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Abstract

This paper addresses the problem of identification of
hybrid dynamical systems, by focusing the attention on
hinging hyperplanes (HHARX) and Wiener piecewise
affine (W-PWARX) autoregressive exogenous models.
In particular, we provide algorithms based on mixed-
integer linear or quadratic programming which are
guaranteed to converge to a global optimum.

1 Introduction

Hybrid systems are systems with both continuous and
discrete dynamics, the former typically associated with
physical principles, the latter with logic devices. Most
literature of hybrid systems has dealt with modeling
[1, 2], stability analysis [3, 4], control [2, 5, 6], verifica-
tion [7–9], and fault detection [10, 11]. The different
tools rely on a model of the hybrid system. Getting
such a model from data is an identification problem,
which does not seem to have received enough atten-
tion in the hybrid systems community, except for the
recent contribution [12]. On the other hand, in other
fields there has been extensive research on identifica-
tion of general nonlinear black-box models [13]. A few
of these techniques lead to piecewise affine (PWA) mod-
els of nonlinear dynamical systems [14–18], and thanks
to the equivalence between PWA systems [1,19,20] and
several classes of hybrid systems, they can be used to
obtain hybrid models.

As will be pointed out, if the guardlines (i.e., the par-
tition of the PWA mapping) are known, the problem
of identifying PWA systems can easily be solved using
standard techniques. However, when the guardlines
are unknown the problem becomes much more diffi-
cult. The basic difficulty can be expressed as follows:
There are two possibilities: (1) Either a grid defining
the cells over which the system is constant is defined a
priori or (2) this grid is estimated along with the linear
models. The former approach gives an easy estimation
process for the linear submodels, but suffers from the
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curse of dimensionality in the sense that the number of
a priori given cells will have to be very large for rea-
sonable flexibility even in the case of moderately many
regressors. The second approach allows for efficient use
of fewer cells, but leads to potentially (very) many lo-
cal minima, which may make it difficult to apply local
search routines. This dilemma we address in this pa-
per. It should be said right away that we will not offer
any practical solution here. Instead we point to re-
formulations for two subclasses of PWA systems that
lead to mixed-integer linear or quadratic programming
problems that can be solved for the global optimum.
We illuminate this approach with some examples and
analysis and also discuss how these insights can be used
for new ideas on efficient algorithms.

2 PWARX Models

To begin with, let us consider systems on the form

yt = g(φt) + et (1)

where φt ∈ Rn is our regression vector, et is white noise,
and g is a PWA function of the form

g(φ) = d′jφ+ cj if H̄jφ ≤ D̄j (2)

where dj ∈ Rn, cj ∈ R, and the sets Cj , {φ : H̄jφ ≤
D̄j}, j = 1, . . . , s are a polyhedral partition of the φ-
space. To allow for a more compact notation, we let
ϕt =

[
1
φt

]
, θj =

[ cj
dj

]
, and Hj = [−D̄j H̄j ]. In this way

(2) can be written as

g(ϕ) = ϕ′θj if Hjϕ ≤ 0 (3)

ϕt could, e.g., consist of old inputs and outputs, i.e.,
ϕt = [1 yt−1 . . . yt−na ut−1 . . . ut−nb ]. In this case we
call the systems PWARX (PieceWise affine AutoRe-
gressive eXogenous) systems. We do not assume that
g is necessarily continuous over the boundaries, com-
monly referred to as guardlines. Without this assump-
tion, definition (2) is not well posed in general, as the
function can be multiply defined over common bound-
aries of the sets Cj . Although one can avoid this issue
by replacing some of the “≤” inequalities into “<” in
the definition of the regions Cj , this issue is not of prac-
tical interest from a numerical point of view.
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2.1 Identification of PWARX Models
Now suppose that we are given yt and ϕt, t = 1, . . . , N ,
and want to find the PWARX model that best matches
the given data. The identification of model (3) can be
carried out by solving the optimization problem

min
1

2N

N∑
t=1

 s∑
j=1

‖yt − ϕ′tθj‖Jj(ϕt)

 (4a)

subj. to Jj(ϕt) =
{

1 if Hjϕt ≤ 0
0 otherwise (4b)

+ linear bounds over θj , Hj (4c)

where θj , Hj , j = 1, . . . , s are the unknowns. In
(4), we will focus on the 1-norm ( | · | ) and the
squared Euclidean norm ( ‖ · ‖22 ), as they allow to
express (4) as a mixed-integer linear or quadratic pro-
gram (MILP/MIQP), respectively, for which efficient
solvers exist [21–24]. The problem can be also re-
cast as an MILP by using infinity norm over time (i.e.
maxt=1,... ,N instead of

∑N
t=1), although this would be

highly sensitive to possible outliers in the estimation
data. We distinguish between two main cases:

A. Known Guardlines Hj (i.e., the partition of the
ϕ-space) are known, θj have to be estimated. If using
2-norm in (4), we can see that this is an ordinary least-
squares problem which can be solved efficiently.

B. Unknown Guardlines Both Hj and θj are un-
known. This is a much harder problem, since it is non-
convex and the objective function generally contains
several local minima. However, the optimization prob-
lem (4) can be recast as an MILP or MIQP. In the
following sections, we focus on two subsets of PWA
functions, namely the Hinging Hyperplanes (HH) and
Wiener processes with PWA static output mapping,
and detail the mixed-integer program associated to the
identification problem. In general, the complexity of
the mixed-integer program needed to solve (4) is re-
lated to the number of samples N and regions s, and
the number of parameters Hj , θj that are unknown.
Note that in general, the guardlines Hi

jϕ ≤ 0, (where
M i denotes the i-th row of M) cannot be determined
exactly from the given estimation data set, as the pairs
yt, ϕt are a discrete set of points which can be divided
by a continuum of possible guardlines.

3 Hinging Hyperplane Models

Hinging hyperplane (HH) models were introduced by
Breiman [14]. They are based the hinge function
gi(ϕ) = ±max{ϕ′θ+

i , ϕ
′θ−i } (see Fig. 1). The ± sign is

needed to represent both convex and nonconvex func-
tions. However, since it will only have a minor effect
on the computations in this paper, we will exclude
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Figure 1: Hinging hyperplanes and hinge function

it for notational simplicity. We obtain the following
HHARX (Hinging-Hyperplane AutoRegressive eXoge-
nous) model

yt = ϕ′tθ0 +
M∑
i=1

max{ϕ′tθi, 0}+ et (5)

Since −z+ max{z, 0} = max{−z, 0}, ∀z ∈ R, there are
redundancies in (5), which can be partially avoided by
introducing the requirement

w′θi ≥ 0, i ∈ [1,M ] (6)

where w is any nonzero vector of Rn, e.g., w = 1 ,
[1 1 . . . 1]′ (or any random vector).

4 Identification Algorithms for HH Models

The first algorithm for estimating HH models was pro-
posed by Breiman [14]. Later, in [15] it is shown that
the original algorithm is a special case of Newton’s
method, and provide a modification which guarantees
convergence to a local minimum. Other algorithms
have been proposed based on tree HH models [25]. In
this paper, we propose an alternative approach based
on mixed-integer programming, which provides a global
minimum, at the price of an increased computational
effort.

Consider the problem of estimating a HH function of
the form (5) from the estimation data set {yt, ϕt}Nt=1.
We choose the optimal parameters Θ∗ by solving

Θ∗ , arg minV (Θ) ,
N∑
t=1

|yt − g(ϕt,Θ)| (7a)

subj. to
{
θj− ≤ θj ≤ θj+
1′θi ≥ 0, i ∈ [1,M ] (7b)

where the inequalities in (7b) are componentwise. As
we will see, (7) can be reformulated as an MILP. An-
other possibility is to use the squared Euclidean norm
(yt − g(ϕt,Θ))2, as the problem can be recast as an
MIQP.
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4.1 Optimization Problem
MILP Formulation. To recast (7) as an MILP, we
introduce the 0-1 variables δit:

[δit = 0]↔ [ϕ′tθi ≤ 0], i ∈ [1,M ], t ∈ [1, N ] (8)

and the new continuous variables zit

zit = max{ϕ′tθi, 0} = ϕ′tθiδit (9)

The relations (8) and (9) can be transformed into
mixed-integer linear inequalities, by using standard
techniques [6]. By assuming that the bounds over θi
are all finite, Eq. (8) is equivalent to the inequalities

ϕ′tθi ≤Mθ
itδit

ϕ′tθi ≥ ε+ (mθ
it − ε)(1 − δit)

(10)

where ε is a small positive scalar (e.g., the machine pre-
cision), and M θ

it and mθ
it are upper and lower bounds

on ϕ′tθi, derived from the bounds on θi. Similarly, (9)
is equivalently rewritten as

−M θ
itδit + zit ≤ 0

mθ
itδit − zit ≤ 0

−Mθ
it(1 − δit)− zit ≤ −ϕ′tθi

mθ
it(1− δit) + zit ≤ ϕ′tθi

(11)

Finally, by introducing auxiliary slack variables εt ≥
|yt − g(ϕt,Θ)|, t = 1, . . . , N , the following holds:

Proposition 1 The optimum of problem (7) is equiv-
alent to the optimum of the following MILP

min
εt,θi,zit,δit

N∑
t=1

εt

subj. to εt ≥ yt − ϕ′tθ0 −
N∑
i=1

zit

εt ≥ ϕ′tθ0 +
N∑
i=1

zit − yt

(10), (11), (6)

(12)

Example 1. Consider the following HHARX model

yt = 0.8yt−1 + 0.4ut−1 − 0.1 +
+ max{−0.3yt−1 + 0.6ut−1 + 0.3, 0}

(13)

The model is identified on the data reported in Fig.
3(a), by solving an MILP with 66 variables (of which
20 integers) and 168 constraints. The problem is solved
by using Cplex 6.5 [24] (1014 LP solved in 0.68 s on a
Sun Ultra 10 running Matlab 5.3), and, for comparison,
using BARON [22] (73 LP solved in 3.00 s, same ma-
chine), which results in a zero output prediction error
78
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Figure 2: Identification of model (13) – noiseless case.
Identified HH model.

(Fig. 3(b)). The fitted HH model is reported in Fig. 2.
After adding noise et ∈ N(0, 0.1) to the output yt, the
following model

yt = 0.83yt−1 + 0.34ut−1 − 0.20 +
+ max{−0.34yt−1 + 0.62ut−1 + 0.40, 0}

(14)

is identified in 1.39 s (3873 LP solved) using Cplex
(7.86 s, 284 LP using BARON) on the estimation set
reported in Fig. 4(a), and produces the validation data
reported in Fig. 4(b). For comparison, we identified
the linear ARX model

yt = 0.82yt−1 + 0.72ut−1 (15)

on the same estimation data, obtaining the validation
data reported in Fig. 5 (higher order ARX models did
not produce significant improvements). Clearly, the
error generated by driving the ARX model in open-
loop with the validation input ut is much larger, and
would not make (15) suitable for instance for formal
verification tools, where a good performance of open-
loop prediction is a critical requirement.
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Figure 3: Identification of model (13) – noiseless case

MIQP Formulation. When the squared 2-norm is
used in the objective function, the optimization prob-
lem can be recast as the MIQP

min
θi,δit,zit

V (Θ) ,
N∑
t=1

(yt − (ϕ′tθ0 +
M∑
i=1

zit))2

subj. to (10), (11), (6)

(16)
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Figure 4: Identification of model (13) – noisy case
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Figure 5: Identification of a linear ARX model – same
estimation and validation data as in Fig. 4

Note that the problem is not strictly positive definite,
for instance the cost function does not depend on θi, δit
(which only appear in the constraints). For numerical
reasons, a term σI, where σ is a small number, may be
added to the Hessian associated to the MIQP (16).

4.2 Complexity
Despite the good solvers available [21,22,24], the com-
plexity of the MILP or MIQP problems is well known
to be NP -hard, and in particular it is exponential in
the number MN of binary variables. Therefore, the
approach is computationally affordable only for model
with a few data, or if data are clustered together (e.g.,
100 data are averaged into 10 data).

4.3 Discontinuous HHARX Models
In HHARX models, the output yt is a continuous func-
tion of the regressor φt. On the other hand, hybrid
systems often consist of PWA discontinuous mappings.
In order to tackle discontinuities, we can modify the
HH model (5) in the form

g(ϕt,Θ) = ϕ′tθ0 +
M∑
i=1

(ϕ′tθi + ai)δit(ϕt) (17a)

[δit(ϕt) = 0]↔ [ϕ′tθi ≤ 0], i ∈ [1,M ], t ∈ [1, N ] (17b)
78
where ai, i = 1, . . . ,M are additional free parameters,
a−i ≤ ai ≤ a+

i ; or, more in general, in the form

g(ϕt,Θ) = ϕ′tθ0 +
M∑
i=1

(ϕ′tθi)δit(ϕt) (18a)

[δit(ϕt) = 0]↔ [ϕ′tµi ≤ 0], i ∈ [1,M ], t ∈ [1, N ] (18b)

where µi, i = 1, . . . ,M are additional free vectors
of parameters, µ−i ≤ µi ≤ µ+

i , 1′µi ≥ 0. Similarly
to (12), both the identification problems (17) and (18)
can be again recast as an MILP. With respect to (12),
the MILP has µi or ai as additional optimization vari-
ables. Note that the problem in general does not have
a unique solution, just as for general PWARX systems.

4.4 Robust HHARX Models
In formal verification methods, model uncertainty
needs to be handled in order to provide safety guaran-
tees. Typically, the model is associated with a bounded
uncertainty. In the present context of HHARX models,
we wish to find an uncertainty description of the form

g(ϕt,Θ−) ≤ yt ≤ g(ϕt,Θ+), ∀t ≥ 0 (19)

for an inclusion-type of description, or the form

yt = g(ϕt,Θ∗) + nt, n
− ≤ nt ≤ n+ (20)

for an additive-disturbance-type of description.
Clearly, since the model is identified from a finite
estimation data set, fulfillment of (19) or (20) for all
t and for all initial conditions cannot be guaranteed,
unless additional hypotheses on the model which
generates the data are assumed. Nevertheless, a pair
of extreme models Θ−, Θ+ can be obtained by solving
(12) or (16) with the additional linear constraints

yt ≥ g(ϕt,Θ), ∀t ∈ [1, N ] (21)

for estimating Θ−, and

yt ≤ g(ϕt,Θ), ∀t ∈ [1, N ] (22)

for estimating Θ+. An additive-disturbance descrip-
tion can be instead computed in two alternative ways:

1. First, identify a model Θ∗ by solving (12) or (16)
and then compute

n+ , maxt=1,... ,N yt − g(ϕt,Θ∗)
n− , mint=1,... ,N yt − g(ϕt,Θ∗)

(23)

2. Modify the MILP (12) by setting replacing εt
with one variable ε only, and minimize ε. The cor-
responding optimum ε∗ provides a nominal model
such that the bound on the norm of the additive
disturbance nt is minimized.
9
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Figure 6: Wiener process with PWA static output map-
ping

5 Piecewise Affine Wiener Models

Let us now turn to the class of models shown in Fig. 6,
described by the relations

A(z)xt = B(z)ut
yt = f(xt)

(24a)

where A(z) = 1 +
∑na

l=1 alz
−l, B(z) =

∑nb
l=1 blz

−l, and
z−1 is the delay operator, z−1xt = xt−1. We assume
that f(x) is a piecewise affine, invertible function (with-
out restrictions we can assume that f is strictly increas-
ing), and parameterize its inverse as

xt = yt − α0 +
M∑
i=1

±max{βiyt − αi, 0} (24b)

Both signs ± are allowed in order to be able to rep-
resent nonconvex functions. We assume that the num-
ber M+ of positive signs is known (without restrictions
we can let these be the first terms of the sum). As
max{−z, 0} = −z + max{z, 0} for all z ∈ R, without
loss of generality we can also assume βi ≥ 0.

6 Identification of W-PWARX Models

As seen from Fig. 6, a Wiener model consists of a lin-
ear dynamic system followed by an output nonlinear-
ity. In some cases, the two can be identified separately:
first the inverse nonlinearity is estimated by supplying
a quasi-static input, and then a linear dynamic model
is identified by using standard linear techniques [26].
On the other hand, in some other cases the input sig-
nal cannot be designed arbitrarily, as input/output es-
timation data are simply supplied by other sources.
Then one algorithm which estimates the whole Wiener
process is desirable. Here, we describe an algorithm
based on mixed-integer programming, which identifies
W-PWARX models of the form (24). Such PWA form
is particularly useful when the identified system models
an unknown part of a larger hybrid model. We assume
that we are given an estimation data set {yt, ut}Nt=1.

Define ah = a+
h − a

−
h , a+

h , a
−
h ≥ γ, where γ > 0 is any

7

positive scalar. Then

ah max{βiyt−h − αi, 0} =

= max{a+
h βiyt−h − a

+
h αi, 0} −

−max{a−h βiyt−h − a
−
h αi, 0}

= max{c+ihyt−h − d
+
ih, 0} −max{c−ihyt−h − d

−
ih, 0}

where

c±ih , a±h βi,
d±ih , a

±
h αi, i ∈ [1,M ], h ∈ [1, na]

Let also

ci0 = c+i0 = c−i0 , βi
di0 = d+

i0 = d−i0 , αi
d0h , ahα0

d00 , α0

d̄0 ,
na∑
h=0

d0h =

(
1 +

na∑
h=1

ah

)
α0

For each −max and + max function in (24b), and for
each t, we introduce the integer variables δit ∈ {0, 1}

[δit = 1]↔ [βiyt − αi ≥ 0] , i ∈ [1,M ], t ∈ [1, N ] (25)

Without loss of generality, we can assume that the M+

first breakpoints in the PWA output nonlinearity are
ordered, and similarly for the M−M+ last breakpoints.
Clearly, the logic constraint

[δit = 1] → [δjt = 1] (26)

should hold for all i, j ≤ M+ such that j < i, and for
all i, j > M+ such that j < i. Each constraint (26) is
translated into

δit − δjt ≤ 0, (27)

and a minimal set of inequalities is obtained by col-
lecting (27) only for pairs of consecutive indices i, j.
Moreover, since the output data yt can be ordered, we
can also get additional relations on δit by using (25).
In fact, if δit0 = 1 and yt1 > yt0 , it must follow that
δit1 = 1. We can translate these relations into

δit0 − δit1 ≤ 0, ∀t1 6= t0 : yt1 ≥ yt0 (28)

As a+
h , a

−
h > 0, from (25) it also follows

[δit = 1]↔
[
c±ihyt − d

±
ih ≥ 0

]
(29)

Let us also introduce the auxiliary continuous variables

zit0 , (ci0yt − di0)δit

zith , [(c+ih − c
−
ih)yt−h − (d+

ih − d
−
ih)]δi(t−h), h ∈ [1, na]

(30)



Using the same techniques as in (10) and (11), we can
translate (29) and (30) to linear inequalities.

Now,

xt = yt − d00 +
M∑
i=1

±zit0

ahxt−h = ahyt−h − d0h +
M∑
i=1

±zith

(31)

By (24) and (31),

xt = yt − d00 +
M∑
i=1

±zit0 =
nb∑
k=1

bkut−k −

−
na∑
h=1

(
ahyt−h − d0h +

M∑
i=1

±zith

)

which provides the relation

yt = −
na∑
h=1

ahyt−h +
nb∑
k=1

bkut−k + d̄0 −
M∑
i=1

na∑
h=0

±zith

(32)

In order to fit the estimation data to model (32), we
solve the mixed-integer quadratic program (MIQP)

min
1
N

N∑
t=1+max{na,nb}

∣∣∣∣∣yt +
na∑
h=1

ahyt−h− (33)

−
nb∑
k=1

bkut−k − d̄0 +
M∑
i=1

na∑
h=0

±zith

∣∣∣∣∣
2

subj. to linear constr.from (27), (28), (29), and (30)

with respect to the variables ah, bk, ci0, di0, d̄0, c±ih,
d±ih, zith, and the binary variables δit. The solution
to (33) provides the optimal parameters a∗h, b∗h, and
α∗0 ,

d̄∗0
1+
∑na
h=1 a

∗
h

, α∗i , d∗i0, β∗i , c∗i0. Finally, we can
obtain the estimation f∗(x) by inverting (24b) (see [27]
for details).

Example 2. A Wiener model constituted by a first-
order linear system and a nonlinearity with two break-
points is identified, using N = 20 estimation data
points. The system is first identified using noiseless
data, and then using noisy measurements ỹt = yt + et,
where et are independent and uniformly distributed on
a symmetric interval around 0. The MIQP problem
(33) is solved by running BARON [22] on a Sun Ultra
10. The resulting estimates are shown in Table 1. The
estimated parameters are overall very close to the true
values, the closer the lower the intensity of the output
noise, as it should be expected. The estimated model
was also tested on a set of validation data, and we re-
port in Fig. 7 the resulting one-step-ahead predicted
79
Par. True et = 0 |et| < 0.01 |et| < 0.1

a1 -0.5 -0.5000 -0.4990 -0.5360
b1 2 2.0000 2.0024 2.0003
α0 -2 -2.0000 -2.0001 -1.7748
α1 0.5 0.5000 0.5095 0.5509
α2 -1.5 -1.5000 -1.4924 -1.4999
β1 0.5 0.5000 0.5016 0.5028
β2 0.5 0.5000 0.4988 0.4876

CPU - 45.44 s 51.33 s 90.34 s

Table 1: Estimation results
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Figure 7: Validation results

output and output error. Note that such a good per-
formance cannot be achieved by using standard linear
identification techniques.

6.1 Complexity Analysis
By imposing the constraints expressed by (27) and (28),
the degrees of freedom for the integer variables, and
hence the complexity, are reduced considerably. In fact,
instead of having to test 2MN different cases in the
worst case, only

(
M+N
M

)
·
(
M
M+

)
combinations would be

tested. For example, for N = 20 and M = 2 this means
that the number of possible combinations of integer
variables decreases from approximately 1012 to 462. In
general, for a fixed M the worst-case complexity grows
as NM . Note that this simplification is possible since
the nonlinearity is one-dimensional, which allows an
ordering of the breakpoints and of the output data.

7 State-Space Realizations

Similarly to the linear ARX case, state-space realiza-
tions of HHARX and W-PWARX models can be ob-
tained using different hybrid state-space discrete-time
paradigms introduced recently in the hybrid systems
literature [1]. In particular, realization into Mixed-
Logical Dynamical (MLD), Piecewise Affine (PWA),
Min-Max-Plus Scaling (MMPS), Linear Complemen-
tarity (LC), and Extended Linear Complementarity
1



(ELC) forms are discussed in [28, 29].

8 Conclusions

In this paper we have addressed the problem of identi-
fication of hybrid dynamical systems, by focusing our
attention on piecewise affine (PWARX), hinging hy-
perplanes (HHARX), and Wiener piecewise affine (W-
PWARX) autoregressive exogenous models. In partic-
ular, for the two latter classes we have provided glob-
ally convergent algorithms based on mixed-integer lin-
ear or quadratic programming. Several problems re-
main open, such as the choice of persistently exciting
input signals u for identification (i.e., that allow for
the identification of all the affine dynamics), and cri-
teria like Akaike’s criterion for choosing the best order
and number of hinging pairs in HHARX models. Fu-
ture research will also be devoted to faster suboptimal
algorithms, by combining MIP solvers and clustering
techniques.
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