracies can best495VeX case, when the SOrl]JtIOH ISknOt unr|1que. o

treated in the mpQP solver, and include mpQPs with equalffy>ume for the moment that we know the sétof active

nstraints at the optimum for a giveh We can now

constraints. Note that the algorithm suggested in this pa matricesA 4, b and S, as the rows ofd, b and S

crf;Qagso be used for mpLP, as this is a special case of Concorresponding t0 this optimal active set

Definition 4: For an active setd, we say that thdinear
1. BASIC RESULTS independence constraint qualification (LICQ) holds if the

: ; ; set of active constraint gradients are linearly indepetden
We will consider the following class of problems i.e., A4 has full row rank. When LICQ is violated, this is

Vi(9) = nin %xTHm +0TF Tz + T, @) rAeSfeirr;e-([jl'ioVeg)r;rgl?/led?hgeenn%%:yé by formulating the KKT

Aiw =b + 50, i€é, (2) conditions

Aix < b; + 50, ieT, (3) Hr+FO+c+ ATX=0, XeRY, 4)
wheref € R? is a parameter of the optimization problem, Ai (Aiw = b; = 5;0) =0, forallieZ, ()
and the vector: € R™ is to be optimized for all values of Ajx —b; — 8,0 =0, foralliecé, (6)
0 € ©, where® C RP is some polyhedral set. Moreover, Az —b; —S;0 <0, foralliel, 7)

H =HT ¢ R™", F € R™*P, A ¢ R?*", b ¢ R?*! and , ,
S € RI*P are matrices, and and Z are sets of indices Ai 20, foralliel. ®)
suchthatt UZ = {1, ...,q} and€ NZ =0. Even if the mpQP The strategy is first to fix the active sgt, giving a linear
is solved with equality constraints in this paper, note tha{stem with equality constraints only. Suppdése given and
another possibility would be to eliminate the equalities@p A is an optimal active set, then (4), (6) and (7) lead to
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Theorem 1:Consider the mpQP (1)—(3). Consider an arbremains the optimal active set in a neighborhoodfpfit
trary active setA, let m = |A|, N = {1,...,q} \ A and can be argued as in [1] that the solution (10)—(11) remains
assume thatd satisfies LICQ. LetZ4 be ann x (n —m) optimal, whenz* is viewed as a function of.. Such a
matrix whose columns span the null-space Af;, let Y, neighborhood whergl is optimal is determined by imposing
be anyn x m matrix such thatfY4 Z.4] is nonsingular, the two last KKT conditions (7)—(8), and noting that (7) is
and assumeZ4HZ,4 > 0. For any# € © such that4 fulfilled by construction fori € 7N A.

is the optimal active set, the optimal solution and Lagrange y .

multipliers are given by the affine functions Ajz™(0) —b; — 5;60 <0, forallieN (24)
(K)); 0+ (kr), >0, forallicZnA (25)

x*(0) = K0 + ky, (10)
Na(6) = Fx0+ oy, (11) | | .
The region (16) is commonly referred to as a critical
where region (C'R). This is a polyhedral set, whose open interior
_ “1q. _ T -1 represents the largest set of parametessich that4 is the
Ko = Y(fAYA) Sa ZA(%‘HZA) unique optimal active set. This means that if we know every
" Zp(F + HY A(AaYA)" Sa), (12) active set which is optimal in some full-dimensional region
e (Yau— Z i ZTHZD) 2T HY O (ALY 4) L in the parameter space, we can characterize the solution to
Fe = (Ya . Al A ;‘) AHYA)(AAYA)" 0 the mpQP as a PWA function of the parameter vector. The
— ZA(ZyHZ )" Z sc, (13)  main task of an mpQP solver is therefore to find every such
Ky =—(AaYa) "Y' (HEK, + F), (14) active set.
T~ T
kx = —(AaYa) Y (Hkz + c). (15)  We would like to choos&’4 in such a way thatd 4Y 4 is as

Moreover, the active set is the unique optimal active set inWell conditioned as possible, to make (19) numerically well
the interior of the critical region({R) given by those) € © conditioned. This can be done by a QR factorization [12] of

that satisfy AL, that is,
GO<g (16) AL = [Q1 Q9] g] 7 (26)
where
| AnK, — Sx o — Ak and defining
o= [ Mg o= [Mager]-  an Ya Zd=1@r Q. @)

Proof: Partition the vectorz* (being the solution to

(4)~(8) for a givend) into two components which would result in a condition number far 4 Y 4 which is

not larger than that o 4. IT is a permutation matrix, and the

¥ =Yazy + Zazy. (18) @2 and0 matrices in (26) may be empty. For ease of notation,
. ) . . we explicitly form the inverses to solve the equations irs thi
This means thal4xy is a particular solution ofA 42* =  paper. However, as the matricEs and Z 4 are formed by a

ba+ Sab, and Z sz 7, is a displacement along these congR factorization, (19) (and other equations in this papeit) w
straints. Sinced 4Z 4 = 0 and A 4Y4 is a nonsingulam xm  be in triangular form, and the implementation exploits thys
matrix, we can substitute (18) into the second equation pof (Solving the equations by substitution rather than formimg t

to obtain inverses. The matrices, and Z4 may also be obtained by
_ -1 a Gaussian elimination, but as the problem sizes of mpQPs
ry = (AaYa)" (ba + Sab). (19) usually are sufficiently small to make the orthogonal QR
We proceed to solve (9) by substituting (18) into the firdactorization attainable, this would be preferable dueh® t
equation of (9) and multiply by%, to obtain numerical advantages.
T . - - The following theorem characterizes some properties of the
(ZAHZA)xz = —(ZAHY ATY + Zgc+ Z4F0), primal and dual parametric solutions, and will be useful in
= (ZTHZ )" YZTHY the sequel.
vz £ A TA) (ZaHYazy Theorem 2:Consider Problem (1)—(3). Le®d € R™ be a
+ Zac+ Z4F0), (20) " polyhedron, and suppos&?,. ) H Za(- (s > 0 for all
and (10) can be verified by substituting (19) and (20) int€ ©. Then the solution:* () and the Lagrange multipliers
(18), A*(9) of the mpQP (1)—(3) are piecewise affine functions
. 1 of the parameter9, and z*(6) is continuous and unique.
2" =Ya(AaYa)" (ba + Sa0) (21)  Moreover, if LICQ holds forA(z*(9)) for all § € ©, A*(6)
— ZA(ZEHZ ) N ZEHY A(AAYA) " (ba + S40) is also continuous and unique. .
T T Proof:  Follows easily from uniqueness (due to
+Zac+ ZaF0). (22) z7 HZ (z-9)) > 0 and LICQ) of z*(#) and \* (),

z* (0
It is well known that the 2nd order conditiai”’ HZ > 0 is  ¢f. ill, fé] u
sufficient for optimality. Finally, we can obtain the Laggen
multipliers by multiplying the first equation of (9) byf B. MpQP Solvers 3 -
After having characterized a critical region as in Theorem 1
YiHz* + YA\ = - YIF0-Y]c one needs a method for partitioning the rest of the parameter
* _ —Tv T * space. Such a method was proposed in [5], formally proved
AT = —(AaY) T Y (Ha™ + FY +é)3) and applied to mpQP in [1] and applied to mpLP in [2]. The
method is briefly summarized in Algorithm 1, and for a given
We have now characterized the solution to (1)—(3) for a giveset © of parameters to be partitioned, this algorithm should
optimal active set4, and a fixedd. However, as long agl be applied withY” = ©.
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Algorithm 1 a) To obtain a linear system of full rank by removing some
1) Let Y be the polyhedron in parameter space to be active constraints, and proceed with the new reduced

investigated. active set.
2) Compute the chebyshev cenfigrand radius- (see [3])  b) To use a projection in th@, \]-space.
of Y. If » <0, then exit. It was argued that method b) would be computationally
3) Solve the QP (1)—(3) foé = ¢, to obtain the active expensive, and consequently, method a) was used. Moreover,
set. method a) is well suited for easy implementation with the

4) Characterize the optimal solutiar{¢), Lagrange mul- algorithm of [1]. However, when using the algorithm of [14],
tipliers A(¢) and critical region where this active set ishis method leads to overlapping regions, which increases
optimal. software complexity and degrades the performance of the

5) Divide the parameter space as in Figure 1b) by revegsiver. Example 1 illustrates some problems that arise. When
ing one by one the hyperplanes defining the criticalsing method b), Definition 3 gives a unique active set for

region. . a givend (and the optimal solution:*(6)), avoiding critical
6) For each new regio?;, let Y = R;, and execute regions with mutually overlapping interiors. Moreovergth
Algorithm 1. projection needed is often through one dimension only,

which may not be more computationally demanding than
characterizing several critical regions as in method ahdde
we will explore method b) in more detail.

When LICQ is violated, the set of optimal Lagrange mul-
tipliers \*(6) can be characterized by a polyhedron in the
(\,0)-space:

Theorem 3:Consider the same problem as in Theorem
1, however, assume that LICQ is violated. L&Y span
null(AY) and Y4 be any matrix such thafY, ZJE\:] is
nonsingular. LetY4, be as defined in Theorem 1. For any
0 such thatA is the optimal active set, optimal Lagrange
multipliers are characterized by

N(0) = Kx0 + kx + Za\z, (28)

Ri

a) b)
Fig. 1. Parameter space exploration strategy of [1]. where
Ky=—-YA(Y1ALYL)'YI(HK, +F), (29)

7 5 T AT \—1vT
One advantage of this way of partitioning the parameter by = = Ya(Y4 AuYa)" Ya(Hks +c), (30)
space, is that handling degeneracies is relatively easy. Thd .\ is any vector such that
mpQP solver [14] has a different exploration strategy for .
dividing the parameter space. Properties of the geometry of Ana™(0) —by —Sy0 <0 (31)
the polyhedral partition and its relation to the combinatio K 0+ (k VA As >0 32
of active constraints at optimum, are used to find the active ( ’\)I“A. * ( /\)I”_A * _A)I_W‘ 7= .( _)
set in all critical regions which are neighbors of the cutrefhe active setd is optimal in the interior of the projection
one, as in Figure 2. Based on these results, this algoritt®i(31)—(32) onto the)-space. _
avoids unnecessary partitioning of the parameter space, gi  Proof: To computez*(#) one can obtain a reduced
ing significant improvement of efficiency for solving sthct Set of equations, and proceed as in Section II-Azag)

convex mpQPs with respect to the algorithm of [1]. is still uniquely defined (due to Theorem 2). The Lagrange
multipliers can be found by partitioning* as
0, 0, A= YA)\{/ + ZAAz.

i A _
This means that’4 Ay is a particular solution of (9), while

Z i)y is a displacement along the constraints. We proceed

< to find \*
Hz*(0) + AL\ = —F0 — ¢ (33)
AL (Y Ay + Z4Nz) = —Hz*(0) — F — ¢ (34)

YiALY ANy = =Y (Ha*(0) + FO+c)  (35)

> o Ay = —(YAALY.A) 'YL (Ha*(0)
01 ~ 0 L FO+0) (36)
Fig. 2. Parameter space exploration strategy of [14]. A= —YA(YEAﬁyA)leE(Hw*(Q)
+FO+c)+ Zarg (37)

C. Primal Degeneracy = Kx\0 +kx+ Zadz, (38)

When LICQ is violated for an optimal active set, the optimakhere the last equation definés,, k) andZ 4. In particular,
Lagrange multipliers are no longer unique, giving sevepal othe transition from (34) to (35) is valid becausg is full
timal combinations of active constraints. In [1] two methodrow-rank. The CR (31)—-(32) can be obtained by inserting
were suggested on how to handle this. (28) into (7)—(8). ]
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In the numerical implementation we use a QR factorization to as dual degeneracy, which means that the dual of (1)—
obtain the matrices 4 andY 4 to obtain a well-conditioned (3) is primal degenerate. In Section 1I-C we saw that in
system. To obtain a critical region thspace from (31)—(32), the case of primal degeneracy we could obtain a partition
a projection algorithm is needed, e.qg. [7] or a Fourier-Motz with mutually non-overlapping regions by using a projeatio
elimination [4]. The polyhedron to be projected is defined bgigorithm. A similar procedure can be applied in the case of
|Z N A| linear inequalities (only the polyhedron (32) has tdual degeneracy. By again using the null-space method, the
be projected), and the projection has to be done througloptimal solution and Lagrange multipliers can be obtained
number of dimensions given by the dimension of the nulks affine functions of the parameters and some additional
space ofA4. So even if doing projections is consideredariablep.

computationally expensive in general, we emphasize tleat th

projection needed often is relatively simple, and needdg on x*(0)] _ K0+ k K

in degenerate cases. This is due to the fact that when LICQ is ()| — PeA T Rax + Kpp

violated in a full-dimensional region, the row-rank df4 is

often|A| — 1, and the required projection would be througlfror a positive semi-definite mpQP, one can (similar to the
one dimension only. When using method a) to handle viprocedure of section 1I-C) for an optimal active sdf
lation of LICQ, several possibly overlapping critical regs characterize a polyhedron in th{é, p)-space from the KKT
will be found instead of the single region found by projestio conditions (4)—(8). By constructiond* is in the interior
Avoiding this ambiguity has computational advantages. of this region the unique optimal active set according to
Example 1:Consider the following strictly convex mpQP: Definition 3. One can further apply a projection algorithm
to obtain a critical region in the parameter space.

11 8 *1 % 11 8 The mpQP algorithm of [1] can fairly straightforwardly be
A= ’0 1 :1 b=—1]:5= B 1l extended to deal with dual degeneracy and positive semi-

0 -1 -1 1 01 definite mpQP. However, we would like to take advantage of
the increased execution speed of the algorithm of [14] itspar

H = I3x3, F = O3x2,¢ = 03x1,7 = {1,2,3,4} ,£ = 0. of the parameter space where the problem is non-degenerate.

We therefore suggest to combine these two algorithms to

The partition obtained from this mpQP is shown in Figurg; e such problems efficiently:

3. In regionsR1 — R4, LICQ is violated, and the union of - _ . .
these regions can be obtained by a projection, as explained) Partition © by using the algorithm of [14], using a

in Theorem 3. Inside this region, there are four different ~ Projection algorithm in regions in which the solutions
combinations of active constraints which may be optimal,  are (primal or dual) degenerate, to obtain a partition
each of them corresponding to a regidl, R2, R3 or with mutually non-overlapping regions. :
RA4. The problems connected with such overlapping regions2) Continue partitioning each region in which the solution
when using the mpQP solver of [14], can be as follows: is dual degenerate, by using the algorithm of [1].
Assume that regiom?1 is found, and the solver shall findThe efficiency of this method lies not only in the algorithm
the neighboring region of?1 in the direction of R2. This of [14] being used in parts of the parameter space where
must be done using the method of [13, Appendix A], sinade problem is non-degenerate, but also in the fact that the
LICQ is violated inR1. However, when solving the QP, theremain disadvantage of the algorithm of [1] is reduced, as the
is, as far as we can see, no obvious way of preventing tlatificial partitioning induced by the algorithm is limiteid

the new combination of active constraints found is the ornaller parts of the parameter space.

corresponding to regioR3 or R4. And as shown in Figure 2, Example 2:An mpLP can be considered a special case of
the mpQP solver of [14] depends on finding the neighboringsitive semi-definite mpQP, namely the one with= 0.
region of the current region, to guarantee that there are gensider Example 4-2 from [8]:

holes in the resulting partition. In this simple example one

may find methods for handling such problems, but in higher H = 03x9,F = 0gy2,c" =—[3 8],
dimensions having higher degrees of degeneracies, werbelie 1 5 8 4 1 0

that the projection method analyzed in Theorem 3 is the most AT = [ 1 A ;2 10 1 } ,
reliable way of characterizing the solution. o

b =[13 20 121 8 0 0],

15 R12 ST—OOSOOO
R7 R8 ~— 11 0 0 0 0 0}

R4

< S - rRo 7 = {1,..,6} and & = 0. This mpLP was solved using
s Algorithm 2, giving the partition shown in Figure 4 a). The
N B2 mpLP is non-degenerate for all the regions in the partition.
12 RO By introducing the extra inequality constraint
a -2 -1 a 1 2 b -2 -1 a 1 2
) ) 3 8lz<4,

Fig. 3. Partition of parameter space, Example 1.
the partition of Figure 4 b) is obtained. The solution is
o . - dual degenerate in regiod®5, R6 and R7. When using the
D. Positive Semi-definite MpQP and Dual Degeneracy exploratgion strategy s%own in Figure 2, the union gf these
In this section, we explain how to deal with cases whe® regions were obtained by a projection, as explained in
the matrix Z4LHZ 4 in Theorem 1 has some eigenvalueSection II-D. Then in the second phase, this larger region
equal to zero, that is, the positive definiteness assumptieas further partitioned with Algorithm 1, to obtain the show
is relaxed into positive semi-definiteness. This is reférreartition.
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Theorem 4:Consider an optimal active s¢ty, io, ..., i } and

let CR be its corresponding critical region with a represen-
tation obtained by removing all non-facet inequalitiesnfro
(24)—(25). Assume thaC' R is represented by a minimal
representation. Also assume that the mpQP is not primal
or dual degenerate for this active set. lE@R* be a full-
dimensional neighboring critical region t6R° and assume

a) 0 Wy 0 o w0 w0 the problem to be non-degenerate for the optimal active set
on their common facetr = CR° N H, where X is the
Fig. 4. Partition of parameter space, Example 2. separating hyperplane betwe€hR’ and C'R'. Moreover,

assume that there are no constraints which are weakly active
at the optimizerz*(6) for all € CR°. Then:

[1l. ACTIVE SETS IN NEIGHBORING REGIONS Type | If H is given by A;,  z*°(0) = b;,,, + S, .0
. . L ) (whereix1 € Z N N), then the optimal active set
This section will give some results on how to obtain the iN CRYiS {iy, ..., ik, ips1}-

optimal active set in a neighboring region. Non-degenerateType |1 If 7 is given by X! (6) = 0 (wherei, € TN A),
cases are handled in Section Ill-A, while Section III-B then the optimal active set R is (i, ey ipr ).
treats the degenerate cases. The results are straightforwa p.0c | ot us prove Type . In order for Some constraint

extensions of resuilts presented in [14]. i; € {i1,...,%x} not to be in the optimal active set ®R’, by
continuity of \* (8) (due to Theorem 2 and LICQ), it follows
that A7 (0) = A,?i (#) = 0 for all § € F. Since there are no
Below, we denote by:** (¢) the affine expression of theconstraints which are weakly active for #lle C'R?, this
PWA function * (d) restricted to the critical regio@R*, would mean that constrairi§ becomes non-active &. But
wherek is an index enumerating the optimal active sets. thjs contradicts the assumption of minimality since () >
Definition 5: Let z*(¢) be an optimal solution of (1)—(3) for 0 and A;, 2" (0) < b;,., + S;,.,0 would be coincident
a givend, and suppose that the KKT conditions (4)~(8) arg,j 1,s'one of them redundant. On the other Hand.., i)} ,
satisfied. We say that theth inequality constraint isveakly cannot be the optimal active s;et GhR becauseC’.]'?jO kis
activeif i € A(2* (), 0) andA; = 0 for all \* satisfying (4)- the largest set of)’'s such that{: ir} is the optimal
(8). We say that an inequality constraintsgongly active Loy Skt -

e " : i active set. Then, the optimal active setGiR* is a superset
'(2;_(68;4(30 (0),0) and there exists somg} > 0 safisfying of {i1,...,7x}. Now assume that another constraipt  is

Definition 6: Let a full-dimensional polyhedro® C RP ?‘C“Vei'” CR’. That mean%iﬁjﬂ *(0) = by, + i, 0

be represented by the linear inequalitiéd < g. Let the in C/', and by continuity oft* (), the equality also holds
hyperplaneG;0 = g; be denoted by. If © N H is (p — 1)- for 6 € F. However,A; ,z*"(0) = b;,,, + Si,0 would
dimensional ther® N is called afacet of the polyhedron. then coincide withA;, ,z*%(0) = b;,,, + S, 60, which
Definition 7: Two polyhedra are calledeighboring if they ~2gain contradicts the assumption of minimality. Therefore
share a common facet. Only {’Ll, ...,Zk,Z}g+1} can be the Opt'mal active set iR".
Definition 8: Let a polyhedror® be represented bgd < g. 1he proof for Type Il is similar. _ . _ .

We say that(;0 < g; is redundant if G,0 < g; Vj #i = Corollary 1: Con§|(_jer the same assumptions as in Theqrem
G0 < g; (i.e., it can be removed from the description of thé. except thalR” is no longer assumed to be minimal, i.e.
polyhedron). A representation of a polyhedromigimal if Wo or more hyperplanes can coincide. LEtC {iy, ..., i}

it contains no redundant constraints. be the set of indices corresponding to coincident hypegsan
We have seen in the previous section that when we #k CR".

the active set, it is fairly straightforward to characterthe o Every constrainti; wherei; € {i,iz,...,ix} \ J is
optimal solution and Lagrange multipliers corresponding t  active inCR".

this active set, and the region in the parameter space intwhic « Every constrainti; wherei; ¢ {i1,is,...,3x} U J is

this active set is optimal. The main task for an mpQP solver inactive in CR*.

is therefore to find every active set which is optimal in somg/hen, for instance, two hyperplanes are coincident, by
full-dimensional region in the parameter space. We will dgorollary 1 there are three possible active sets which have
this by for eachCR we identify, finding the optimal active to be checked to find the optimal active set@hR’. One

set in every full-dimensional neighborirgR. should always a priori remove redundant constraints from
Let us consider a hyperplane defining the common faq@)—(3). This reduces the complexity of the mpQP, and by
between two polyhedr& R’, C R’ in the optimal partition of this, some degeneracies may also be avoided (see Section
the state space. Assuming degeneracies do not occur, th#fB). Theorem 4 and Corollary 1 show how to find the
are two different kinds of hyperplanes. The first (Type Ipptimal active set across a facet only by using the knowledge
are those described by (24), which represent a non-actafewhich kind of hyperplane the facet corresponds to, except
inequality constraint that becomes active at the optimum msdegenerate cases, which is the topic of the next section.
6 moves fromCR° to CR'. As proved in the following o

theorem, the corresponding constraint will be activated & Degeneracy Handling in the MpQP Solver

the other side of the facet defined by this hyperplane. \fie assumed in Section Ill-A when obtaining the active set in
addition, the corresponding Lagrange multiplier may beeora neighboring region, that the the mpQP was not degenerate,
positive. The other kind (Type II) of hyperplanes whictheither in the interior of the current critical region nor i
bound the polyhedra are those described by (25). In this caggets. In cases when this assumption is violated, we stigges
the corresponding inequality constraint will be non-a&tn to obtain the active set in the neighboring region by finding
the other side of the facet defined by this hyperplane. 3 pointg, a small distance into the neighboring region, and

A. Non-degenerate Cases
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solving the QP obtained by insertig= 6, into the mpQP Algorithm 2 Convex mpQP

(1)—(3), see [13, Appendix A]. This method was in some Choose the initial active setl, by finding a feasibled
cases also used in [14]. However, as opposed to in [14], arand solving the corresponding QP; LBt.nq «— {Ao},
active set according to Definition 3 must be obtained. This L,,, « 0;

is done by using an interior point method to solve the QP.while L.,,q # 0 do

Primal-dual solvers have the property that when the optimal
solution is not unique, a solution in the interior of the o
facet is obtained, see e.g. [9]. From this solution one can
identify the unique active set according to Definition 3.

C. MpQP Algorithm

Based on the results from the previous sections, we finally
present an efficient algorithm for the computation of the
solution to the mpQP (1)—(3). Generally, there exist active
sets which are not optimal anywhere in the parameter space
(typically, most active sets are not optimal anywhere). We
need an active set which is optimal in a full-dimensional
region to start the algorithm. Generally we can do this by
choosing a feasiblé, and solve the QP obtained by inserting
this 6 into the mpQP (1)—(3).

Let L..nq be a list of active sets which are found, but not yet
explored (i.e., are candidates for optimality) ahg,: be the

set of active sets which have been explored (i.e., are found
to be optimal in some full-dimensional region).

IV. CONCLUSIONS

In this paper we have given a detailed description of an
approach to solving convex mpQP problems. The approach
covers mpQPs with a positive semi-definite projection of
the Hessian onto the subspace defined by the active set.
Special attention has been given to the handling of degenera
cases. The proposed mpQP algorithm can be considered
a generalization of the mpQP/mpLP solvers [1], [14], [2],
combining the advantages of the solvers. The result is an
algorithm which is more general than the strictly convex
mpQP solver of [14] (as it can handle convex mpQPs), and
more efficient than Algorithm 1 (which is the convex coun-
terpart of the strictly convex mpQP algorithm in [1]). A few
examples, comparing Algorithm 1 and 2 on convex mpQP
problems, obtained from model predictive control, can be

Pick an elementd from L.qng. Let Leana < Leand \
{A}
Build the matricesA 4, b4 and S 4 from A.
if the mpQP is not dual degenerate for the active 4et
then
if A4 has full row-rank then
Determine the local Lagrange multipliers;(6),
and the solution:*(0) from (11) and (10), and find
the CR where A is optimal from (16)—(17);
else
Determine the local Lagrange multipliers;(6),
the solutionz*(#) and theC'R where A is optimal
as in Section 1I-C;
end if
else
Determine the region in the parameter space where
A is optimal as in Theorem 3. Continue partitioning
this region by using Algorithm 1
end if
if CR is full-dimensional then
Detect an remove all non-facet hyperplanes frotR
by solving LPs;
Lopt — Lopt ) {A}1
for each facetF in CR do
Find the optimal active set o by examining the
type of hyperplaneF is given by;
Find any possible optimal active sets in the neigh-
boring region according to Theorem 4, Corollary 1,
or if these are not applicable, by solving a QP as
in [13, Appendix A], using a primal-dual interior
point QP solver;
For any new active setl,,.., found, letL . ,q <
Lcand U {»Anew}
end for
end if

found in [13, Chapter 3]. We consider this to be an important end while

step towards efficient implementation of constrained ogtim for eachCR* corresponding to an active sef; € Lopt
feedback control. do
if the mpQP is dual degenerate fd; then
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