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Abstract

For linear hybrid systems consisting of linear dynamic
equations interacting with linear threshold events, au-
tomata, and logic propositions, provided in mixed-
logical dynamical (MLD) form, this paper describes
an efficient technique for transforming such systems
into an equivalent piecewise affine (PWA) form, where
equivalent means that for the same initial conditions
and input sequences the trajectories of the system are
identical.

1 Introduction

Hybrid systems provide a unified framework for describ-
ing processes evolving according to continuous dynam-
ics, discrete dynamics, and logic rules [1, 13, 17, 18, 23].
The interest in hybrid systems is mainly motivated by
the large variety of practical situations where physi-
cal processes interact with digital controllers, as for
instance in embedded systems. Several modeling for-
malisms have been developed to describe hybrid sys-
tems [20]. Among them, the class of Piecewise Affine
(PWA) systems [24], Linear Complementarity (LC) sys-
tems [19,27], and Mixed Logical Dynamical (MLD) sys-
tems [9]. In particular the language HYSDEL (HY-
brid Systems DEscription Language) was developed
in [26] to obtain MLD models from of a high level tex-
tual description of the hybrid dynamics. Examples of
real-world applications that can be naturally modeled
within the MLD framework are reported in [9, 25, 26].

Each subclass has its own advantages over the oth-
ers. For instance, stability criteria were proposed for
PWA systems [15, 22], control and state-estimation
techniques for MLD hybrid models [3, 8, 9] and PWA
models [4], and verification techniques for PWA [2, 14]
and MLD [11] systems. In addition, simulation of hy-
brid systems is much easier for PWA systems (eval-
uation of a PWA function per time step), than for
MLD systems (one mixed-integer feasibility test per
time step [9]) and LC system (one linear complemen-
tarity problem per time step).

In [5, 20] we showed that MLD, PWA, LC, and other
classes of hybrid systems are equivalent. Some of
the equivalences were obtained under additional as-
sumptions related to well-posedness (i.e., existence and
uniqueness of solution trajectories) and boundedness of
(some) system variables. These results are extremely
important, as they allow to transfer all the analysis and
synthesis tools developed for one particular class to any
of the other equivalent subclasses of hybrid systems.

While the transformation of a PWA system into MLD
form can be done immediately by using appropriate
“big-M” techniques [9], the reverse transformation from
MLD to PWA described in [5] requires the enumera-
tion of all possible combinations of the integer vari-
ables contained in the MLD model (binary states and
inputs and auxiliary Boolean variables). This paper
provides an efficient algorithm that avoids such an enu-
meration and computes very efficiently the equivalent
PWA form of a given MLD system. We believe that the
proposed algorithm will extend the use of tools tailored
for PWA systems to many real-life non-trivial hybrid
problems, as those that can be described in the mod-
eling language HYSDEL. A Matlab implementation of
the technique described in this paper is available at
http://www.dii.unisi.it/~hybrid/tools/mld2pwa.

2 PWA and MLD Systems

Piecewise affine (PWA) systems are described by

x(k + 1) = Aix(k) + Biu(k) + fi

y(k) = Cix(k) + Diu(k) + gi
for

[
x(k)
u(k)

]
∈ Ωi,

(1)
where u(k) ∈ R

m, x(k) ∈ R
n and y(k) ∈ R

p denote
the input, state and output, respectively, at time k,
Ωi � {[ x

u ] : Hixx + Hiuu ≤ Ki}, i = 1, . . . , s, are
convex polyhedra in the input+state space. Ai, Bi,
Ci, Di, Hix and Hiu are real matrices of appropriate
dimensions and fi and gi are real vectors for all i =
1, . . . , s.

PWA systems have been studied by several authors
(see [9, 15, 22, 24] and the references therein) as they



form the “simplest” extension of linear systems that
can still model non-linear and non-smooth processes
with arbitrary accuracy and are capable of handling
hybrid phenomena, such as linear-threshold events and
mode switch.

A PWA system of the form (1) is called well-posed, if
(1) is uniquely solvable in x(k + 1) and y(k), once x(k)
and u(k) are specified. A necessary and sufficient con-
dition for the PWA system (1) to be well-posed over
Ω � ∪s

i=1Ωi is therefore that x(k + 1), y(k) are single-
valued PWA functions of x(k), u(k). Therefore, typi-
cally the sets Ωi have mutually disjoint interiors, and
are often defined as the partition of a convex polyhe-
dral set Ω. In case of discontinuities of the PWA func-
tions over overlapping boundaries of the regions Ωi, one
may ensure well-posedness by writing some of the in-
equalities in the form (Hix)jx + (Hiu)ju < Kj

i , where
j denotes the j-th row. Although this would be impor-
tant from a system theoretical point of view, it is not of
practical interest from a numerical point of view, as “<”
cannot be represented in numerical algorithms working
in finite precision. In the following we shall neglect this
issue for the sake of compactness of notation.

2.1 Mixed Logical Dynamical (MLD) Systems
In [9] a class of hybrid systems has been introduced in
which logic, dynamics and constraints are integrated.
This lead to a description of the form

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k) (2a)
y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k) (2b)

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5, (2c)

where x(k) = [ xc
′(k) x�

′(k) ]′, xc(k) ∈ R
nc and x�(k) ∈

{0, 1}n� (y(k) and u(k) have a similar decomposition),
and where z(k) ∈ R

rc and δ(k) ∈ {0, 1}r� are auxiliary
variables. A, Bi, C, Di and Ei denote real constant
matrices and E5 is a real vector. The inequalities (2c)
have to be interpreted componentwise. Systems that
can be described by model (2) are called Mixed Logical
Dynamical (MLD) systems.

The MLD system (2a) is called completely well-posed,
if δ(k) and z(k) are uniquely defined in their domain,
once x(k) and u(k) are assigned [9]. From (2a)–(2b)
this implies that also x(k+1), y(k) are uniquely defined
functions of x(k), u(k).

The MLD formalism allows specifying the evolution of
continuous variables through linear dynamic equations,
of discrete variables through propositional logic state-
ments and automata, and the mutual interaction be-
tween the two. The key idea of the approach consists
of embedding the logic part in the state equations by
transforming Boolean variables into 0-1 integers, and by
expressing the relations as mixed-integer linear inequal-
ities (see [9, 26] and references therein). MLD systems

are therefore capable of modeling a broad class of sys-
tems, in particular those systems that can be modeled
through the hybrid system description language HYS-
DEL [26].

2.2 Equivalence of MLD and PWA Systems
The following proposition has been stated in [5] and
is an easy extension of the corresponding result in [9]
for piecewise linear (PWL) systems (i.e. PWA systems
with fi = gi = 0).

Proposition 1 Every well-posed PWA system can be
rewritten as an MLD system assuming that the set of
feasible states and inputs is bounded.

Remark 1 As MLD models only allow for nonstrict
inequalities in (2c), in rewriting a discontinuous PWA
system as an MLD model strict inequalities like x(k) <
0 must be approximated by x(k) ≤ −ε for some ε > 0
(typically the machine precision), with the assumption
that −ε < x(k) < 0 cannot occur due to the finite
number of bits used for representing real numbers (no
problem exists when the PWA is continuous, where the
strict inequality can be equivalently rewritten as non-
strict, or ε = 0). See [9, 20] for more details. From a
strictly theoretical point of view, the inclusion stated
in Proposition 1 is therefore not exact for discontin-
uous PWA systems. As discussed before, one way of
circumventing such an inexactness is to allow part of
the inequalities in (2c) to be strict. On the other hand,
from a numerical point of view this issue is not relevant.
�

The reverse statement of Proposition 1 has been estab-
lished in [5] under the condition that the MLD system
is completely well-posed. A slightly different and more
general proof is reported here below, as it will be an
essential ingredient of the MLD-to-PWA translation al-
gorithm described in Section 3.

Definition 1 The feasible state+input set Ω ⊆ R
nc ×

{0, 1}n� × R
mc × {0, 1}m� is the set of states+inputs

pairs (x(k), u(k)) for which (2c) has a solution for some
δ(k) ∈ R

r� , z(k) ∈ R
rc .

Proposition 2 Every completely well-posed MLD (2)
system can be rewritten as a PWA system (1), i.e., the
feasible state+input set of (2) Ω can be partitioned into
a collection of convex polyhedra {Ωi}si=1, Ω =

⋃s
i=1 Ωi,

and there exist 5-tuples (Ai, Bi, Ci, fi, gi), i = 1, . . . , s,
such that all trajectories x(k), u(k), y(k) of the MLD
system (2) also satisfy (1).

Proof: By well-posedness of system (2), given x(k)
and u(k) the vector δ(k) is uniquely defined, namely



δ(k) = F (x(k), u(k)). The idea is to partition the
space R

nc+mc of continuous states and inputs by group-
ing in regions Ωi all

[
xc(k)
uc(k)

]
∈ R

nc+mc corresponding
to the same logic state x�(k) = x�i ∈ {0, 1}n�, bi-
nary input u�(k) = u�i ∈ {0, 1}u�, and binary vector
δ(k) = F (x(k), u(k)) ∈ {0, 1}r�. Let us fix x�(k) = x�i,
u�(k) = u�i, δ(k) ≡ δi, i = 1, . . . , 2n�+m�+r� . The
inequalities (2c) define a polyhedron P in R

nc+mc+rc .
Moreover, from (2c) it is possible to extract linear re-
lations that involve z(k), xc(k), uc(k) (for instance
pairs of symmetric inequalities that correspond to lin-
ear equalities), and because of well-posedness of z(k)
(i.e., given a pair x(k), u(k) there exists only one value
z(k) ∈ R

rc satisfying (2c)), we obtain that there exist
matrices K4i, K1i, K5i such that

z(k) = K4ixc(k) + K1iuc(k) + K5i,

∀x(k), u(k) :


 x�(k)

u�(k)
F (x(k), u(k))


 =


 x�i

u�i

δi


 ,

(3)
and that P ⊂ R

nc+mc+rc is a polyhedral set of di-
mension less than or equal to nc + mc (for instance
if nc = 1, mc = 0, rc = 1, P would be a segment in
R

2). By substituting (3) in (2a)–(2b), and by parti-
tioning A =

[
Acc Ac�

A�c A��

]
, B1 =

[
B1cc B1c�

B1�c B1��

]
, B2 =

[
B2c

B2�

]
,

B3 =
[

B3c

B3�

]
, C =

[
Ccc Cc�

C�c C��

]
, D1 =

[
D1cc D1c�

D1�c D1��

]
, D2 =[

D2c

D2�

]
, D3 =

[
D3c

D3�

]
(without loss of generality, we as-

sumed that the continuous components of a vector are
always the first), we obtain

xc(k + 1) = (Acc + B3cK4i)xc(k) + (B1cc + B3cK1i)uc(k) +

+ (B2cδi + B3cK5i + Ac�x�i + B1c�u�i) (4a)

x�(k + 1) = (A�c + B3�K4i)xc(k) + (B1�c + B3�K1i)uc(k) +

+ (B2�δi + B3�K5i + A��x�i + B1��u�i) (4b)

yc(k) = (Ccc + D3cK4i)xc(k) + (D1cc + D3cK4i)uc(k) +

+ (Cc�x�i + D1c�u�i + D3cK5i + D2cδi)

y�(k) = (C�c + D3�K4i)xc(k) + (D1�c + D3cK4i)uc(k) +

+ (C��x�i + D1��u�i + D3�K5i + D2�δi),

(4c)

which, by suitable a choice of Ai, Bi, Ci, fi, gi, corre-
sponds to (1) for

Ωi = {[ xc
uc ] : (E3K4i − E4c)xc + (E3K1i − E1c)uc ≤

≤ (E1�u�i − E2δi − E3K5i + E4�x�i + E5)} × {x�i} × {u�i},
(5)

where E1 = [E1c E1�], E4 = [E4c E4�].

Note that the well-posedness of the original MLD sys-
tem implies that the x�(k+1) and y�(k) mappings in (4)
are {0, 1}-valued. We also remark that in general the
feasible state+input set of (2) Ω =

⋃s
i=1 Ωi is noncon-

vex.

3 Translation Algorithm

For any given MLD system, Proposition 2 is construc-
tive, as it returns the equivalent PWA system. How-
ever, it is based on the enumeration of all 2n�+m�+r�

combinations of binary (x�, u�, δ) variables. In general,
most combinations lead to empty regions Ωi in (5), and
a method that avoid the enumeration of all possibilities
is therefore desirable. In this paper, we propose to avoid
such an enumeration by using techniques from multi-
parametric programming [10,16]. In particular, the idea
is to determine a feasible combination (x�, u�, δ) via
mixed-integer linear programming (MILP), for which
several solvers exist (see e.g., [7, 21]), generate the cor-
responding polyhedral cell Ωi, and then partition and
explore the rest of the state+input space recursively.

Before proceeding further, we first embed the sets
Ωi in R

n+m by treating the integer vectors x�, u�

as real-valued vectors during the exploration of the
state+input set. In particular, we replace the set {0, 1}
with [−1/2, 1/2)∪ [1/2, 3/2].

Let (x∗, u∗) a given point in R
n+m. Usually, an infor-

mation is available a priori on an over approximation B
of Ω, as generally MLD models are obtained by HYS-
DEL through the application of the so-called “big-M”
technique, which requires the specification of upper and
lower bounds on state and input variables [9,26,28], see
also the example in Appendix A. By letting Ω ⊆ B (for
example B can be an box), a good choice for (x∗, u∗)
is the Chebychev center of B (the center of the largest
Euclidean ball contained in B). In general, for a poly-
hedron P̄ = {[ x

u ] : Ā [ x
u ] ≤ B̄}, its Chebychev cen-

ter can be determined by solving the linear program
(LP) [12, Chapter 3]

maxx,u,ε ε
subj. to Āi [ x

u ] + ε‖Āi‖ ≤ B̄i,
(6)

where the optimizer (x∗, u∗) is the center, and ε∗ is the
radius of the Chebychev ball (ε∗ < 0 means that P̄ is
empty). As (x∗, u∗) may be not integer feasible (i.e.,
its components x�, u� are not in {0, 1}), we find the
the best approximation (in infinity-norm) (x1, u1) =
([ xc1

x�1 ] , [ uc1
u�1 ]) of (x∗, u∗) which is integer feasible and

satisfies the MLD constraints (2c), by solving the MILP

min
x, u, δ, z, σ

x ∈ R
nc × {0, 1}n�

u ∈ R
mc × {0, 1}m�

δ ∈ {0, 1}r� , z ∈ R
rc , σ ∈ R

σ

subj. to σen+m ≥ [ x
u ]− [

x∗
u∗

]
σen+m ≥ − [ x

u ] +
[

x∗
u∗

]
E2δ + E2z ≤ E1u + E4x + E5

[ x
u ] ∈ B,

(7)



where en+m = [1 . . . 1]′ ∈ R
n+m, and σ represents an

upper bound on ‖ [ x
u ] − [

x∗
u∗

] ‖∞. If the MILP (7)
is infeasible, then Ω = ∅, which means that the
MLD system is badly posed (for all initial states x(0)
no input u(0) exists which provides a successor x(1)
and fulfills the MLD dynamics). Otherwise, let δ1

be the corresponding optimal δ for problem (7), and
for the triple (x�1, u�1, δ1) compute the correspond-
ing linear expression for z according to (3), the 5-
tuple (A1, B1, C1, f1, g1) according to (4), and the cor-
responding region Ω1 where such 5-tuple is valid ac-
cording to (5), with the assumption that xi

�1 = 0 is rep-
resented by xi

�1 ∈ [−1/2, 1/2], xi
�1 = 1 is represented

by xi
�1 ∈ [1/2, 3/2], where xi

�1 denotes the i-th com-
ponent of x�1, and similarly for the components ui

�1 of
the logic part of the input vector u�1. Clearly, Ω1 is a
polyhedron in R

n+m and represents the first region of
the equivalent PWA system.

The nonconvex rest Bn+m\Ω1 is partitioned into convex
polyhedral cells Rj , j = 1, . . . , p0, in accordance with
the following theorem (cf. [10, Theorem 3]):

Theorem 1 Let P ⊆ R
n+m be a polyhedron, and let

Θ = {[ x
u ] ∈ P : G [ x

u ] ≤ g} be a nonempty polyhedral
subset of P , where G ∈ R

p×(n+m). Also let

Rj =
{

[ x
u ] ∈ P :

Gj [ x
u ] > gj

Gh [ x
u ] ≤ gh, ∀h < j

}
,

j = 1, . . . , p0,

where Gj denotes the j-th row of G and gj denotes
the j-th entry of g. Then (i) P =

(∪p
j=1Rj

) ∪ Θ; (ii)
Θ∩Rj = ∅ for all j and Rj ∩Rh = ∅ for all j �= h; i.e.,
{Θ, R1, . . . , Rp} is a partition of P .

After partitioning the rest of the space, we proceed re-
cursively: we choose for each region Ri a new vector
(x∗, u∗) by solving the LP (6), with Ā, B̄ such that
{[ x

u ] : Ā [ x
u ] ≤ B̄} = Ri, and solve the MILP (7). If

the MILP is infeasible, the region Ri is discarded. If the
optimal solution (x�, u�, δ) provides a new combination,
then (3), (4), and (5) are computed to calculate a new
affine dynamics and polyhedral cell Ωi. Then, Theo-
rem 1 is applied with P = Ri, Θ = Ri ∩ Ωi (clearly,
in order to minimize the number p0 of regions Ri gen-
erated at each recursion, before applying Theorem 1 it
is convenient to remove all redundant inequalities from
the representation of Θ), and the algorithm proceeds
recursively.

At the end of the recursion, in a post-processing opera-
tion, in order to reduce the number of polyhedral cells
in the PWA system we check all pairs of regions in the
state+input space R

n+m where the affine dynamics (for
both the continuous and logic components of the state
and output vectors) are the same, and try to compute
their union, provided that the union is a convex set [6].

In summary, the translation algorithm from MLD to
PWA is described by the following algorithm:

Algorithm 1

1. Let B be a polytope in R
n+m;

2. Find the Chebychev center (x∗, u∗) of the current re-

gion B in the (x, u)-space using (6);

3. Find the best integer-feasible approximation (xi, ui) of

(x∗, u∗) that satisfies the MLD constraints (2c), via the

MILP (7);

4. If the MILP is infeasible, terminate the exploration of

the current region B;

5. Let (x�, u�, δ) be the optimal solution to the MILP;

6. If (x�, u�, δ) is a new combination, compute (3), (4),

and Ωi from (5);

7. Remove redundant inequalities from Θ = B∩Ωi, where

xi
� = 0 is replaced by xi

� ∈ [−1/2, 1/2], xi
� = 1 by

xi
�1 ∈ [1/2, 3/2], and similarly for ui

�;

8. Apply Theorem 1 with P = B and generate new poly-

hedral cells R1, . . . , Rp;

9. For each polyhedron Ri, let B ← Ri and go to 2.;

10. At the end of the recursion, consider all pairs of re-

gions where the dynamics (both continuous and logic) is

the same, and try to compute their union [6];

11. End

We remark that after the PWA form has been gener-
ated, an optimized MLD with minimum number of inte-
ger variables can be easily obtained by efficiently coding
the PWA dynamics as described in [9], for instance by
using �log2 s� integer variables, where s ≤ 2n�+m�+r� is
the number of regions in the PWA partition generated
by Algorithm 1.

4 An Example

We consider the hybrid model of a car with robo-
tized manual gear shift reported in [25], for which a
cruise control was verified. The model was developed
in HYSDEL (see Appendix A) and the corresponding
MLD model has n = 2 continuous states (position and
velocity of the car), no logic state, 2 continuous in-
puts (engine torque and braking force), 6 binary inputs
(gears #1,. . . ,#5 + reverse gear), 4 auxiliary binary
variables and 16 auxiliary variables, 96 mixed-integer
inequalities. The total number of binary variables is
0+6+4 = 10, which gives a worst-case number of pos-
sible regions in the PWA system equal to 210 = 1024.
By running the algorithm proposed in this paper, the
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Figure 1: PWA system equivalent to the MLD model ob-
tained through HYSDEL from the list reported
in Appendix A – Section in the (velocity,torque)
space for position x = 0, braking force Fb = 0,
gear input vector = [0 0 0 0 1 0]′ (4th gear).

PWA equivalent to the hybrid MLD model has 28 re-
gions, and is computed in 72.66 s in Matlab 5.3 on a
Pentium III 650 MHz machine.

In order to compare the simulation time required by
the original MLD system and its PWA equivalent, we
simulate both systems over 300 steps. While the MLD
system takes 20.20 s by using the MILP solver [7], the
same simulation takes 0.94 s by using the PWA equiv-
alent system.

5 Conclusions

We have described an efficient algorithm for translat-
ing hybrid systems expressed as mixed-logical dynam-
ical system into an equivalent piecewise affine system,
where equivalence means that the same initial condi-
tions and inputs produce the identical trajectories. We
believe that the result is very useful to apply several
techniques available for PWA systems (stability anal-
ysis via piecewise quadratic Lyapunov functions, con-
troller synthesis, verification, simulation) to relatively
complex hybrid systems composed by linear dynamics,
automata, propositional logic, linear threshold condi-
tions, and if-then-else rules, such as those described by
the modeling language HYSDEL [26].
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A Hysdel Model

/* Hybrid model - Renault Clio 1900 */

SYSTEM car {

INTERFACE {
STATE {

REAL position [-1000, 1000]; /* position */
REAL speed [-50*1000/3600, 220*1000/3600]; /* velocity (m/s)*/
}

INPUT {
REAL torque [-300,300]; /* Nm */
REAL F_brake [0,9000]; /* N */
BOOL gear1, gear2, gear3, gear4, gear5, gearR;
}

PARAMETER {
REAL mass = 1020; /* kg */
REAL beta_friction = 25; /* W/m*s */
REAL Rgear1 = 3.7271;
REAL Rgear2 = 2.048;
REAL Rgear3 = 1.321;
REAL Rgear4 = 0.971;
REAL Rgear5 = 0.756;
REAL RgearR = -3.545;

REAL wheel_rim = 14; /* in */
REAL tire_width = 175; /* mm */
REAL tire_height_perc = 65; /* % */
REAL R_final = 3.294;
REAL loss = 0.925; /* correction term for losses */

REAL pi = 3.1415; REAL inch = 2.54;

/* wheel radius: */
REAL wheel_radius = (wheel_rim/2*inch+(tire_width/10)*

(tire_height_perc/100))/100;

/* speed=speed_factor*w_engine/Rgear */
REAL speed_factor = loss /R_final * wheel_radius;
REAL max_brake = 8.53; /* max acceleration (m/s^2) */
REAL max_brake_force = mass*max_brake; /* max braking force */
REAL wemin = -100*2*pi/60;
REAL wemax = 6000*2*pi/60;
REAL Ts = 0.5; /* sampling time, seconds */

/* torque nonlinearity:
C(w)=aPWL(i)+bPWL(i)*w, w\in\[wPWL(i),wPWL(i+1)] rad/s */

REAL aPWL1 = 0; REAL aPWL2 = 58.1070;
REAL aPWL3= 151.7613; REAL aPWL4 =192.8526; REAL aPWL5=259.9484;
REAL bPWL1 = 1.3281; REAL bPWL2 = 0.6344;
REAL bPWL3 = 0.0755; REAL bPWL4 = -0.0880; REAL bPWL5=-0.2883;
/* breakpoints */
REAL wPWL1 = 83.7733; REAL wPWL2 = 167.5467;
REAL wPWL3 = 251.32; REAL wPWL4=335.0933;

/* Engine brake torque */
REAL alpha1 = 10;
REAL beta1 = 0.3;}

}

IMPLEMENTATION {
AUX {REAL Fe1, Fe2, Fe3, Fe4, Fe5, FeR;

REAL w1, w2, w3, w4, w5, wR;
BOOL dPWL1,dPWL2,dPWL3,dPWL4;
REAL DCe1,DCe2,DCe3,DCe4; }

AD { dPWL1 = wPWL1-(w1+w2+w3+w4+w5+wR)<=0;
dPWL2 = wPWL2-(w1+w2+w3+w4+w5+wR)<=0;
dPWL3 = wPWL3-(w1+w2+w3+w4+w5+wR)<=0;
dPWL4 = wPWL4-(w1+w2+w3+w4+w5+wR)<=0;}

DA {Fe1 = {IF gear1 THEN torque/speed_factor*Rgear1};
Fe2 = {IF gear2 THEN torque/speed_factor*Rgear2};
Fe3 = {IF gear3 THEN torque/speed_factor*Rgear3};
Fe4 = {IF gear4 THEN torque/speed_factor*Rgear4};
Fe5 = {IF gear5 THEN torque/speed_factor*Rgear5};
FeR = {IF gearR THEN torque/speed_factor*RgearR};

w1 = {IF gear1 THEN speed/speed_factor*Rgear1};
w2 = {IF gear2 THEN speed/speed_factor*Rgear2};
w3 = {IF gear3 THEN speed/speed_factor*Rgear3};
w4 = {IF gear4 THEN speed/speed_factor*Rgear4};
w5 = {IF gear5 THEN speed/speed_factor*Rgear5};
wR = {IF gearR THEN speed/speed_factor*RgearR};

DCe1 = {IF dPWL1 THEN (aPWL2-aPWL1)+(bPWL2-bPWL1)*
(w1+w2+w3+w4+w5+wR)};

DCe2 = {IF dPWL2 THEN (aPWL3-aPWL2)+(bPWL3-bPWL2)*
(w1+w2+w3+w4+w5+wR)};

DCe3 = {IF dPWL3 THEN (aPWL4-aPWL3)+(bPWL4-bPWL3)*
(w1+w2+w3+w4+w5+wR)};

DCe4 = {IF dPWL4 THEN (aPWL5-aPWL4)+(bPWL5-bPWL4)*
(w1+w2+w3+w4+w5+wR)};}

CONTINUOUS { position = position+Ts*speed;
speed = speed+Ts/mass*(Fe1+Fe2+Fe3+Fe4+Fe5+FeR-

F_brake-beta_friction*speed);}

MUST {
-w1 <= -wemin;
w1 <= wemax;
-w2 <= -wemin;
w2 <= wemax;
-w3 <= -wemin;
w3 <= wemax;
-w4 <= -wemin;
w4 <= wemax;
-w5 <= -wemin;
w5 <= wemax;
-wR <= -wemin;
wR <= wemax;

-F_brake <=0; /* brakes cannot accelerate ! */
F_brake <= max_brake_force;

/* Commanded torque between Cb(we) and Ce(we)*/
-torque-(alpha1+beta1*(w1+w2+w3+w4+w5+wR)) <=0;
torque-(aPWL1+bPWL1*(w1+w2+w3+w4+w5+wR)+DCe1+DCe2+DCe3+DCe4)-1<=0;

-((REAL gear1)+(REAL gear2)+(REAL gear3)+(REAL gear4)+
(REAL gear5)+(REAL gearR))<=-0.9999;

(REAL gear1)+(REAL gear2)+(REAL gear3)+(REAL gear4)+
(REAL gear5)+(REAL gearR)<=1.0001;

dPWL4 -> dPWL3;
dPWL4 -> dPWL2;
dPWL4 -> dPWL1;
dPWL3 -> dPWL2;
dPWL3 -> dPWL1;
dPWL2 -> dPWL1;}

}
}
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