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Abstract
For convex multiparametric nonlinear programming
problems we propose a recursive algorithm for approx-
imating, within a given suboptimality tolerance, the
value function and an optimizer as functions of the pa-
rameters. The approximate solution is expressed as
a piecewise affine function over a simplicial partition
of a subset of the feasible parameters, and it is orga-
nized over a tree structure for efficiency of evaluation.
The case of multiparametric semidefinite programming
is examined and exemplified on a test example. The
approach opens up the application of explicit receding
horizon techniques to several robust model predictive
control schemes based on convex optimization, such as
linear matrix inequalities.

1 Introduction

Parametric programming considers optimization prob-
lems where the data depend on one or more param-
eters. Parametric programming techniques systemati-
cally subdivide the parameter space into characteristic
regions where the optimal value and an optimizer are
given as explicit functions of the parameters.

In recent years, a new interest in parametric program-
ming arose in the model predictive control (MPC) com-
munity. MPC is a well-known technique widely used in
the process industry for the automatic regulation of
plants under operating constraints [7, 15]. In model
predictive control, the next command action is ob-
tained by solving an optimization problem where the
cost function and the constraints depend on the current
sensor measurements. In the classic setting, the opti-
mization problem is solved on-line at each time step.
However, most of the optimization effort may be moved
off-line by solving a multiparametric program where
variables correspond to command inputs, and parame-
ters correspond to sensor measurements [4, 17, 1].

A vast literature is concerned with parametric pro-
gramming, but it is almost always restricted to a sin-
gle parameter and/or to very well known problems,
like linear programs [10, 5] or convex quadratic pro-
grams [4, 18, 17]. We may distinguish two main issues
explaining these limitations of the research efforts: (i)
contrarily to the case of one scalar parameter, para-
metric solutions with a vector parameter are difficult to
analyze by a human decision maker; (ii) for more gen-
eral convex optimization problems (e.g., semidefinite
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programming), the exact shape of the optimal value
function may be unknown.

Designing methods to get an approximate description
of the optimal value function and of a sub-optimal solu-
tion is a promising direction for coping with the above
issues. A seminal contribution in this direction was
given by Fiacco [8, Chapter 9]. In the context of general
convex parametric nonlinear programming, he sketched
a strategy for approximating optimal value functions
along a mono-dimensional cut of the parameter space.
Essentially, Fiacco noted that optimal primal solutions
associated with two fixed parameter vectors may be
used to compute an affine upper bound along the line
segment joining the same parameter vectors; further-
more, optimal dual solutions associated with the two
parameter vectors may be used to compute a piece-
wise affine lower bound along the same line segment.
By following similar observations, Filippi [9] developed
an algorithm for approximate multiparametric linear
programming. A completely different approach was
used by Bemporad and Filippi [3] to get an approx-
imate solution to a multi-parametric strictly convex
quadratic programming problem. They proposed to en-
large the exact characteristic region corresponding to a
fixed active constraint set by relaxing the first-order op-
timality conditions, while preserving primal feasibility.
Another approach was taken by Johansen [13] for ob-
taining piecewise affine approximate solutions of multi-
parametric nonlinear programming problems using lo-
cal quadratic approximations.

In this paper we consider a quite general class of mul-
tiparametric convex programs, and propose a recursive
algorithm for approximating, within a given prescribed
tolerance, the value function and an optimizer as ex-
plicit functions of the parameters. Our approach is
inspired by the lines suggested in Fiacco [8, Chapter
9] and Filippi [9], and its main ideas are the following:
(i) given a full-dimensional simplex in the parameter
space and an optimizer for each simplex vertex, the lin-
ear interpolation of the given solutions gives a primal
feasible approximation of an optimizer inside the sim-
plex; (ii) if the resulting absolute error in the objective
exceeds a prescribed tolerance then the simplex is split
into smaller simplices where it applies recursively; (iii)
initial simplices are obtained by a triangularization of
a polyhedral estimate of the set of feasible parameters.
The resulting approximate solution is expressed as a
piecewise affine function over a simplicial partition of a
subset of the set of feasible parameters, and organized
over a tree structure for efficiency of evaluation (a simi-
lar tree structure based on boxes rather than simplices
was used in [14] to obtain approximate solutions to



multiparametric quadratic programs). The algorithm
applies to the general framework of convex multipara-
metric programming, and may conveniently fitted for
special cases of relevant interest. In particular, the case
of multiparametric semidefinite programming is briefly
examined and exemplified on a test example.

The goal of our approach is to open up the application
of explicit receding horizon techniques to several ro-
bust model predictive control schemes based on convex
optimization.

2 Convex Multiparametric Programming

Consider the convex multiparametric program

(CPθ)
minx f(x, θ)
s. t. gi(x, θ) ≤ 0 (i = 1, . . . , p)

Ax + Bθ + d = 0

where x ∈ R
n are the decision variables, θ ∈ R

m are
the parameters, f : R

n × R
m �→ R is the objective

function, gi : R
n × R

m �→ R, for all i = 1, . . . , p, A is a
q×n real matrix, B is a q×m real matrix, and d ∈ R

q.
We assume that f and gi (i = 1, . . . , p) are jointly con-
vex in both the variables and the parameters. Clearly,
the left-hand side of each equality constraint is jointly
affine in both the variables and the parameters. We
are interested in characterizing the solution of problem
(CPθ) for a given polytopic set of parameters

Θ = {θ ∈ R
m : Qθ ≤ R} ⊂ R

m.

The solution of problem (CPθ) is defined as follows.
The feasible parameter set Θf is the set of all θ ∈ Θ
for which the corresponding problem (CPθ) admits a
solution, i.e., there exists a vector x satisfying the con-
straints of (CPθ). The value function V � : Θf �→ R

is the function that associates with every θ ∈ Θf the
corresponding unique optimal value of (CPθ). The
optimizer set function X� : Θf �→ 2R

n

is the func-
tion that associates to a parameter vector θ ∈ Θf the
corresponding set of optimizers X∗(θ) = {x ∈ R

n :
f(x, θ) = V �(θ)} of problem (CPθ). An optimizer
function x� : Θf �→ R

n is a function that associates
to a parameter vector θ ∈ Θf (one of) the optimizer(s)
x�(θ) ∈ X�(θ).

The following basic result for convex multiparametric
programming was proved in [16, Lemma 1] in the ab-
sence of equality constraints:

Lemma 1 Consider the multiparametric problem
(CPθ) and let f , gi be jointly convex functions of
(x, θ), for all i = 1, . . . , p. Then, Θf is a convex set
and V � is a convex function of θ.

The result can be easily generalized to the presence of
linear equality constraints.

Hereafter we assume that Θf and Θ are full-
dimensional sets. A numerical test for verifying such
an assumption will be provided in Section 4.
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Figure 1: Approximation of the value function in convex
parametric programming: the scalar case

3 Approximate Multiparametric Programming

3.1 Upper Bounds on the Value Function
Let θ0, θ1, . . . , θm ∈ R

m be affinely independent points
in Θf , and define S as the following m-dimensional
simplex:

S � {θ ∈ R
m : θ =

∑m
k=0 µkθk,

∑m
k=0 µk = 1, µk ≥ 0
(k = 0, 1, . . . , m)}.

(1)
Let xk be an optimizer of (CPθk), for all k =
0, 1, . . . , m; define the matrices

M �
[

1 1 · · · 1
θ0 θ1 · · · θm

]
, X �

[
x0 x1 · · · xm

]
,

(2)
and note that by construction M is nonsingular. A
proof of the following simple result can be found in [9].

Proposition 1 The system of linear inequalities
M−1

(
1
θ

) ≥ 0 is a minimal representation of S.

In the following, we introduce upper and lower bounds
on V � inside S. Such bounds generalize to the multi-
dimensional case the concepts introduced by Fiacco [8,
Chapter 9] to bound the value function of a parametric
convex program inside a line segment (cf. also [13]).

Define the vector v � [V �(θ0) V �(θ1) · · · V �(θm)]′,
and the function

x̂(θ) � XM−1

(
1
θ

)
. (3)

Furthermore, define

V̂ (θ) � f(x̂(θ), θ), (4)

and V (θ) � v′M−1
(
1
θ

)
. Note that both x̂ and V are

affine functions of θ.

Proposition 2 For all θ ∈ S the vector x̂(θ) is a fea-
sible solution of (CPθ), and

V (θ) ≥ V̂ (θ) ≥ V �(θ). (5)

Proof: We first prove that x̂(θ) is feasible. The vector
µ = M−1

(
1
θ

)
is the unique solution of Mµ =

(
1
θ

)
. Thus,

if θ ∈ S then µ ≥ 0,
∑m

k=0 µk = 1, θ =
∑m

k=0 µkθk,
and x̂(θ) =

∑m
k=0 µkxk. As a consequence, for all i =

1, . . . , p, gi(x̂(θ), θ) = gi(
∑m

k=0 µkxk,
∑m

k=0 µkθk) ≤∑m
k=0 µkgi(xk, θk) ≤ 0, where the first inequality

follows from the joint convexity of gi with respect



to x and θ. Furthermore, Ax̂(θ) + Bθ + d =∑m
k=0 µk(Axk + Bθk + d) = 0. To prove (5), we note

that V (θ) =
∑m

k=0 µkV �(θk) =
∑m

k=0 µkf(xk, θk) ≥
f(

∑m
k=0 µkxk,

∑m
k=0 µkθk) = f(x̂(θ), θ) = V̂ (θ), where

the inequality follows from the joint convexity of f , and
V̂ (θ) = f(x̂(θ), θ) ≥ f(x�(θ), θ) = V �(θ), where x�(θ)
denote any optimizer of (CPθ). �

Thus, V and V̂ are both upper bounds of V � on S,
tight on every vertex on S, where V is affine in θ and
V̂ is tighter than V .

3.2 Lower Bounds on the Value Function
Assuming that a subgradient of V � is available at every
vertex of S, we can construct a piecewise affine lower
bound of V �. More precisely, let sk be a subgradient of
V � at θk (k = 0, 1, . . . , m). Since V � is convex, we have
V �(θ) ≥ V �(θk) + (sk)′(θ − θk). As a consequence, we
define V (θ) � maxk=0,1,...,m{V �(θk) + (sk)′(θ − θk)}.
By construction,

V (θ) ≤ V �(θ) for all θ ∈ S, (6)

so that V is a piecewise affine lower bound on V � inside
S, tight at every vertex of the simplex.

We assume the following:
Assumption 1 Functions f and gi (i = 1, . . . , p) are
differentiable with respect to both x and θ inside their
domain.
For convenience, let g(x, θ) � [g1(x, θ), . . . , gp(x, θ)]′.
The Karush-Kuhn-Tucker optimality conditions for
problem (CPθ) are (see, e.g., [6, Chapter 5]):

g(x, θ) ≤ 0, Ax + Bθ + d = 0,
λ ≥ 0, λ′g(x, θ) = 0,
∇xf(x, θ) + Jxg(x, θ)′λ + A′ν = 0,

(7)

where λ ∈ R
p and ν ∈ R

q are the vectors of Lagrange
multipliers, ∇xf(x, θ) ∈ R

n denotes the gradient of
f with respect to x, and Jxg(x, θ) denotes the p × n
Jacobian matrix of the partial derivatives of g with
respect to x.
Proposition 3 Let (xk, λk, νk) be a solution of (7) for
θ = θk, for any k = 0, 1, . . . , m. Then

sk � ∇θf(xk, θk) + Jθg(xk, θk)′λk + B′νk

is a subgradient of V � of (CPθ) at θk, where
∇θf(x, θ) ∈ R

m denotes the gradient of f with respect
to θ and Jθg(x, θ) denotes the p × m Jacobian matrix
of partial derivatives of g with respect to θ.
Proof: See [2]. �

A similar result was shown by Fiacco [8, Chapter 9] us-
ing an auxiliary lower-bounding multiparametric linear
programming problem.

In case a primal-dual method is used for computing
V �(θk), both optimal primal variables xk and Lagrange
multipliers λk, νk are available. If also the derivatives
of f and gi are available, then a subgradient sk valid at
θk, and therefore a linear lower bound on V �, can be
immediately constructed according to Proposition 3.

3.3 Error Estimates Inside a Simplex
We wish to approximate V � by using V̂ inside the sim-
plex S, with vertices θk, k = 0, 1, . . . , m. In this way,
the maximum absolute error we introduce is

εMAX(S) � max
θ

{V̂ (θ) − V �(θ) : θ ∈ S}.
Unfortunately, the above optimization problem is a
nonconvex DC programming problem, and thus the ex-
act evaluation of εMAX(S) is, in general, hard [12]. For
this reason, we analyze two practically computable up-
per bounds on εMAX(S).
Proposition 4 Let sk ∈ R

m be a subgradient of V �

at θk, and let wk � −V �(θk) − (sk)′θk, for all k =
0, 1, . . . , m. Define

εLP (S) �




maxx V (θ) − t
s. t. (sk)′θ − t ≤ wk (k = 0, . . . , m)

−M−1
(
1
θ

) ≤ 0,
(8)

where M =
[

1 1 ... 1
θ0 θ1 ... θm

]
, and θ0, . . . , θm are the ver-

tices of S. Then, V �(θ) ≥ V̂ (θ) − εLP (S), ∀θ ∈ S.
Proof: We have maxθ{V̂ (θ) − V �(θ) : θ ∈ S} ≤
maxθ{V (θ) − V (θ) : θ ∈ S} = maxθ{V (θ) −
maxk{V �(θk) + (δk)′(θ − θk) : k = 0, 1, . . . , m} : θ ∈
S} = maxθ,t{V (θ)− t : t ≥ V �(θk)+ (δk)′(θ− θk) (k =
0, 1, . . . , m), θ ∈ S} = εLP (S). �
Proposition 5 Let

εCP (S) �




maxx,θ V (θ) − f(x, θ)
s. t. g(x, θ) ≤ 0

Ax + Bθ + d = 0
−M−1

(
1
θ

) ≤ 0,

(9)

where M is defined as in Proposition 4. Then, V �(θ) ≥
V̂ (θ) − εCP (S), ∀θ ∈ S.
Proof: Let F (θ) � {x ∈ R

n : g(x, θ) ≤ 0, Ax +
Bθ + d = 0} (i.e., F (θ) is the feasible set of (CPθ)).
We have: εMAX(S) = maxθ{V̂ (θ) − V �(θ) : θ ∈
S} ≤ maxθ{V (θ) − V �(θ) : θ ∈ S} = maxθ{V (θ) −
minx{f(x, θ) : x ∈ F (θ)} : θ ∈ S} = maxθ{V (θ) +
maxx{−f(x, θ) : x ∈ F (θ)} : θ ∈ S} = maxx,θ{V (θ) −
f(x, θ) : x ∈ F (θ), θ ∈ S} = εCP (S). �
Proposition 6 For all simplices S ⊆ Θf , εLP (S) ≥
εCP (S) ≥ εMAX(S).
Proof: From the proofs of Proposition 4 and Proposi-
tion 5, and from (6), we have: εLP (S) = maxθ{V (θ) −
V (θ) : θ ∈ S} ≥ maxθ{V (θ) − V �(θ) : θ ∈ S} =
εCP (S), ∀S ⊆ Θf . �

Proposition 6 shows that both εLP and εCP are upper
bounds on εMAX . Computing εLP involves solving of a
linear program with m + 1 variables, whereas comput-
ing εCP involves solving a convex program with m + n
variables. However, obtaining the subgradients used to
compute εLP may require an additional effort, unless
the parametric program takes some special form. In
the next section we provide a recursive approximation
algorithm for problem (CPθ) that only makes use of
εCP .



4 An Approximate Multiparametric Solver
We are in a position to state a basic approximation
algorithm for (CPθ). The algorithm consists of two
phases. In the initialization phase, we test if the set
Θf of feasible parameters is full dimensional. If this is
the case, a polyhedral inner approximation of the set
Θf of feasible parameters is obtained and subdivided
into a collection of simplices. In the second phase, each
simplex is recursively subdivided into smaller simplices
until the desired degree of accuracy in approximating
the value function is reached in each simplex.

We start by describing the recursive phase. Let S be
a full-dimensional simplex contained in Θf , defined as
in (1), and let x̂ and V̂ be defined as in (3) and (4)
respectively. Let ε > 0 be a given maximum error.
The following Algorithm 4.1 summarizes the recursive
steps.

1. Build M and X as defined in (2);
2. if M is nonsingular then

2.1. Solve problem (9), getting εCP (S) and (x, θ);
2.2. if εCP (S) > ε then

2.2.1. for k = 0, 1, . . . , m do
2.2.1.1 Replace the kth vertex of S by θ and let Sk

be the new simplex;
2.2.1.2 Call this algorithm on Sk;

2.3. else Return M−1 and X;

Algorithm 4.1: Recursive splitting of an initial simplex
and approximation of the value function and of the
optimizer. Note that x̂ and V̂ are readily evaluated by
using the returned matrices.

In Algorithm 4.1, we used εCP (S) for convenience.
However, we remark that any of the upper bounds on
the error described in the previous section may be used
in the same way. Note that, at each recursive iteration,
the current simplex is split into at most m + 1 full-
dimensional simplices with nonoverlapping interiors.

Algorithm 4.1 builds up a piecewise affine function x̂ :
S �→ R

n and a piecewise analytical function V̂ : S �→ R

such that: (i) x̂(θ) is a feasible solution of (CPθ) for
all θ ∈ S, (ii) V̂ (θ) = f(x̂(θ), θ) for all θ ∈ S, and
(iii) 0 ≤ V̂ (θ) − V �(θ) ≤ ε for all θ ∈ S. Note that x̂

and V̂ may not be continuous on the boundary of the
returned simplices. As a consequence, the approximate
optimizer and value function may be defined more than
once for some θ ∈ S, though this fact can happen only
on a subset of S with null measure.

By using εCP (S) (or even εLP (S)), the proposed
method controls the absolute error on the value func-
tion with respect to V , which constitutes an approx-
imation of V � worse than the actually returned V̂ .
As a consequence, there may be cases where a sim-
plex is split because εCP (S) > ε though the maxi-
mum difference between V̂ and V � is less than the pre-
scribed ε. In order to possibly avoid unnecessary splits,

consider the error quantity ε(S) � V̂ (θ) − V �(θ) =
f(x̂(θ), θ) − V �(θ) ≤ εMAX(S), where εMAX(S) is the
maximum absolute error on S. If ε(S) > ε then clearly
εMAX(S) > ε and hence the simplex S must be split.
On the other hand, when ε(S) ≤ ε there is the possi-
bility that the actual error εMAX(S) is smaller than ε.
A technique based on a piecewise linear approximation
of V̂ over S for estimating εMAX(S) with an arbitrary
precision is described in [2].

Remark 4.1 If in every recursive call vector θ lies in
the interior of its simplex, then x̂ and V̂ are both con-
tinuous functions of the parameter θ. If the continuity
property is required, we may force the above condition
by imposing in (9) the tighter constraint M−1

(
1
θ

) ≥ σe,
where σ is a comparatively small positive scalar and
e ∈ R

m+1 is a vector of ones. This is equivalent to
letting µk ≥ σ > 0 for all k = 0, 1, . . . , m, where µk

are the coefficients of the convex combination of the
vertices of the simplex. As an alternative, in order to
enforce continuity and obtain a geometric balance, one
may always decide to split S in its center 1

m+1

∑m
k=0 θk.

4.1 Initialization
So far, we have assumed that Θf is a full-dimensional
set. This assumption can be verified as follows. First of
all, a necessary condition for Θf to be full dimensional
is that the equality constraints Ax + Bθ = d do not
restrict θ to lie on a lower-dimensional affine subspace
of R

m (i.e., the set {θ ∈ R
m : ∃x ∈ R

n : Ax + Bθ +
d = 0} has dimension m). This can be easily verified
by computing a Gauss reduction of [A B d] and then
checking if equality constraints of the form a′θ = α
appear with a �= 0 ∈ R

m. Assuming that the linear
constraints Ax+Bθ+d = 0 do not reduce the dimension
of Θf , let S(θ, ρ) = conv(θ + ρe0, θ + ρe1, . . . , θ + ρem),
where “conv” denotes the convex hull, ej is the jth
column of the m-by-m identity matrix, j = 1, . . . , m,
and e0 = 0 ∈ R

m. We determine the largest simplex
S(θ, ρ) contained in Θf , by solving

max
θ,ρ,y0,...,ym

ρ

s. t. g(yk, θ + ρek) ≤ 0,
Ayk + B(θ + ρek) = d, (k = 0, . . . , m)
Q(θ + ρek) ≤ R

(10)
which is a convex program in (m + 1)(n + 1) variables.
Then Θf is full-dimensional if and only if the optimal
value ρ∗ is strictly positive (the volume of the largest
simplex being (ρ∗)m/m! > 0).

Once the full-dimensionality of Θf is tested, we deter-
mine an inner polyhedral approximation Θ̂f through
a “ray-shooting” procedure, described as follows. Let
r0, r1 . . . , rt+m be m + t + 1 directions in R

m, t ≥ 0,
such that the convex positive cone C = {θ ∈ R

m : θ =∑m+t
i=0 µir

i, µi ≥ 0} = R
m. For instance, ri may be

obtained by collecting uniformly distributed samples of
the unit hyper-sphere. For each i = 0, 1, . . . , m + t,
solve the convex problem max

x,θ
{(ri)′θ : g(x, θ) ≤ 0, Ax+

Bθ + d = 0, Qθ ≤ R}, and let (xi, θi) be the obtained



optimal solution. Set Θ̂f � conv(θ0, θ1, . . . , θm+t), and
discard redundant1 vectors θi. For simplicity of nota-
tion, we assume that θm+h+1, . . . , θm+t are the redun-
dant vertices, where h ≤ t and h ≥ 0 because Θf is
full dimensional. So, let θ0, θ1, . . . , θm+h be the ver-
tices of Θ̂f , and assume that they are lexicographi-
cally ordered, i.e., θ0 ≤ θ1 ≤ . . . ≤ θm+h (componen-
twise inequalities). Rather than computing a hyper-
plane representation of Θ̂f , we compute a set of sim-
plices S1, . . . , Sh such that (i) ∪h

i=1Si = Θ̂f , and (ii)
Si, Sj have mutually disjoint interiors for i �= j. The
simplices Si are defined recursively as follows: (1) Let
L0 � {θ0, θ1, . . . , θm} be the set of the first m + 1 ver-
tices of Θ̂f , according to the lexicographic order; set
S0 � conv(L0); (2) for all j = 1, . . . , h: Let θ̃ be the
(unique) element in Lj−1 such that θ̃ + β(θm+j − θ̃) ∈
Sj−1 for some β > 0. Set Lj � Lj−1 \ {θ̃} ∪ {θm+j};
set Sj � conv(Lj). More efficient ways of obtaining the
triangularization S0, S1, . . . , Sh of Θ̂f may be devised,
although this is beyond the scope of this paper.

Note that the full-dimensionality test (10) may be sub-
stituted by the condition rank

[
1 1 ... 1
θ0 θ1 ... θm+h

]
= m, i.e.,

by testing that Θ̂f is a full-dimensional polyhedron. On
the other hand, test (10) is independent on the choice
of the directions ri, which provides more numerical ro-
bustness.

4.2 Evaluation of the Solution
Algorithm 4.1 provides the solution of (CPθ) organized
on a tree structure T . The root node of T corresponds
to the given set of parameters of interest Θ = {θ :
Qθ ≤ R}. At the first level, the nodes correspond
to the initial simplices S0, S1, . . . , Sh obtained by the
ray-shooting procedure. Each node at the first level is
the root of a subtree corresponding to the simplicial
partition produced by the recursive procedure.

The multiparametric solution is defined over the sim-
plices associated with the leaf nodes, and in princi-
ple the internal nodes do not provide any information.
However, by keeping such an information, the tree can
be exploited to evaluate the multiparametric solution
in a very efficient manner. In fact, it is easy to check
that for a given θ ∈ R

m, determining the simplex which
contains θ requires at most m2(h+(N−1)(m+1)) basic
arithmetic operations, where N is the depth of T , and
h is the number of simplices Si obtained by the ray-
shooting procedure. Note that this way of evaluating
the solution requires not only the storage of (M−1, X)
in the leaf nodes, where M , X are defined in (2), but
also the storage of M−1 in all the internal nodes.

1A vector θi is redundant if conv(θ0, . . . , θm+t) =
conv(θ0, . . . , θi−1, θi+1, . . . , θm+t). Redundancy can be easily
tested via linear programming.

5 Approximate Multiparametric Semidefinite
Programming

Parametric semidefinite programming (SDP) was ad-
dressed in [11] for the case of scalar perturbations of the
cost function. In order to deal with SDP problems with
multiparametric perturbations, the analysis and the al-
gorithm developed in the previous sections for the con-
vex multiparametric program (CPθ) can be extended
to generalized inequalities and generalized convexity.
Here we focus on a parametric semidefinite program
where all functions are affine and the inequalities are
defined with respect to the proper cone S

p
+ of symmet-

ric positive semidefinite p× p real matrices; we denote
the condition P ∈ S

p
+ by P � 0.

More precisely, we formulate a multiparametric
semidefinite programming problem as follows:

min c′x + f ′θ
s. t.

∑n
i=1 xiFi + G0 +

∑m
j=1 θjGj � 0

Ax + Bθ + d = 0
(11)

where c ∈ R
n, f ∈ R

m, Fi are real symmetric p × p
matrices for all i = 1, . . . , n, Gj are real symmetric p×p
matrices for all j = 0, 1, . . . , m, A ∈ R

q×n, B ∈ R
q×m,

and d ∈ R
q. Note that the term f ′θ in the objective

function is irrelevant for the optimization.

Lemma 2 Let Θf be the feasible parameter set and let
V � be the value function of problem (11). Then, Θf is
a convex set and V � is a convex function.

Proof: See [2]. �

As the convexity of V � is the key hypothesis behind
our development, Lemma 2 implies that the analysis of
Section 3 and the solver of Section 4 can be extended to
a problem of the form (11) in a straightforward manner.

5.1 A Numerical Example
Consider the multiparametric semidefinite program

min
x∈R3

x1 − 2x2 + x3

s. t.
[

1 2 −3
2 4 −1
−3 −1 3

]
+

[
1 −1 2
−1 1 3
2 3 2

]
θ1 +

[−1 1 0
1 1 2
0 2 −2

]
θ2+[

3 −2 4
−2 1 −2
4 −2 −2

]
x1 +

[−3 1 1
1 −2 −1
1 −1 1

]
x2 +

[
5 4 2
4 1 1
2 1 −1

]
x3 � 0.

(12)

We are interested in approximating the multiparamen-
tric solution within the box Θ = {θ ∈ R

2 : −2 ≤
θ1, θ2 ≤ 2} with a precision ε = 0.5. To this end,
we run Algorithm 4.1, which returns the solution after
2.05 s2. In Figure 2(a) we depict the simplicial parti-
tion determined by the algorithm, while in Figure 2(b)
the associated tree structure for evaluation of the ap-
proximate solution, which consists of eight levels. The
polyhedral partition in Figure 2(a) contains 35 regions,
corresponding to the leaf nodes in Figure 2(b). In Fig-
ure 3 we show the value function V �(θ) and the error

2The results were obtained on a PC Pentium III mobile
850 Mhz running Matlab 5.3 and the SDP solver [19].
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(a) Partition in θ-space.
Ray-shoots for estimat-
ing the set of feasible pa-
rameters are represented
by circles

(b) Tree structure for
evaluation of the ap-
proximate solution (to-
tal number of nodes: 64)

Figure 2: Approximate multiparametric solution of prob-
lem (12)

(a) Value function V �(θ) (b) Error V̂ (θ) − V �(θ)

Figure 3: Multiparametric solution associated with prob-
lem (12)

V̂ (θ) − V �(θ), where V �(θ) was computed numerically
by gridding. Note that the error is always smaller than
the prescribed precision ε = 0.5, is zero at the vertices
of the simplices, and is always below about 10% of the
range of values of the optimal value function.

Note that in the present multiparametric SDP context
only an approximate description of an optimal solution
may be obtained, as an exact analytical characteriza-
tion of the value function V � is not yet known. This is
a topic currently under investigation.

6 Conclusions
In this paper we have provided a recursive algorithm
for determining approximate multiparametric solutions
of convex nonlinear programming problems, where the
value function is approximated within a given subop-
timality threshold. The approximate solution is ex-
pressed as a piecewise affine function over a simplicial
partition of a given set of feasible parameters.

We envision several applications of the technique, espe-
cially for the practical implementation of robust model
predictive control schemes based on convex optimiza-
tion, of which several formulations are already available
in the literature. It is a topic for further research to an-
alyze which schemes lead to multiparametric programs

that are convex both in the variables and in the param-
eters, and how to maintain robust stability properties
in spite of the approximation error.

The results of this paper were also extended for approx-
imating solutions to multiparametric geometric pro-
grams within a given relative error.
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