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Abstract

This paper deals with multiparametric nonlinear in-
teger programming problems where the optimization
variables belong to a finite set and where the cost func-
tion and the constraints depend in an arbitrary nonlin-
ear fashion on the optimization variables and in a lin-
ear fashion on the parameters. We examine the main
theoretical properties of the optimizer and of the op-
timum as a function of the parameters, and propose
a solution algorithm. The methodology is employed to
investigate properties of quantized optimal control laws
and optimal performance, and to obtain their explicit
representation as a function of the state vector. 1

1 Introduction

In several control synthesis problems the number of
possible control actions is finite, a situation usually re-
ferred to as quantization of the input signals. While
in most applications the quantization introduced by
analog-to-digital converters, finite precision arithmetic
units, and digital to analog converters can be safely
neglected by treating the control variables as contin-
uous, in some problems this assumption may lead to
an unacceptable deterioration of the closed-loop perfor-
mance. Examples of control problems that must han-
dle quantization range from more traditional mechan-
ical problems (e.g., problems involving stepping mo-
tors) and hydraulic problems (e.g., with on/off valves),
to new problems in communications, such as the one
dealt with in [1], where quantized control is used to
coordinate adaptation of multimedia applications and
hardware resource, in order to provide user-preferable
QoS requirements under resource contention and en-
ergy constraints.

It is therefore worthwhile to devise methods that take
into account phenomena of quantization, either for the
analysis of the effect of quantization of the input sig-
nal, or for the synthesis of quantized control laws. Both
research topics are currently receiving a growing atten-
tion especially in the field of hybrid systems because of
the interactions between a continuous dynamical sys-
tem and a discrete quantized controller (see [2] and
references therein).

Among other approaches, receding horizon optimal

1This work was partially supported by the European Project
“Computation and Control”. We thank E. Triki for pointing out
a few typos in the original manuscript.

control ideas were proposed for synthesizing quantized
control laws for linear systems with quantized inputs
and quadratic optimality criteria. In [2], the authors
ensure practical stability properties2, by forcing the ter-
minal state to belong to a special invariant set [4], they
deal with state constraints, and propose on-line mixed-
integer optimization for the implementation of the con-
trol law. In the absence of state-constraints, in [5] the
authors show that the control law can be equivalently
rewritten as a piecewise affine mapping.

Ideas for solving optimal control problems as an ex-
plicit function of the state vector were proposed ear-
lier for linear systems [6], nonlinear systems [7], hybrid
systems [8,9], and uncertain linear systems [10]. These
approaches rely on multiparametric programming [11]
to express the optimizer vector (=the optimal input)
as a function of a certain number of parameters (=the
current states).

Optimal control problems where all decision variables
are quantized and where cost function and constraints
depend on a real-valued state vector can be handled
by multiparametric integer programming solvers [12].
A multiparametric integer solver for linear objectives
and linear constraints was developed in [13]. The algo-
rithm finds the lexicographic minimum of the set of
integer points which lie inside a convex polyhedron
that depend linearly on one or more integral param-
eters, and is based on parameterized Gomory’s cuts
followed by a parameterized dual simplex method. An
alternative method based on a contraction algorithm
for multiparametric integer linear programming prob-
lems was proposed in [14]. Algorithms for solving a
special class of multiparametric nonlinear integer pro-
gramming problems were investigated in [15].

In this paper we propose a method for solving a quite
general class of multiparametric nonlinear integer prob-
lems where: (1) the cost function and the constraints
depend linearly on a vector of parameters, (2) they
depend in an arbitrary nonlinear fashion on the opti-
mization variables, and (3) these are restricted to be-
long to a finite set. Because of feature (2), the use
of relaxation and branching, which is the approach of
most multiparametric mixed-integer solvers, would be
inappropriate here.

2As underlined in [3], the classical concept of stability must
be replaced in a quantized context by “practical” stability



The paper is organized as follows. After examining in
Section 2 the main theoretical properties of the opti-
mizer and optimum as a function of the parameters,
we propose a solver in Section 3. Multiparametric in-
teger programming is used in Section 4 in the context
of quantized optimal control. Numerical results are fi-
nally reported in Section 5.

2 Multiparametric Nonlinear Integer
Programming

We consider the following multiparametric optimiza-
tion problem:

V ∗(θ) � min
x∈Q

f1(x) + f ′
2(x)θ

s.t. g1(x) ≤ g′2(x)θ,
θ ∈ Θ

(1)

where: x ∈ R
n is the optimization vector, which is

constrained to belong to the finite set of values Q =
{q1, . . . , qN}, qi ∈ R

n, ∀i = 1, . . . , N ; θ ∈ R
m is a

vector of parameters, lying in the polyhedron Θ = {θ ∈
R

m : Tθ ≤ S} ⊆ R
m; f1 : R

n �→ R, f2 : R
n �→ R

m,
g1 : R

n �→ R
p, g2 : R

n �→ R
m×p are generic nonlinear

functions of the optimization variables.

A typical instance of Q is given when each com-
ponent x{j} of x is restricted to a finite set Φj =
{φj1, . . . , φjNj}, j = 1, . . . , n, so that Q is the Cartesian
product Φ1×. . .×Φn, and its cardinality N =

∏n
j=1 Nj.

A solution to the multiparametric program (1) is de-
fined as follows. The feasible parameter set Θ∗ is the
set of all θ ∈ Θ for which there is a vector x ∈ Q such
that g1(x) ≤ g′2(x)θ. The value function V ∗ : Θ∗ �→ R

is the function that associates to a parameter vector
θ ∈ Θ∗ the corresponding optimum V ∗(θ) of prob-
lem (1). The optimizer set function X∗ : Θ∗ �→ 2Q
is the function that associates to a parameter vector
θ ∈ Θ∗ the corresponding set of optimizers X∗(θ) =
{x ∈ Q : f1(x) + f ′

2(x)θ = V ∗(θ)} of problem (1).
The optimizer function x∗ : Θ∗ �→ Q is the function
that associates to a parameter vector θ ∈ Θ∗ the lexi-
cographic3 minimum x∗(θ) of X∗(θ).

The following Lemma 1 and Theorem 1 establish the
main properties of the multiparametric solution to
problem (1).

Lemma 1 ( [16]) Consider problem (1) without in-
equality constraints. Then V ∗ : Θ �→ R is a concave
piecewise affine function, and x∗ : Θ �→ R

n is a piece-
wise constant function.
Theorem 1 Let Θ∗ ⊆ Θ ⊆ R

m be the feasible param-
eter set of (1), and let V ∗ : Θ �→ R, x∗ : Θ �→ Q
the corresponding value function and optimizer func-
tion, respectively. Then Θ∗ is the (possibly nonconvex4)

3The lexicographic order is referred to the order of the ele-
ments of Q. For example, if X∗(θ) = {qi, qj} ⊆ Q and i < j,
then x∗(θ) = qi.

4We use here the following definition of nonconvex polyhedral
set: A set Ω ⊆ R

m is a nonconvex polyhedral set if Ω is noncon-
vex and Ω =

⋃s
i=1 Ωi, where each set Ωi is a convex polyhedron

and Ωi ∩ Ωj is not full dimensional, ∀i, j = 1, . . . , s, i �= j.
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Figure 1: Example of a partition of Θ∗ into (possibly non-
convex and disconnected) regions RI , where RI

is the set of all θ ∈ Θ such that g1(qi) ≤ g′
2(qi)θ

if and only if i ∈ I

union of at most N convex polyhedra, and V ∗, x∗ are a
piecewise affine and a piecewise constant function, re-
spectively, of the parameters over a partition of Θ∗ in
at most 2N − 1 (possibly nonconvex) polyhedra.

Proof: For each i ∈ {1, . . . , N} the linear inequality
constraints g′2(qi)θ ≥ g1(qi) and Tθ ≤ S define a (possi-
bly empty) polyhedron Pi in R

m. Then, Θ∗ =
⋃N

i=1 Pi.
Consider now the set C of all combinations of indices
I = {i1, . . . , iK}, i1 ≥ 1, iK ≤ N , K ≤ N , ij < ij+1,
∀j ∈ {1, . . . , K − 1}, without permutations and repeti-
tions (e.g.: for N = 3 the combinations {1, 2}, {2, 1},
{1, 1, 2}, {1, 2, 1}, {1, 2, 2}, {2, 1, 1}, {2, 1, 2}, {2, 2, 1}
are only taken once as {1, 2}). The number of ele-
ments of C is

∑N
k=1

(
N
k

)
= 2N − 1. Then, for K =

1, . . . , N consider the (possibly nonconvex) polyhedral
sets Ri1...iK = {θ ∈ R

m : θ ∈ Pj , ∀j ∈ {i1, . . . , iK},
θ �∈ Ph, ∀h �∈ {i1, . . . , iK}} (for instance, for N = 2
we have R1 = P1 \ (P1 ∩ P2), R2 = P2 \ (P1 ∩ P2),
R12 = P1 ∩ P2; another example is reported in Fig-
ure 1, where it can be noticed that R1, R4, R14 are
nonconvex polyhedral sets, and that R1, R4 are also
disconnected).

Define C̄ ⊆ C as the subset of indices I for which RI is
nonempty (although RI may not be full dimensional).
As

⋃
I∈C̄ RI = Θ∗, the sets RI define a partition of Θ∗

into a finite number of (possibly nonconvex) polyhedra.

On each set RI , we have

V ∗(θ) = min
i∈I

{f1(qi) + f ′
2(qi)θ}, ∀θ ∈ RI , (2)

and by Lemma 1 we conclude that V ∗ is a concave
piecewise affine function of θ over RI . Hence, V ∗ is
piecewise affine over Θ∗. For each given θ ∈ RI the
corresponding optimizer is defined as x∗(θ) = qj , where
j = min{i ∈ I : f1(qi) + f ′

2(qi)θ = V ∗(θ)}, and where
minimization is necessary to obtain the lexicographic
minimum in case of multiple optima.5 �

5If equality constraints of the form h1(x) + h′
2(x)θ = 0 are

considered in problem (1), the set of feasible parameters Θ∗ (or
subsets of it) may not be full dimensional. In fact, as the op-
timizer function x∗(θ) ∈ Q can only assume a finite number N
of values, equality constraints h1(x∗(θ)) + h′

2(x
∗(θ))θ = 0 would

force θ to lie on a finite number of hyperplanes. This has impor-
tant implications when formulating finite-time optimal control
problems with equality constraints on the terminal state, as dis-
cussed later in Section 4.



3 Multiparametric Solver
Linear, quadratic, and mixed-integer linear multipara-
metric programming solvers rely upon the fact that the
optimizer is a piecewise affine function of the parame-
ters defined over convex polyhedra. On the other hand,
Theorem 1 provides a characterization of the solution
over a partition of nonconvex (in general) polyhedra.
Although nonconvex polyhedra may be split into sev-
eral convex components, this approach would largely
increase the number of partitions. Moreover, mixed-
integer solvers rely on the relaxation of integer con-
straints, an approach that cannot be followed in our
context due to the arbitrary nonlinear dependence on
the optimization variables.

A direct application of the ideas used to prove Theo-
rem 1 would lead to fully enumerating all 2N − 1 pos-
sible combinations of indices I ∈ C, test for nonempti-
ness of RI , and characterize the value function and the
optimizer on RI according to (2). We provide here a
more efficient solution method.

Before proceeding further, for any set of indices I =
{i1, . . . , iK} ⊆ {1, . . . , N}, where N is the cardinality
of Q, let PI �

⋂
i∈I Pi, where Pi = {θ ∈ Θ : g1(qi) ≤

g′2(qi)θ}. Note that RI ⊆ PI . Moreover, denote by
Vi : R

m ∈ R the linear function that maps θ to Vi(θ) =
f1(qi) + f ′

2(qi)θ, i = 1, . . . , N .

The method we propose here is based on two simple
considerations. Let I = {i1 . . . iK} ⊆ {1, . . . , N} and
j any index such that j ∈ {iK + 1, . . . , N}. The first
consideration relates to feasibility: if PI is empty, then
PI∪{j} is certainly empty. The second relates to op-
timality: we can avoid considering a polyhedral re-
gion PI∪{j} if Vj(θ) ≥ Vi(θ) for all i ∈ I and for all
θ ∈ PI∪{j}, or if PI∪{j} ⊂ PI∪{h} and Vj(θ) ≥ Vh(θ)
for all θ ∈ PI∪{h}.

Based on the above considerations, a recursive algo-
rithm for determining the feasible parameter set Θ∗,
its subpartition, the value function V ∗, and the opti-
mizer function x∗, is summarized by Algorithm 3.1.

The algorithm builds an optimality tree T , as depicted
in Figure 2, where each node is characterized by a se-
quence I = I0 ∪ {j} and a polyhedron WI0,j = {θ ∈
Θ : g1(qi) ≤ g2(qi)′θ, ∀i ∈ I, Vj(θ) ≤ Vi(θ), ∀i ∈ I0},
where I0 is the sequence characterizing the father node.

The root node corresponds to I = ∅, W∅ = Θ. The
maximum depth of the tree is N = |Q|. The maximum
number of nodes is 2N . Clearly, T is always unbalanced
by construction: a feasible combination {i1, i2, i3} will
be always child of {i1, i2} rather than {i2, i3}; in par-
ticular {N} will always be a leaf node.

As the number of nodes in T depends not only on f1,
f2, g1, g2, and on the number N of elements of Q,
but also on the order of the elements of Q, at Step 2.
the elements qj that are infeasible for all θ ∈ Θ (i.e.,
Pj is an empty convex polyhedron) are eliminated,

1. T ← {root node};
2. Remove the elements of Q that are infeasible for all θ ∈ Θ
and order the remaining elements by increasing cost f1;

3. Execute examine(T ,root node,∅);
4. End.

5. Function examine(T ,node,I0);
5.1. If I0 �= ∅ then let i← largest element of I0, otherwise let

i← 0;
5.2. For j ∈ {i + 1, . . . , N}:

5.2.1. Let WI0,j = {θ ∈ PI0 : g1(qj) ≤
g2(qj)

′θ, Vj(θ) ≤ Vi(θ), ∀i ∈ I0};
5.2.2. If WI0,j �= ∅ and the set {h : i + 1 ≤ h < j,

WI0,j ⊆ WI0,h, and Vj(θ) ≥ Vh(θ), ∀θ ∈ WI0,j} =
∅:
5.2.2.1 Append child node nodej to node in T ;
5.2.2.2 Execute examine(T ,nodej ,I0 ∪ {j});

5.3. End.

Algorithm 3.1: Multiparametric integer programming
solver.

and the remaining ones pre-ordered by increasing val-
ues of f1(qj). An alternative is to consider the value
f1(qj) + minθ{f ′

2(qj)θ subject to g1(qj) ≤ g′2(qj)θ} as
an ordering criterion, which can be easily computed via
linear programming for each feasible element qj ∈ Q.

At step 5.2.1. the set WI0,j represents the set of all
vectors θ for which qj is feasible, qi is feasible for all
i ∈ I0, and that have a cost smaller than the cost at
the father node (and, by induction, than the cost at
all parent nodes). At step 5.2.2., the algorithm deter-
mines if a child node must be generated. A node is not
generated if WI0,j is empty or if it is included in WI0,h

for some “brother” node labeled by I0 ∪ {h} already
considered so far, and if everywhere on WI0,j the cost
Vj(θ) is larger than Vh(θ).

After the execution of Algorithm 3.1 and the construc-
tion of the tree T , the multiparametric solution can be
simplified by removing branches from T according to
a criterion similar to the one in Step 5.2.2.: for each
node nodej characterized by I0 ∪ {j}, we can check if
there exists a “brother” node nodeh, j < h ≤ N , such
that WI0,j ⊆ WI0,h and Vj(θ) ≥ Vh(θ), ∀θ ∈ WI0,j .
If this happens, nodej and its whole sub-tree can be
safely removed, without affecting the multiparametric
solution.
Remark 3.1 Complexity and suboptimality of the
multiparametric solution can be traded off with mi-
nor modifications to Algorithm 3.1. In fact, given a
suboptimality tolerance ε ≥ 0, we can modify the op-
timality requirement in Step 5.2.1. by imposing that
Vj(θ) ≤ Vi(θ) − ε, so that a child node is added only
if the cost improves at least by ε, and, similarly, in
Step 5.2.2. by asking that Vj(θ) ≥ Vh(θ) − ε. �

3.1 Evaluation of the Solution
The tree structure T constructed by Algorithm 3.1 can
be immediately used for storing the multiparametric
solution in the form (3), and for evaluating the optimal
value and the optimizer for a given θ ∈ R

m, as detailed



I=f2g I=f3g I=f4g

I=f1;2g I=f1;3g I=f1;4g I=f2;3g I=f2;4g

I=f1;3;4g

I=f1g

I=f3;4g

I=;

I=f1;2;3g I=f1;2;4g I=f2;3;4g

q1 feasible ) q2 infeasible

P3 µ P1

V3(µ) ¸ V1(µ)

8µ 2 P3

Figure 2: Optimality tree T , related to the partition de-
picted in Figure 1

in the recursive Algorithm 3.2.

During the execution of Algorithm 3.2, children nodes
must be visited in lexicographic order, namely if
j < h, the node corresponding to the sequence I =
{i1, . . . , ik, j} must be visited before the node corre-
sponding to the sequence I = {i1, . . . , ik, h}. This or-
dering comes naturally by the way Algorithm 3.1 con-
structs tree T . At Step 2.2., one can avoid evaluat-
ing the whole inclusion θ ∈ PI . Indeed, only checking
θ ∈ PiM , where iM � max(I), is enough, as the re-
maining conditions θ ∈ Pi, by recursion, were already
checked for all i ∈ I \ {iM}. Moreover, only the in-
equalities of PiM which are not redundant on PI\{iM}
need to be evaluated, which allows one to save memory
space and computation time.

The solution can be expressed as a multi-level condi-
tional expression (i.e., as a tree of nested conditionals),
similarly to what is done in [13] for multiparametric
integer linear programming6. In fact, the multipara-
metric solution can be written as:

if θ ∈ Θ then
if H1θ ≤ K1 then

...
if Hiθ ≤ Ki then

x∗(θ) = qi

...
elseif Hkθ ≤ Kk then

...
else

problem is infeasible
end

else
solution is undefined (θ �∈ Θ)

end

(3)

where H(), K(), are (possibly empty) matrices/vectors
of suitable dimensions.

4 Explicit Quantized Optimal Control
Consider the following linear discrete time invariant
system

x(t + 1) = Ax(t) + Bu(t) (4)

where x ∈ R
nx , u ∈ U � {ū1, ū2, . . . , ūL}, ūi ∈ R

nu

are the levels of quantization, and (A, B) is a stabiliz-
able pair. Starting from the initial state x(0), we wish

6In [13] the authors denominate a multi-level conditional ex-
pression a quast.

1. [V ∗(θ), x∗(θ)]←eval(T ,root node,θ);

2. Function [V ∗, x∗]←eval(T ,node,θ);
2.1. Let V ∗ ← +∞, x∗ ← ∅;
2.2. If θ ∈ PI :

2.2.1. Let I ← combination associated with node;
2.2.2. Let c← number of children of node; Let i← 0;
2.2.3. While i < c and V ∗ = +∞:

2.2.3.1 i← i + 1;
2.2.3.2 Let nodei ← i-th child of node;
2.2.3.3 [V ∗, x∗]←eval(T ,nodei,θ);

2.2.4. If V ∗ = +∞ and I �= ∅:
2.2.4.1 Let i∗ ← largest element of I;
2.2.4.2 Let x∗ ← qi∗ , V ∗ ← f1(qi∗ ) + f ′

2(qi∗ )θ;
2.3. Return [V ∗, x∗];
2.4. End.

Algorithm 3.2: Evaluation of the optimal value V ∗(θ)
and of the lexicographic minimum x∗(θ)

to control the final state x(T ) to a target set Ω while
satisfying the constraints

Āx(t) + B̄u(t) ≤ C̄, t = 0, . . . , T − 1. (5)

Constraints (5) are generic linear constraints on input
and state variables. A typical instance are box con-
straints of the form xmin ≤ xk ≤ xmax (constraints of
the form umin ≤ uk ≤ umax can be immediately taken
into account by simply excluding from U those values
ūi outside the bounds). We assume that the set Ω is a
full-dimensional polyhedral set7.

We want to show how the multiparametric integer
solver developed earlier can be used to derive explicit
optimal control laws. To this end, consider the follow-
ing optimal control problem:

minU

{
J(U, θ) = x′

T PxT +
T−1∑
k=0

(x′
kQxk + u′

kRuk)

}

s.t.




x0 = θ
xk+1 = Axk + Buk, k = 0, . . . , T − 1,
Āxk + B̄uk ≤ C̄, k = 0, . . . , T − 1,
xT ∈ Ω
uk ∈ U � {ū1, . . . , ūL},

(6)
where R = R′ > 0, Q = Q′ ≥ 0, P ≥ 0 are matrices
of suitable dimensions, θ represents a generic initial
condition, U � [u′

0 u′
1 . . . u′

T−1]
′ ∈ R

mT is the set of
free control moves, U ∈ Q, where Q � UT = U×. . .×U ,
and U∗(θ) � [u∗′

0 u∗′
1 . . . u∗′

T−1](θ)
′ is the minimizer (or,

in case of multiple optima, the lexicographic minimum
of the set of optimizers).

It is immediate to cast problem (6) as an integer
quadratic program (IQP). Indeed, by substituting xk =
Akx(t) +

∑k−1
j=0 AjBuk−1−j , Eq. (6) can be rewritten

7In case of non full-dimensional sets Ω, the set Θ of initial
states x(0) for which (5) are feasible may be lower-dimensional,
for instance if Ω = {0}, corresponding to the constraint x(T ) = 0,
Θ would be a lattice, as remarked earlier.



as
min

U

{
1
2U ′HU + U ′F ′θ + 1

2θ′Y θ
}

subj. to GU ≤ W + Eθ
U ∈ Q,

(7)

where the column vector U � [u′
0, . . . , u

′
T−1]

′ ∈ R
mT is

the optimization vector, H = H ′ > 0, and H , F , Y , G,
W , E are easily obtained from Q, R, and (6).

The optimization problem (6) is an IQP which depends
on the initial state θ. The multiparametric nonlinear
integer programming algorithm developed earlier can
be conveniently used to compute the piecewise constant
solution U∗(x0) to the optimal control problem (6). In
fact, after taking apart the quadratic term 1

2θ′Y θ that
does not affect the optimizer U∗(θ), problem (7) can
be recast in the form (1) by setting f1(U) = 1

2U ′HU ,
f2(U) = FU , g1(U) = GU − W , g2(U) = E′.

From Theorem 1, it follows that the set Θ∗ ⊆ R
nx of

initial states x0 for which a solution to (6) exists is the
union of at most LT convex polyhedra, that the value
function V ∗ : R

nx ∈ R is a piecewise quadratic function
of x0 (more exactly, the sum of a convex quadratic
and a piecewise affine function) over a partition of Θ∗

in at most 2LT − 1 (possibly nonconvex) polyhedra,
and that the optimizer function U∗ : R

nx ∈ UT is a
piecewise constant function of x0 defined over the same
partition of Θ∗. Moreover, in the absence of inequality
constraints Āxk + B̄uk ≤ C̄, k = 0, . . . , T − 1, and
xT ∈ Ω, V ∗ is the sum of a convex quadratic and a
piecewise affine concave function of x0.

The case of optimal control problems based on infinity-
norms, leading to a multiparametric linear integer pro-
gramming problem, has been dealt with in [16]. As also
detailed in [16], problems involving logic constraints
over Boolean variables can be also dealt with by trans-
forming Boolean formulas into linear integer inequali-
ties [17].

4.1 Explicit Quantized Receding Horizon Con-
trol
A useful way for transforming the U∗(θ) into a closed-
loop control law is to adopt the so called receding hori-
zon philosophy. The receding horizon controller is de-
fined as

u(t) = u∗
0(x(t)), (8)

where u∗
0(x(t)) is the first element of the minimizer

U∗(x(t)) of the finite-time quantized optimal control
problem, initialized at the current state θ = x(t).

An immediate corollary of Theorem 1 is that the con-
trol law (8) is a piecewise constant law defined over a
polyhedral partition. Criteria for selecting the terminal
set Ω in order to guarantee practical stability properties
of the quantized control law (8) were analyzed in [2].

Remark 4.1 As only the first part u∗
0(x(t)) of the

minimizer U∗(x(t)) is of interest, after the execution
of Algorithm 3.1 the multiparametric solution can be

simplified by removing subtrees of T where the first
optimal move u∗

0 is the same in all nodes (in depth
search of such subtrees would just serve to determine
u∗

1, . . . , u∗
N−1). �

5 An Example
Example 5.1 Consider an extremely simplified ver-
sion of the problem of landing a spacecraft on a planet,
where we consider only the vertical motion described
by the equations mdv

dt = −βv + u, dh
dt = v, where h is

the height from ground, v the vertical velocity, and the
overall force u acting on the spacecraft is given by

u =




−mg thruster off
0 thruster on (gravity compensation)
mg double thruster on.

(9)
By choosing the parameters β = 1, m = 1, g = 1 (units
are omitted here, as the parameters have no particu-
lar meaning in this example), and by discretizing the
dynamics with a sampling time Ts = 1, we obtain the
discrete-time linear model x(t + 1) = [ 1 0.6321

0 0.3679 ] x(t) +
[ 0.7358
1.2642 ] u(t), where u(t) ∈ U � {−1, 0, 1}, and x = [ h

v ].
We wish to design a controller that brings the height of
the spacecraft and its velocity to zero while satisfying
the constraints

h ≥ 0, v ≥ −v̄, (10)

where v̄ = 1.5. To this end, we consider the
finite-time optimal control problem minu0,u1 x′

2Px2 +∑1
k=0 (x′

kQxk + u′
kRuk) s.t. x1 ≥

[
0−v

]
, u0, u1 ∈

{−1, 0, 1}, where R = 10, Q = [ 1 0
0 1 ], and P ≈

[ 3.1240 1.5677
1.5677 2.3241 ] solves the Riccati equation associated

with A, B, Q, R.

The associated mp-IQP problem has the form (7) with
θ = x0 and

H = [ 0.7675 0.2924
0.2924 0.6323 ] , F = [ 0.2160 0.2132

0.1477 0.1468 ]

G =


−0.7358 0

−1.2642 0
1 0−1 0
0 1
0 −1


 , W =


 0

1.5
1
1
1
1


 , E =


 1 0.6321

0 0.3679
0 0
0 0
0 0
0 0


 ,

where we have neglected the constant term 1
2θ′Y θ. By

running Algorithm 3.1 on Θ = {θ : ‖θ‖∞ ≤ 15},
the multiparametric solution is computed in 0.85 s on
a Pentium III 800 Mhz running Matlab 5.3, and the
associated tree T consists of 24 nodes and has a depth
of 5 levels, as depicted in Figure 3. The number of
inequalities associated with each node varies between
one and four8.

We compare now the solution U∗(θ) of the integer
quadratic problem with the quantization Û(θ) to the
nearest (in Euclidean norm) feasible point in Q of

8An evaluation of the value function V ∗ takes an average of
1.36 ms (this value is obtained by averaging over a grid of 4225
samples of Θ), against about 6.01 ms needed to compute V ∗ by
enumeration. Even from this simple problem where the number
of elements of Q is only N = 9, it is clear the advantage of having
an explicit representation of V ∗.
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Figure 3: Optimality tree associated with the optimal
control law. For each node is reported the num-
ber of linear inequalities that must be checked
at that node during the on-line evaluation of
the solution for a given x0
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Figure 4: Comparison between the solutions of the
continuous and of the integer multiparametric
quadratic program

the solution U∗
QP(θ) of the continuous quadratic pro-

gram minU ∈ R
mT { 1

2U ′HU + θ′F ′U subject to GU ≤
W + Eθ}. The partition associated with U∗

QP(θ), ob-
tained in 0.22 s using the algorithm reported in [18],
is depicted in Figure 4(b), while the partition associ-
ated with U∗(θ) is depicted in Figure 4(a). In Fig-
ure 5, we report the difference V̂ (θ) − V ∗(θ), where
V̂ (θ) = 1

2 Û ′(θ)HÛ (θ)+ θ′F ′Û(θ), and V ∗(θ) is the op-
timal value function for the integer quadratic program;
clearly V ∗(θ) ≤ V̂ (θ), for all θ ∈ Θ∗. �
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