
A Logic-Based Hybrid Solver for
Optimal Control of Hybrid Systems

A. Bemporad†, N. Giorgetti†
†Dip. Ingegneria dell’Informazione, University of Siena,

via Roma 56, 53100 Siena, Italy

bemporad,giorgetti@dii.unisi.it

Abstract
Combinatorial optimization over continuous and inte-
ger variables was proposed recently as an useful tool
for solving complex optimal control problems for lin-
ear hybrid dynamical systems formulated in discrete-
time. Current approaches are based on mixed-integer
linear/quadratic programming (MIP), which provides
the solution after solving a sequence of relaxed stan-
dard linear (or quadratic) programs (LP, QP). An MIP
formulation has the drawback of requiring that the dis-
crete/logic part of the hybrid problem needs to be con-
verted to into mixed-integer inequalities. Although this
operation can be done automatically, most of the orig-
inal discrete structure of the problem is lost during the
conversion. Moreover, the efficiency of the MIP solver
only relies upon the tightness of the continuous LP/QP
relaxations. In this paper we attempt at overcoming
such difficulties by combining MIP and constraint pro-
gramming (CP) techniques into a “hybrid” solver, tak-
ing advantage of CP for dealing efficiently with satis-
fiability of logic constraints. We detail how to model
the hybrid dynamics so that the optimal control prob-
lem can be solved by the hybrid MIP+CP solver, and
show on a case study that the achieved performance is
superior to the one achieved by pure MIP solvers.

1 Introduction
Over the last few years we have witnessed a growing
interest in the study of dynamical processes of a mixed
continuous and discrete nature, denoted as hybrid sys-
tems, both in academia and in industry. Hybrid sys-
tems are characterized by the interaction of continu-
ous models governed by differential or difference equa-
tions, and of logic rules, automata, and other discrete
components (switches, selectors, etc.). Hybrid systems
can switch between many operating modes where each
mode is governed by its own characteristic continuous
dynamical laws. Mode transitions may be triggered in-
ternally (variables crossing specific thresholds), or ex-
ternally (discrete commands directly given to the sys-
tem). The interest in hybrid systems is mainly moti-
vated by the large variety of practical situations where
physical processes interact with digital controllers, as
for instance in embedded systems.

After the seminal work [1], several modelling frame-
works for hybrid systems have appeared in the liter-
ature, we refer the interested reader to [2, 3] and ref-
erences therein. Several authors focused on the prob-
lem of solving optimal control problems for hybrid sys-

tems. For continuous-time hybrid systems, most of the
literature either studied necessary conditions for a tra-
jectory to be optimal, or focused on the computation
of optimal/suboptimal solutions by means of dynamic
programming or the maximum principle [4, 5].

The hybrid optimal control problem becomes less com-
plex when the dynamics is expressed in discrete-time,
as the main source of complexity becomes the combi-
natorial (yet finite) number of possible switching se-
quences. In particular, in [6–8] the authors have solved
optimal control problems for discrete-time hybrid sys-
tems by transforming the hybrid model into a set of lin-
ear equalities and inequalities involving both real and
(0-1) variables, so that the optimal control problem
can be solved by a mixed-integer programming (MIP)
solver.

As a MIP solver provides the solution after solving a
sequence of relaxed standard linear (or quadratic) pro-
grams (LP, QP), a potential drawback of MIP is (1)
the need for converting the discrete/logic part of the
hybrid problem into mixed-integer inequalities, there-
fore losing most of the original discrete structure, and
(2) the fact that its efficiency relies upon the tightness
of the continuous LP/QP relaxations.

At the light of the benefits and drawbacks of the previ-
ous work in [6–8] for solving control and stability/safety
analysis problems for hybrid systems using MIP tech-
niques, in this paper we follow a different route that
uses a combined approach of MIP and CP techniques.
We build up a new modeling approach directly tailored
to the use of a “hybrid” MIP+CP solver, and show
its computational advantages over pure MIP meth-
ods. This result is in accordance with other stud-
ies [9–11], that show that such mixed methods have a
tremendous performance in solving mathematical pro-
grams with continuous (quantitative) and discrete (log-
ical/symbolic) components, compared to MIP or CP
individually.

The paper is organized as follows. Optimal control
problems for hybrid systems are introduced in Section
2. In Section 3 the optimal control problem is refor-
mulated in a suitable way for the combined approach
of MIP and CP. In Section 4 is introduced a new solu-
tion algorithm based on a unifying framework for CP
and MIP. In Section 5 is shown on an example the
benefits of this technique, compared to pure MIP ap-
proaches [6, 8]. Finally, Section 6 contains some con-

xc(k)

uc(k)

i(k)

i(k − 1)

xl(k)

ul(k)

e(k)

SAS

Automaton Event
Generator

Mode
Selector

Clock

z−1

Figure 1: Discrete-time hybrid system

cluding remarks.

2 Optimal Control of Discrete-Time Hybrid
Systems

Following the ideas in [8], a hybrid system can be mod-
eled as the interconnection of an automaton (AUT) and
a switched affine system (SAS) through an event gen-
erator (EG) and a mode selector (MS) (see Figure 1).
The discrete-time hybrid dynamics is described as fol-
lows [8]:

(AUT) xl(k + 1) = fl(xl(k), ul(k), e(k)),

yl(k) = gl(xl(k), ul(k), e(k)), (1a)

(SAS) xc(k + 1) = Ai(k)xc(k) + Bi(k)uc(k) + fi(k),

yc(k) = Ci(k)xc(k) + Di(k)uc(k) + gi(k), (1b)

(EG) [ej(k) = 1] ←→ [aT
j xc(k) + b

T
j u(k) ≤ cj] (1c)

(MS) i(k) =

δ1

...
δs

= fMS(xl(k), ul(k), i(k − 1))

(1d)

The automaton (or finite state machine) describes the
logic dynamics of the hybrid system. We will only re-
fer to “synchronous automata”, where transitions are
clocked and synchronous with the sampling time of
the continuous dynamical equations. The dynamics
of the automaton evolves according to the logic up-
date functions (1a) where k ∈ Z

+ is the time index,
xl ∈ Xl ⊆ {0, 1}nl is the logic state, ul ∈ Ul ⊆ {0, 1}ml

is the exogenous logic input, yl ∈ Yl ⊆ {0, 1}pl is the
logic output, e ∈ E ⊆ {0, 1}ne is the endogenous in-
put coming from the EG, and fl : Xl × Ul × E −→ Xl,
gl : Xl × Ul × E −→ Yl are deterministic boolean func-
tions.
The SAS describes the continuous dynamics and it
is a collection of affine systems (1b) where xc ∈
Xc ⊆ R

nc is the continuous state vector, uc ∈ Uc ⊆
R

mc is the exogenous continuous input vector, yc ∈
Yc ⊆ R

pc is the continuous output vector, i(k) ∈ I ,

1
0
..
.
0

, · · · ,

0
..
.
0
1

⊆ {0, 1}s is the “mode” in which

the SAS is operating,]I = s is the number of ele-
ments of I, and {Ai, Bi, fi, Ci,Di, gi}i∈I is a collection
of matrices of opportune dimensions. The mode i(k) is
generated by the mode selector, as described below. A
SAS of the form (1b) preserves the value of the state
when a switch occurs. Resets can be modeled in the
present discrete-time setting as detailed in [8].
The event generator (EG) is a mathematical object
that generates a boolean vector according to the sat-
isfaction of a set of threshold events (1c) where j de-
notes the j-th component of the vector, and aj ∈ R

nc ,
bj ∈ R

mc , cj ∈ R define the hyperplane in the space of
continuous states and inputs.
The mode selector (MS) selects the dynamic mode
i(k) ∈ I ⊆ {0, 1}s, also called the active mode, of the
SAS and it is described by the logic function (1d) where
fMS : Xl×Ul×I −→ I is a boolean function of the logic
state xl(k), of the logic input ul(k), and of the active
mode i(k−1) at the previous sampling instant. We say
that a mode switch occurs at step k if i(k) 6= i(k − 1).
Note that contrarily to continuous time hybrid models,
where switches can occur at any time, in our discrete-
time setting a mode switch can only occur at sampling
instants.

A finite-time optimal control problem for the class of
hybrid systems is formulated as follows:

min
{x(k),u(k)}T−1

k=0

T−1
∑

t=0

‖Qx(x(k) − xe(k))‖∞+

‖Qu(u(k) − ue(k))‖∞+

‖Qy(y(k) − ye(k))‖∞ (2a)

s.t. Dynamics (1) (2b)

hD(k)({x, u, y, e, i}T−1
0) ≤ 0 (2c)

hA(k)({x, u, y, e, i}T−1
0) ≤ 0 (2d)

where T is the control horizon, Qx, Qu, Qy are full-
rank matrices with n = nc + nl, m = mc + ml, and
p = pc+pl rows, respectively, ‖·‖∞ denotes the infinity-
norm (‖Qx‖∞ = maxj=1,...,n |Qjx|, where Qj is the
j-th row of Q). Vectors xe, ue, ye are the given refer-
ence trajectories to be tracked by the state, input and
output vectors, respectively.

The constraints of the optimal control problem can be
classified in three distinct categories:

Dynamical constraints (2b). These constraints
represent the discrete-time hybrid system. They
may include other constraints such as saturation
constraints on continuous input variables, that
are embedded in the variable domain Uc.

Design constraints (2c). These are artificial con-
straints imposed by the designer to fulfill the
required specifications. Examples of such con-
straints may be state limits

x
i(k)
min ≤ xc(k) ≤ xi(k)

max, k = 0, . . . , T − 1,

where xi
min, xi

max are (possibly mode-dependent)
bounds that the designer wants to impose on the
state vector.

Ancillary constraints (2d). These constraints pro-
vide an a priori additional and auxiliary informa-
tion for determining the optimal solution. They
do not change the solution itself, rather help the
solver by restricting the set of feasible combina-
tions, and therefore the size of the decision tree
in a branch a bound strategy. For example, one
may pre-compute all possible mode transitions
of the SAS dynamics using reachability analysis,
and impose reachability constraints of the form
[δh(k) = 1] −→ [δj(k + 1) = 0] (or equivalently
δh(k) + δj(k + 1) ≤ 1) for all k = 0, . . . , T − 2
whenever a transition from the h-th mode to the
y-th mode is not possible.

3 Problem reformulation
In [7] the authors show how the problem (2) can be
solved via MILP. In this paper following a different
route we wish to solve the problem (2) by using a com-
bined approach of MIP and CP techniques and tak-
ing advantage of CP for dealing with logic part of the
problem. For this reason we need to reformulate the
problem in a suitable way.
The automaton and mode selector parts of the hybrid
system are described as a set of logic constraints so they
need no transformation. The event generator (1c) can
be equivalently expressed, by adopting the so-called
“big-M” technique, as

(aT
j xc(k) + bT

j u(k) − cj) ≤ Mj(1 − ej(k)), (3a)

(aT
j xc(k) + bT

j u(k) − cj) > mjej(k), (3b)

where j = 1, . . . , ne, Mj , mj are upper and lower
bounds, respectively, on aT

j xc(k) + bT
j u(k) − cj , and

ej(k) ∈ {0, 1}. From a computational point of view, it
may be convenient to have a set of inequalities with-
out strict inequalities. In this case we will follow the
common practice [12] to replace the strict inequality
(3) as

(aT
j xc(k) + bT

j u(k) − cj) ≥ ε + (mj − ε)ej(k), (3c)

where ε is a small positive scalar, e.g., the machine
precision, although the equivalence does not hold for
0 < (aT

j xc(k) + bT
j u(k) − cj) < ε (i.e., for the numbers

in the interval (0, ε) that cannot be represented in the
machine). The continuous state update equation of the
SAS dynamics (1b) can be equivalently written as the
combination of linear terms and if-then-else rules:

wi(k) =

{

Aixc(k) + Biuc(k) + fi if (δi = 1)
0 otherwise (4a)

xc(k + 1) =
s

∑

i=1

wi(k) (4b)

where wi(k) ∈ R
nc , i = 1, . . . , s. The output yc of the

SAS dynamics admits a similar transformation. The
SAS representation (4) can be also translated into a
set of constraints by using the big-M technique [12]:

−M
j
i δi(k) + wi(k) ≤ 0, (5a)

m
j
i δi(k) − wi(k) ≤ 0, (5b)

m
j
i (1 − δi(k)) + wi(k) ≤ A

j
i xc(k) + B

j
i uc(k) + f

j
i , (5c)

−M
j
i (1 − δi(k)) − wi(k) ≤ −A

j
i xc(k) − B

j
i uc(k) − f

j
i , (5d)

where M
j
i , m

j
i are upper and lower bounds on

A
j
ixc(k) + B

j
i uc(k) + f

j
i , δi(k) ∈ {0, 1}, wi(k) ∈ R

nc ,
xc ∈ R

n
c , u ∈ R

m
c , j denotes the jth component

or row, j = 1, . . . , nc, i = 1, . . . , s, and k is the
time index. Note that the vector of (0-1) variables
i(k) = [δ1(k) . . . δs(k)]′ ∈ {0, 1}s is subject to the
exclusive or condition

δ1(k) ⊕ δ2(k) ⊕ . . . ⊕ δs(k), (6)

which can be described by the equality constraint

δ1(k) + . . . + δs(k) = 1. (7)

By using the transformations into mixed integer in-
equalities described above, problem (2) can be recast
as

min
z

f
′
z (8a)

s.t. Gz ≤ d, Gz = d (8b)

(Continuous constraints)

G
′
z + D

′
µ ≤ E

′
, G′z + D′µ = E′ (8c)

(Mixed constraints)

g(ν, µ) (8d)

(Logic constraints)

z ∈ R
nz , ν ∈ {0, 1}nν , µ ∈ {0, 1}nµ

where z collects all continuous variables (xc(k), uc(k),
yc(k), k = 0, . . . , T − 1, auxiliary variables needed for
expressing the SAS dynamics, slack variables for upper
bounding the cost function in (2) [7]), µ collects the in-
teger variables that appear in mixed constraints (e(k),
δi(k), k = 0, . . . , T − 1, i = 1, . . . , s), and ν collects
the integer variables such as xl(k), ul(k), yl(k) that
only appear in logic constraints. Constraints (8b), (8c)
represent the EG and SAS parts (3), (5), (7) and the
mixed constraints due to (2c), (2d), g : {0, 1}nν×nµ →
{0, 1}nCP represents the automaton and MS parts (1a),
(1d). Constraint (8b) may contain additional con-
straints on the continuous part such as bounds im-
posed by (2c), (2d), while additional logic constraints
(e.g. (6)) on the discrete part are included in (8d). Con-
straint (8c) contains other constraints needed for ex-
pressing the ∞-norm used in cost function (2a). Note
that in general if the objective function is f ′z + r′µ we
can consider the new objective function f ′z + t, t ∈ R,
and an additional constraint r′µ ≤ t which is a mixed
linear constraint and that could be included in (8c).

4 Logic-based Branch&Bound
CP consists of a set of techniques for solving finite do-
main constraint problems. A finite domain constraint
problem, or (FD)CP, consists of a set of constraints over
a set of integer finite domain variables. A constraint
may be simply a logical relation, such as “X ≤ 4” or a
more complex expression, such as “X2 = Y3+4”.

A (FD)CP can always be solved with brute force
search: all possible values of the variables are enumer-
ated and each one is checked to see whether it is a
solution. Except in very small problems, the number

of candidates is usually too large to enumerate them
all. The efficiency of CP is based on two basic tech-
niques: constraint propagation and constraint distribu-
tion. Constraint propagation is an inference rule for
finite domain problems that narrows the domains of
the variables. Constraint distribution splits a problem
into complementary cases once constraint propagation
cannot advance further. By iterating between prop-
agation and distribution the solutions of the problem
are finally determined. For more details, we refer the
reader to the book [13].

In order to efficiently integrate MIP and CP we will
use the special modeling framework (8) for “hybrid”
optimization problems, where the word hybrid here
means that some parts of the problem are described
by logic constraints and finite domain variables, some
others by linear constraints and continuous variables.
We refer here to the basic framework introduced by
Bockmayr and Kasper in [10] who did an interesting
analysis of CP and MIP approaches by studying the so
called “branch and infer” paradigm, which can be used
to develop various integration strategies.

The basic ingredients for an integrated approach of
MIP and CP are (1) a linear program (LP) obtained by
relaxing a mixed integer linear programming (MILP)
problem and (2) a CP feasibility problem, both of
which can be solved efficiently. The relaxed MILP
model is used to obtain a solution that satisfies the con-
straint sets (8b) and (8c) and optimizes the objective
function (8a). The optimal solution of the relaxation
may fix some (0-1) variables to an integer value. If all
the (0-1) variables in the relaxed problem have been
assigned the solution of the relaxation is also a feasible
solution for the MILP problem. More often, however,
some (0-1) variables are not assigned and in these cases
further “branching” and solution of further relaxations
is necessary. To accelerate the search of feasible solu-
tions one may use the fixed (0-1) variables to “infer”
new information on the other (0-1) variables by apply-
ing a constraint propagation phase on constraints (8d):
when an integer solution of µ is found a CP(FD) then
verifies whether this solution can be used to find an
assignment of ν that satisfies (8d).

The basic branch&bound (B&B) algorithm for solving
mixed integer problems can be extended to the present
hybrid setting. In a B&B algorithm, the current best
integer solution is updated whenever an integer solu-
tion with an even better value of the objective function
is found. In the hybrid algorithm at hand an additional
CP problem is solved to ensure that the integer solu-
tion obtained for the relaxed MILP problem is feasible
for the constraints (8d) and to find an assignment for
the other logic variables ν that appear in (8d). It is
only in this case that the current best integer solution
for the relaxed MILP problem is updated. If it cannot
be extended, then the best current integer solution is
not updated.

The B&B method requires the solution of a series of
LP subproblems obtained by branching on integer vari-
ables. The non-integer variable to branch on is chosen
with the constraint distribution by assigning an integer

value which is consistent with the current solution of
the MILP. The difference in the various LP subprob-
lems is only in the upper and lower bounds for all inte-
ger variables updated by constraint propagation. The
value of the objective function for any feasible solution
of the problem is an upper bound (UB) of the objec-
tive function. When an integer feasible solution of the
MILP relaxed problem is obtained a feasibility problem
is solved via CP to complete the solution.

Let P denote the set of LP subproblems to be solved.
The logic-based B&B method can be summarized as
follows:

1. Initialization. UB = ∞, P = {p0}.
The LP subproblem p0 is generated by using
(8a),(8b),(8c) and possibly removing some of the
(0-1) variables after a constraint propagation
phase.

2. Select a node. Select and remove an LP prob-
lem p from the set P ; if P = ∅ then go to 5.
The criterion for selecting an LP is called node
selection rule.

3. Linear reasoning. Solve the LP problem p, and:

• If the LP is infeasible or the optimal value
of the objective function is greater than UB
then go to step 2.

• If the solution is not integer feasible then go
to step 4.

• If the solution has integral values for all the
integer variables then we solve the following
(FD)CP problem to extend this partial so-
lution: Find ν s.t. g(ν, µ). If the (FD)CP
problem is feasible then update UB; other-
wise go to step 2.

4. Branch on a variable. Among all variables
that have been assigned non-integral values, se-
lect one according to some specified branching
variable selection rule (e.g., the variable with the
largest fractional part). Let µi be the selected
non-integer variable, and by using the constraint
distribution define the constraint µi = 0. Gen-
erate two LP subproblems p1

i = p ∪ {µi = 0},
p2

i = p ∪ {µi = 1}, apply constraint propagation
to attempt to fix the other (0-1) variables and
add p1

i ,p
2
i to set P . Go to step 2.

5. Termination. If UB = ∞, then the problem is
infeasible. Otherwise, the optimal solution corre-
sponds to the current value UB.

Remark 1 The logic-based B&B method prunes the
search tree with bounds that are obtained by solving
the relaxed problems at each node. Because the relaxed
problems contain fewer constraints, they may provide
looser bounds that are less effective at pruning the tree.
For this reason, it may be wise to include in the lin-
ear programs also the relaxations of the automaton and
MS through (8c) by converting Boolean functions into
linear inequalities [8]. It is still open whether such re-
laxations improve the performance of the overall algo-
rithm.

idle

moveup moveupmoveup

movedown movedown movedown

gear gear gear
1 2 3

d1 d2

(¬d1 ∧ auto) (¬d2 ∧ auto)

(d1 ∧ auto)(¬d1 ∧ d2 ∧ auto)

¬d2

∨

∨

∨

∨

Figure 2: Gear automaton

5 Numerical Results

In this section we illustrate on a simple hybrid opti-
mal control example that the hybrid solution technique
described in the previous sections has a better perfor-
mance compared to current MILP approaches [6, 8].
We consider a simplified hybrid model of a motorbike
with three semi-automatic gears and solve an optimal
control problem in order to track a desired speed.

5.1 Hybrid model
We consider only the speed v (Km·h−1) and the engine
speed ω (rpm) of the motorbike as continuous state
variables. The continuous dynamics of the system de-
pends on two continuous inputs that are the engine
torque ut (N·m) and the braking force ub (N) and is
described by the discrete-time update equations

v(k + 1) = (1 − αi)v(k) + βiω(k) − cub (9a)

ω(k + 1) = ω(k) + dut − fub, (9b)

where v and w are dynamically decoupled (e.g. be-
cause of a loose mechanical coupling), c,d,f are suitable
constants, and αi, βi, i ∈ {1, 2, 3}, are constants that
depend on the gear.

Gear shifts may be commanded either automatically by
a digital input auto or manually by two digital inputs,
moveup and movedown. The automaton part of the
system has an idle state and three states corresponding
to each gear, as represented in Figure 2. d1 and d2 are
logic variables defined as follows

[d1(k) = 1] ←→ [ω(k) ≤ t1], (10a)

[d2(k) = 1] ←→ [ω(k) ≤ t2], (10b)

where t1 ≤ t2 are constant thresholds. The gear auto-
matically changes from geari−1 to geari when the en-
gine speed exceeds the threshold ti−1 and the auto com-
mand is active. If the auto command is inactive the
gear can change only with moveup and movedown com-
mands. The motorbike goes in idle state only when
a movedown command from gear1 is given. Con-
versely the motorbike passes from idle to gear1 when a
moveup command is given.

By introducing a (0-1) state for each logic state of the
automaton, this can be described by the following re-

lations:

id(k + 1) = (g1(k) ∧ movedown(k)); (11a)

g1(k + 1) = (g1(k) ∧ d1(k)) ∨ (id(k) ∧ moveup(k)) ∨

(g2(k) ∧ movedown(k)) ∨

(g2(k) ∧ d1(k) ∧ auto(k)); (11b)

g2(k + 1) = (g1(k) ∧ moveup(k)) ∨

(g1(k) ∧ ¬d1(k) ∧ auto(k)) ∨ (g2(k) ∧ d2(k)) ∨

(g3(k) ∧ ¬d1(k) ∧ d2(k) ∧ auto(k)) ∨

(g3(k) ∧ movedown(k)); (11c)

g3(k + 1) = (g2(k) ∧ moveup(k)) ∨

(g2(k) ∧ ¬d2(k) ∧ auto(k)) ∨

(g3(k) ∧ ¬d2(k)) (11d)

id(k) ⊕ g1(k) ⊕ g2(k) ⊕ g3(k). (11e)

By following the notation of (1a), we have xl =
[id g1 g2 g3]

′ ∈ {0, 1}4, ul = [moveup movedown

auto]′ ∈ {0, 1}3 and e(k) = [d1 d2]
′ ∈ {0, 1}2. The

relation (11e) corresponds to condition (6).

The mode selector function is simply

δ(k) = xl(k), (12)

where δ(k) ∈ {0, 1}4, along with
∑4

j=1 δj(k) = 1.

The SAS dynamics (9), i.e., the continuous part of the
hybrid system, is translated into a set of inequalities
using (5), which provides the set of constraints

Axc(k) + Buc(k) + Cz(k) ≤ Dδ(k) + E, (13)

where xc = [v ω]′, uc = [ut ub]
′, z(k) ∈ R

2 and δ(k) as
(12). Constraints (13) are obtained by employing the
HYSDEL compiler [8].

Finally, the event generator is represented by (10a) and
(10b). These are translated by HYSDEL into a set of
linear inequalities using (3):

G′
xxc(k) + G′

uuc(k) + D′e(k) ≤ E′, (14)

where e(k) = [d1(k) d2(k)]′.

5.2 Optimal Control Problem
The goal is to design an optimal control profile for
the continuous inputs ut, ub and the discrete in-
puts moveup, movedown and auto that minimize
∑T

k=0 |v(k) − ve| subject to the hybrid dynamics and
the following additional constraints:

• Continuous constraints on torque and brake to
avoid that they assume unacceptable values

0 ≤ ut(k) ≤ 50 (15a)

0 ≤ ub(k) ≤ 50. (15b)

While lower-bound constraints are truly dynami-
cal constraints, corresponding to restricting Uc to
nonnegative real-valued vectors, the upper-bound
constraints may be either interpreted as design
constraints of the form (2c) or again as dynami-
cal constraints due to physical limitations of the
engine and brakes.

• A logic condition on torque and braking force

[dt = 0] ←→ [ut(k) ≤ 0] (16a)

[db = 0] ←→ [ub(k) ≤ 0] (16b)

¬(dt ∧ db). (16c)

Thresholds events are translated in a set of con-
straints by using the big-M formulation (5) ob-
tained by the HYSDEL compiler.

• A exclusive-or logic condition on the gear com-
mands:

moveup(k) ⊕ movedown(k). (17)

The above dynamics and constraints are also modeled
in HYSDEL [8] to obtain an MLD model of the hybrid
system in order to compare the performance achieved
by the hybrid solver with the one obtained by employ-
ing a pure MILP approach.

The optimal control problem is defined as:

min
{x,u,z,δ,εv}

T−1
∑

k=0

εv(k) (18a)

s.t. εv(k)

[1

.

..
1

]

≥ ±(v(k) − ve), (18b)

(1a), (12), (17) (18c)

(13), (14) (18d)

(15) (18e)

(16) (18f)

where {x, u, z,δ, εv}={x(k), u(k),z(k), δ(k), εv(k)}T−1
k=0 ,

εv = [εv(0) . . . εv(T − 1)]′ ∈ R
T .

Each part of the optimal control problem is managed
by either the CP solver or the LP solver: the cost
function (18a), the inequalities (18b), (18d), and the
additional constraints (18e) are managed by the LP
solver, the logic part (18c) and the additional logic
constraints (18f) are managed by the CP solver. Big-
M reformulations of (18f) are also managed by the LP
solver. Relation (11e) is also included in the LP part

as
∑4

j=1 δj(k) = 1. In our simulations we have used,
respectively, Ilog Solver for CP, CPLEX for LP, and
the Hybrid tool, a plugin of ILOG used to share the
bounds on the integer variables between the relaxed
problem and the CP problem.

In all our simulations we have adopted depth first
search as node selection rule, to reduce the amount of
memory used during the search, and the variable whose
fractional value is the farthest to an integer value as
branching variable selection rule (i.e., in this case the
variable closest to 0.5).

Table 1 shows the result obtained by varying the con-
trol horizon T . We can see that the performance of
the logic-based B&B is always better than MILP up
to 75%. The main reason is that the logic-based B&B
solves a much smaller number of LPs than the MILP
solver, see Table 1.

The results were simulated on a PC Pentium IV 1.8
GHz running CPLEX 8.1 and Solver 5.3.

T Integer vars MILP LbB&B MILP LbB&B
(s) (s) (LP) (LP)

10 110 0.221 0.12 309 6
20 220 8.091 1.992 30645 49
30 330 26.318 7.798 71070 126
40 440 69.961 20.128 146101 229

Table 1: Optimal control solution: comparison between
MILP and Logic-based B&B (LbB&B)

6 Conclusions
In this paper we have proposed a new unifying frame-
work for MIP and CP techniques for solving optimal
control problems for discrete-time hybrid systems. The
approach is based on the “branch and infer” paradigm
of Bockmayr and Kasper [10] and consists of a logic-
based branch and bound algorithm, whose performance
in terms of computation time is superior in compari-
son to more standard mixed-integer programming tech-
niques, as we have illustrated on an example.
At this stage the proposed approach is rather prelimi-
nary, and the ongoing research is devoted to improving
the performance of the logic-based method by including
relaxations of the automaton and MS parts of the hy-
brid system in the linear programming part, and alter-
native relaxations of the SAS dynamics that are tighter
than the big-M method.

References

[1] M.S. Branicky. Studies in hybrid systems: modeling, anal-
ysis, and control. PhD thesis, LIDS-TH 2304, Massachusetts
Institute of Technology, Cambridge, MA, 1995.

[2] P.J. Antsaklis. A brief introduction to the theory and
applications of hybrid systems. Proc. IEEE, Special Issue on
Hybrid Systems: Theory and Applications, 88(7):879–886, July
2000.

[3] C.G. Cassandras, D.L. Pepyne, and Y.Wardi. Optimal
control of a class of hybrid systems. IEEE Trans. Automatic
Control, 46(3):3981–415, 2001.

[4] X. Xu and P.J. Antsaklis. An approach to switched sys-
tems optimal control based on parameterization of the switching
instants. In Proc. IFAC World Congress, Barcelona, Spain, 2002.

[5] B. Lincoln and A. Rantzer. Optimizing linear system
switching. In Proc. 40th IEEE Conf. on Decision and Control,
pages 2063–2068, 2001.

[6] A. Bemporad and M. Morari. Control of systems integrat-
ing logic, dynamics, and constraints. Automatica, 35(3):407–427,
March 1999.

[7] A. Bemporad, F. Borrelli, and M. Morari. Piecewise linear
optimal controllers for hybrid systems. In Proc. American Contr.
Conf., pages 1190–1194, Chicago, IL, June 2000.

[8] F.D. Torrisi and A. Bemporad. HYSDEL - A tool for
generating computational hybrid models. IEEE Transactions
on Control Systems Technology, 2003. To appear.

[9] J. Hooker. Logic-based methods for Optimization. Wiley-
Interscience Series, 2000.

[10] A. Bockmayr and T. Kasper. Branch and infer: A uni-
fying framework for integer and finite domain constraint pro-
gramming. INFORMS Journal on Computing, 10(3):287–300,
Summer 1998.

[11] R. Rodosek, M. Wallace, , and M. Hajian. A new approach
to integrating mixed integer programming and constraint logic
programming. Annals of Oper. Res., 86:63–87, 1997.

[12] H.P. Williams. Model Building in Mathematical Program-
ming. John Wiley & Sons, Third Edition, 1993.

[13] K. Marriot and P.J. Stuckey. Programming with con-
straints: an introduction. MIT Press, 1998.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	header: Proceedings of the 42nd IEEE Conference on Decision and Control Maui, Hawaii USA, December 2003
	session: TuM05-2
	footer: 0-7803-7924-1/03/$17.00 ©2003 IEEE
	01: 640
	02: 641
	03: 642
	04: 643
	05: 644
	06: 645

