
Discrete-Time Hybrid Modeling and Verification

Fabio Danilo Torrisi1 and Alberto Bemporad2,1

ThA12-6
Abstract

For hybrid systems described by interconnections of lin-
ear dynamical systems and logic devices, we recently
proposed Mixed Logical Dynamical (MLD) systems
and the language HYSDEL (Hybrid System Descrip-
tion Language) as a modeling tool. For MLD models,
we developed a reachability analysis algorithm which
combines forward reach-set computation and feasibil-
ity analysis of trajectories by linear and mixed-integer
linear programming. In this paper the versatility of
the overall analysis tool is illustrated on the verifica-
tion of an automotive cruise control system for a car
with robotized manual gear shift.

1 Introduction

Hybrid models describe processes that evolve according
to dynamic equations and logic rules [1]. The interest
in hybrid systems has grown over the last few years
not only because of the theoretical challenges, but also
because of their impact on applications, for instance
in the automotive industry. A typical example of hy-
brid systems are real-time systems, where physical pro-
cesses are controlled by embedded controllers. For this
reason, it is important to have tools to guarantee that
this combination behaves as desired. Formal verifica-
tion is aimed at providing such a certification. This
amounts to solving the following reachability problem:
For a given set of initial conditions and disturbances,
guarantee that all possible trajectories never enter a
set of unsafe states, or possibly provide a counterexam-
ple. Unfortunately, it is well known that formal veri-
fication of hybrid systems is an undecidable problem.
In spite of this complexity, several tools for formal ver-
ification of hybrid systems have been proposed in the
literature [2, 8, 10,12,16].

Formal verification is strictly related to the modeling
framework used to describe the process, whose safety
properties we need to certify. Different models lead to
different verification algorithms. Timed automata [8]
and hybrid automata [12], for instance, were proved to
be successful modeling frameworks and led to very effi-
cient verification tools based on symbolic computation.

Recently, we proposed an algorithm [6, 7] based on
mathematical programming for solving safety analysis
problems on Piecewise Affine (PWA) and Mixed Logi-
cal Dynamical (MLD) systems as an alternative to other

1Automatic Control Laboratory, ETH Zentrum - ETL,
8092 Zürich, Switzerland torrisi,bemporad@aut.ee.ethz.ch
http://control.ethz.ch/~hybrid

2Dip. Ingegneria dell’Informazione, Università di Siena, Via
Roma 56, 53100 Siena, Italy bemporad@dii.unisi.it
289
HYSDEL Model

MLD + PWA Model

Reachability Analysis

Process

Safety Requirements Safety Properties

Figure 1: Verification of hybrid systems: The process is
modeled in HYSDEL. The model is automat-
ically translated it into MLD and PWA form,
and used for proving safety properties

modeling frameworks. PWA and MLD systems are for-
mulated in discrete time. Despite the fact that the
effects of sampling can be neglected in most applica-
tions, subtle phenomena such as Zeno behaviors [14]
cannot be captured in discrete time. Nevertheless, a
discrete-time formulation allows one to develop numeri-
cally tractable schemes for solving complex analysis and
synthesis problems. Several questions related to MLD
systems can indeed be suitably formulated as mixed-
integer linear/quadratic optimization problems, such as
control [5] and scheduling problems [4].

After reviewing the basics of PWA and MLD systems,
we briefly recall the reachability analysis algorithm de-
scribed in [6], and address the formal verification prob-
lem of an automotive control system for automatized
gear-shift. We model the automotive system in our lan-
guage HYSDEL to obtain an MLD system. For formal
verification, we adopt the algorithm described in [6].
The overall modeling and verification procedure is de-
picted in Figure 1.

2 PWA Systems, MLD Systems, and HYSDEL

PWA systems [11] are defined by partitioning the state
space into polyhedral regions, and associating with each
region a different linear state-update equation

x(t + 1) = Ai(t)x(t) + Bi(t)u(t) + fi(t)

if x(t) ∈ Ci(t) , {x : Hi(t)x ≤ Ki(t)} (1)

where x ∈ X ⊆ Rn, u ∈ U ⊆ Rm, {Ci}s−1
i=0 is a poly-

hedral partition1 of the sets of states2 X, the matri-
ces Ai, Bi, fi, Hi, Ki are constant and have suitable

1The double definition of the state-update function over com-
mon boundaries of sets Ci (the boundaries will also be referred to
as guardlines) is a technical issue that can be resolved by allow-
ing a part of the inequalities in (1) to be strict. However, from a
numerical point of view, this issue is not relevant.

2More generally, Ci are subsets the of state+input space
Rn+m, for instance when the PWA system is obtained as an
equivalent representation of an MLD system [11].
9



Logic

Dynamics
continuous
variables

command
inputs

Interface

exogenous
inputs

discrete
inputs

discrete
outputs

exogenous
inputs

A/D

D/A

Figure 2: Hybrid MLD system: Finite state machines and
continuous dynamics interact through analog-
to-digital (A/D) and D/A interfaces

dimensions, and the inequality Hix ≤ Ki should be
interpreted componentwise. PWA systems can model
a large number of physical processes, such as systems
with static nonlinearities, and can approximate non-
linear dynamics via multiple linearizations at different
operating points.

MLD systems [5] allow specifying the evolution of con-
tinuous variables through linear dynamic equations,
of discrete variables through propositional logic state-
ments and automata, and the mutual interaction be-
tween the two, as shown in Figure 2. The MLD mod-
eling framework relies on the idea of translating logic
relations into mixed-integer linear inequalities [5, 19].
Linear dynamics are represented as difference equations
x(t + 1) = Ax(t) + Bu(t), x ∈ Rn, u ∈ Rm. Boolean
variables are defined from linear-threshold conditions
over the continuous variables: [d = 1] ↔ [a′x ≤ b],
x, a ∈ Rn, b ∈ R, d ∈ {0, 1}. This can be equivalently
expressed by the two mixed-integer linear inequalities:

a′x − b ≤ M(1 − d)
a′x − b > md

(2)

where, assuming that x ∈ X ⊂ Rn and X is a given
bounded set, M ≥ supx∈X (a′x − b), m ≤ infx∈X (a′x −
b), are upper and lower bounds, respectively, on (a′x−
b).

Similarly, a relation defining the continuous variable z
defined by IF d THEN z = a′

1x−b1 ELSE z = a′
2x−b2,

can be expressed as

(m2 − M1)d + z ≤ a′
2x − b2

(m1 − M2)d − z ≤ −a′
2x + b2

(m1 − M2)(1 − d) + z ≤ a′
1x − b1

(m2 − M1)(1 − d) − z ≤ −a′
1x + b1.

(3)

A Boolean variable dn ∈ {0, 1} can be defined as a
Boolean function of Boolean variables f : {0, 1}n−1 7→
{0, 1}, namely

dn = f(d1, d2, . . . , dn−1) (4)
290
where f is a combination of “not” (∼), “and” (∧), “or”
(∨), “exclusive or” (⊕), “implies” (←), and “iff” (↔)
operators. Eq. (4) can be translated into the conjunc-
tive normal form (CNF):

∧k
j=1

(∨
i∈Pj

di

∨
i∈Nj

∼ di

)
,

Nj , Pj ⊆ {1, . . . , n} by using standard methods [18].
Subsequently, the CNF can be translated into the set
of integer linear inequalities




1 ≤ ∑
i∈P1

di +
∑

i∈N1
(1 − di)

...
1 ≤ ∑

i∈Pk
di +

∑
i∈Nk

(1 − di)
(5)

The state update law of finite state machines can be
described by logic propositions involving binary states,
their time updates, and binary signals, under the as-
sumptions that transitions are clocked and synchronous
with the sampling time of the continuous dynamical
equations, and that the automaton is well posed (i.e.,
at each time step a transition exists and is unique)

x`(t + 1) = F (x`(t), u`(t)) (6)

where ul is the vector of Boolean signals triggering the
transitions of the automaton. Therefore the automa-
ton is equivalent to a nonlinear discrete time system
where F is a purely Boolean function. The translation
technique mentioned above can be directly applied to
translate the automaton (6) into a set of linear integer
equalities and inequalities. An example will be pro-
vided when modeling the control code of the gear-shift
controller in Section 4.

By collecting the equalities and inequalities derived
from the representation of the hybrid system depicted
in Figure 2, we obtain the Mixed Logical Dynamical
(MLD) system [5]

x(t + 1) = Φx(t) + G1u(t) + G2d(t) + G3z(t) (7a)
y(t) = Hx(t) + D1u(t) + D2d(t) + D3z(t) (7b)

E2d(t)+E3z(t) ≤ E1u(t) + E4x(t) + E5 (7c)

where x ∈ Rnc × {0, 1}n` is a vector of continuous
and binary states, u ∈ Rmc × {0, 1}m` are the inputs,
y ∈ Rpc×{0, 1}p` the outputs, d ∈ {0, 1}r` , z ∈ Rrc rep-
resent auxiliary binary and continuous variables respec-
tively, which are introduced when transforming logic
relations into mixed-integer linear inequalities, and Φ,
G1−3, H, D1−3, E1−5 are matrices of suitable dimen-
sions.

We assume that system (7) is completely well-posed [5,
11], which means that x(t + 1) and y(t) are uniquely
defined once x(t), u(t) are given. Note that the con-
straints (7c) allow to specify additional linear and logic
constraints on the variables of the system (e.g., limits
on physical variables).

The whole translation procedure is the core of the tool
HYSDEL (Hybrid Systems Description Language) [18],
which automatically generates an MLD model from a
high-level textual description of the system. Once the
0



XZ1
(0)

XZ2
(0)

XZ3
(0)

Z1

Z2

ZL

X(0)
Target Set

Target Set

Target Set

Figure 3: Reachability analysis problem

MLD model is available, its equivalent PWA form (1)
is obtained by using the procedure suggested in [11].
In the next section, we will assume that both the PWA
and the MLD forms are available and discuss their com-
plementary role in the reachability analysis algorithm.

3 Reachability Analysis

The reachability analysis of hybrid dynamical systems
allows the verification of safety properties: For a given
set of initial conditions and exogenous signals, verify
that the set of unsafe states cannot be entered, or pro-
vide a counterexample. More precisely, we define the
following:

Reachability Analysis Problem. Given a hybrid
system Σ (either in PWA form (1) or MLD (7)), a set
of initial conditions X (0), a collection of disjoint target
sets Z1, Z2, . . ., ZL, a bounded set of inputs U , and a
time horizon t ≤ Tmax, determine (i) if Zj is reachable
from X (0) within t ≤ Tmax steps for some sequence
{u(0), . . . , u(t − 1)} ⊆ U of exogenous inputs; (ii)
if yes, the subset of initial conditions XZj

(0) of X (0)
from which Zj can be reached within Tmax steps; (iii)
for any x1 ∈ XZj

(0) and x2 ∈ Zj , the input sequence
{u(0), . . . , u(t− 1)} ⊆ U , t ≤ Tmax, which drives x1 to
x2.

From now on, we will assume that X (0), Zj , U are
polyhedral sets, and, without loss of generality, that
they are also convex. We will also denote by X (t,X (0))
the reach set at time t starting from any x ∈ X (0)
and by applying any input u(k) ∈ U , 0 ≤ k ≤ t − 1.
The reason for focusing on finite-time reachability is
that states which are not reachable in less than Tmax

steps are, in practice, unreachable. Although finite time
reachability analysis cannot guarantee certain liveness
properties (for instance, if Zi will be ever reached), the
reachability problem stated above is clearly decidable.
Nevertheless, the problem is NP -hard [7].

The previous questions of reachability can be answered
once all the switching sequences I(T ) , {i(0), . . . , i(T−
1)}, ∀T ≤ Tmax leading to Z1, or Z2, . . . , or ZL from
X (0) are known. In fact, it is enough to check that the
reach set at time T satisfies X (T,X (0))∩Zj 6= ∅ for all
admissible switching sequences I(T ).
29
Algorithm 3.1

1 Given: X (0) (to be explored), target sets Zj , j = 1, . . . , L;

2 push X (0,X (0)) in STACK ;

3 while STACK not empty do

4 pop X (t, Rj) from STACK, let i such that Rj ⊆ Ci;

5 while not terminate(X (t, Rj))

6 if X (t, Rj) ∩ Zk 6= ∅ then Zk can be reached from Rj

7 t ← t + 1; X (t, Rj) ← AiX (t − 1, Rj) + BiU + {fi};
% Update the reach set

8 for all h 6= i such that Rh , Ch
⋂ X (t, Rj) 6= ∅

% Rh can be reached from Rj

9 R̄h ← outer approximation of Rh;

10 Push R̄h on STACK;

11 X (t, Rj) ← X (t, Rj)
⋂ Cj ;

Table 1: Reachability analysis algorithm described in [7]

Ci

Cj

Ph

X (0)

X (1;X (0))

X (2;X (0))

X (3;X (0))

Figure 4: Reach-set evolution, guardline crossing, outer
approximation of a new intersection

3.1 Verification Algorithm
In order to determine admissible switching sequences
I(T ), we need to exploit the special structure of the
PWA system (1). This allows an easy computation of
the reach set, as long as the evolution remains within
a single region Ci of the polyhedral partition. When-
ever the reach set crosses a guardline and enters a new
region Cj , a new reach-set computation based on the j-
th linear dynamics is computed, as shown in Figure 4.
The Algorithm proposed in [6] is summarized by the
pseudo-code reported in Table 1, where we assume that
X (0) ⊂ Ci is a convex polyhedral set (more generally,
we can consider all nonempty intersections X (0)∩Ci, for
all i = 1, . . . , s). The algorithm determines the reach
set X (T,X (0)) for all T ≤ Tmax (i.e., the reachable set).

Reach-Set Computation

The reach set X (t, Rj) ∩ Ci is computed iteratively in
steps 4, 7, and 11. Note that the subset Si(t,X (0)) of
X (0) whose evolution lies in Ci for t steps is given by
the explicit representation

S(t,X (0)) =
{
x ∈ Rn : S0x0 ≤ T0, HiA

k
i x0

≤ Si − Hi

∑k
j=1 Aj−1

i [Biu(k − j) + fi],
k = 1, . . . , t}

(8)

which is a polyhedral set in the augmented space of
tuples (x, u(0), . . . , u(t − 1)).

Guardline Crossing Detection

Step 8 requires a switching detection, namely find-
01



ing all possible new regions Ch entered by the reach
set at the next time step, or, in other words, all the
nonempty sets Rh , X (t,X (0))

⋂ Ch, h 6= i. Rather
than enumerating and checking nonemptiness for all
h = 0, . . . , i − 1, i + 1, . . . , s − 1, we exploit the equiva-
lence between PWA and MLD, and solve the switching
detection problem via mixed-integer linear program-
ming. In fact, switching detection amounts to find-
ing all feasible vectors d(t) ∈ {0, 1}r` which are com-
patible with the constraints in (7) plus the constraint
x(t − 1) ∈ X (t − 1,X (0)) ∩ Ci.

Approximation of Intersection

The computation of the reach set proceeds in each re-
gion Ch from each new intersection Rh. A new reach-set
computation is started from Rh, unless Rh is contained
in some larger subset of Ch which was already explored.
The set Rh is outer approximated in step 9 by the union
of hyper-rectangles [3], as depicted in Figure 4, in order
to avoid that the complexity of Rh grows linearly with
time, and so that checking for set inclusion reduces to
a simple comparison of the coordinates of the vertices
of the hyper-rectangles.

Termination of Explorations

In (8) we showed how to compute the evolution of
the reach set X (t, Rj) inside a region Ci. The com-
putation is stopped (step 5) once one of the follow-
ing condition happens: (1) The set X (t, Rj) is empty
(this means that the whole evolution has left region
Ci); (2) X (t, Rj) ⊆ Zj , j = 1, . . . , L, the target set Zj

has been reached by all possible evolutions from Rj ;
(3) t > Tmax. These conditions can be easily checked
through linear programming. Note that the termina-
tion condition (2) implies that once a target set has
been reached no further exploration is performed.

Post-processing

The result of the exploration algorithm detailed in the
previous sections is conveniently stored in a graph G.
The nodes of G represent sets from which a reach-set
evolution is computed, and an oriented arc of G con-
nects two nodes if a transition exists between the two
corresponding sets. Each arc has an associated weight
which represents the time-steps needed for the tran-
sition. After Algorithm 3.1 terminates, the oriented
paths on G from initial node X (0) to terminal nodes
Zj , j = 1, . . . , L determine a superset of feasible switch-
ing sequences I(t) = {i(0), . . . , i(t − 1)}. In fact, be-
cause of the outer approximation R̄h of new intersec-
tions Rh (step 9), not all switching sequences are fea-
sible. Feasibility can be simply tested via linear pro-
gramming over the sets of linear inequalities generated
by an explicit reach-set representation as in (8).

4 Verification of a Cruise Control System

In this section we apply the tools proposed in the pre-
vious sections to verify an automotive cruise control
system for a car with robotized manual gear shift. The
cruise control system controls the throttle, the brakes
290
0 1000 2000 3000 4000
0

20

40

60

80

100

120

140

160

180

Nm C(!)

!(RPM)

Figure 5: Torque of the engine of the Clio 1.9 DTI RXE
(solid line) and PWL approximation (dashed
line)

and the gear box to let the speed of the car track a
desired reference. In this section we verify that the
controlled system will never exceed the target speed
by some tolerance, for instance to guarantee that the
speed limits imposed by local authorities will never be
exceeded. The complete system under exam is com-
posed by two subsystems: the car dynamic model and
the controller. We focus on a car equipped with manual
transmission, and we assume that the gear command is
robotized, namely that the controller can select the gear
and a slave control system takes care of releasing the
clutch, shifting the gear, and engaging the clutch.

4.1 Car model
We only consider the longitudinal dynamics of the car:
the continuous variables are the scalar position x (m)
and the speed v = ẋ (m·s−1). The continuous inputs
are the engine torque ut (Nm), the braking force ub

(N), and the sinus of the road slope us, plus five binary
inputs g1, g2, g3, g4, and g5 ∈ {0, 1} corresponding to
the selected gear. By denoting by ω the engine speed
(rad·s−1), we have the kinematic relation

v =
klossrwheel

Rg(i)Rfin
ω (9)

where Rg(i) is the gear ratio corresponding to the i-th
gear, Rfin is the final drive ratio, rwheel is the wheel
radius, and kloss is the drive train efficiency level [9].
Note that by using a kinematic relation for the speed
engine, we are neglecting the clutch, the motor dynamic
behavior, and we are assuming that the time spent for
gear shift is negligible3.

The dynamic equation of motion of the car is mẍ =
Fe − Fb − Fr where m (kg) is the vehicle mass, Fe (N)
is the traction force, Fb = ub is the braking force (N),
and Fr (N) is the friction force. As a first approxima-
tion, we assume that Fr is linear in v, Fr = βv where
β (kg·m·s−1) is a constant that takes into account all

3This assumption is not limitative, as there are systems which
able to synchronize the engine-shaft speed with the car speed and
the selected gear while the clutch is not engaged, and then engage
the clutch [13].
2



Figure 6: Renault Clio 1.9 DTI RXE (courtesy of Quat-
troruote, 538:88-97, August, 2000)

the frictions (i.e. aerodynamic, tires deformation, drive
train).

From the conservation of mechanical power, we have
Fev = ωu1, which gives Fe = kloss

Rg(i)u1. The commanded
torque ut is upper-bounded by the maximum torque
deliverable at a certain engine speed ω, ut(t) ≤ C+

e (ω)
where C+

e (ω) is a nonlinear function typically reported
in the data sheets of the car. In order to derive a hybrid
model of the car as described in Section 2, we piecewise-
linearize C+

e (ω) into four regions using the PWL tool-
box [15], cf. Figure 5.

To validate the model, we took the parameters of
the car from http://www.renault.com/. In particu-
lar we chose the data from the Renault Clio 1.9 DTI
RXE (Figure 6). The simulated acceleration and max
speed tests gave the same results as the experimental
counterpart, reported in the technical documentation.
In the reader’s convenience we report the main param-
eters of the car under consideration: Rg(1) = 3.7271,
Rg(2) = 2.048, Rg(3) = 1.321, Rg(4) = 0.971, Rg(5) =
0.756, Rg(R) = −3.545, Rfin = 3.2940, kloss = 0.925,
rwheel = 0.2916 m, β = 25 kg·m·s−1, m = 1020 kg. Fig-
ure 5 reports the measured torque and the piece wise
affine approximation, the maximum error is 5.7 Nm.
Finally the dynamics is discretized with sampling time
Ts = 0.5 s using forward finite differences to obtain the
discrete-time hybrid models (1),(7).

4.2 Controller model
The controller commands throttle position, brake force,
and selected gear, based on the desired vehicle speed
and measurements of the actual car speed.

The automaton reported in Figure 7 selects the gear. If
the engine angular speed is faster than a given threshold
ωu then the gear is shifted up. Similarly, if lower than a
threshold ωl, the gear is shifted down. The two thresh-
olds are chosen by looking at the max torque plot in
Figure 5. To track the desired speed reference vr(t), the
throttle and the brakes are operated by a PI controller.
Let e(t) be the integral error, e(t+1) = e(t)+Ts∆v(t),
2903
1 2 43 5

w ¸ wu w ¸ wu w ¸ wu w ¸ wu

w < wl w < wlw < wlw < wl

Figure 7: Gear shift logic controller

∆v(t) = vr(t) − v(t). The controller is

ut(t) =
{

kt∆v(t) + ite(t) if v(t) ≤ vr(t) + 1
0 otherwise (10a)

ub(t) =
{

kb∆v(t) if v(t) > vr(t) + 1
0 otherwise . (10b)

The control variables ut an ub are saturated against
the maximum torque and braking force, respectively.
The integrator in the PI controller uses an anti-windup
scheme: e(t) is integrated only when the control inputs
ut and ub are not saturated. Note that, as the threshold
in equation (10), the fine tracking of the speed refer-
ence is performed using only the command coming for
the throttle. By fixing the gear ratio in fifth gear we
calibrate the parameters kt, kb, and it on the result-
ing linear system (kt = 70, kb = 20, and it = 10). The
HYSDEL model of the car and the cruise control system
is reported in [17].The corresponding MLD model (7)
has 173 MLD constraints, x ∈ R2×{0, 1}5, d ∈ {0, 1}15,
z ∈ R19.

4.3 Verification
The HYSDEL compiler is used to generate the MLD
and PWA models of the cruise control system. The
verification is performed using the algorithm recalled
in Section 3.1. We check the safety using the following
initial set X (0) = {x = [ v

e ] : v ∈ [0, 1], e ∈ [0, 1]} and
target set: Z1 = {v : v > vr + rtoll} where rtoll is a
tolerance, in this example we set rtoll = 1.3889 m·s−1

(5 km/h) that is the tolerance of the speed control de-
vices adopted in Switzerland. Moreover, we check the
liveness of the controller by adding the set Z2 = {v, t :
v ≤ vr − 2rtoll, t > 10/Ts}, where we require that the
controller reaches the target speed minus the tolerance
2rtoll in 10 s (a controller that stops the car would be
safe against fines, but not at all desirable!). We per-
form parametric verification [7] for a class of constant
references vr ∈ [8.333, 19.444] m/s(= [30, 70] km/h).
The exploration horizon is fixed to Tmax = 15.5s.

4.4 Verification Results
The algorithm produces the result that the controlled
system satisfies both the specifications: It does not en-
ter the unsafe region Z1 (over the speed limit) and guar-
antees the liveness of the control action (within 10s the
speed v is in a bounded set around the target speed vr.

The verification required 9109s on a PC Pentium 650
MHz running Matlab 5.3.

The algorithm was run also with the same initial and



0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

Time (s)

S
p

e
e
d

(K
m

/h
)

Figure 8: Counterexample to the liveness property

target sets and with an extended range for the param-
eter vr ∈ [8.333, 33.333]m/s. The algorithm reported
the first counterexample in 415s: For vr = 29.167m/s
the liveness condition is not satisfied. However, by ex-
amining the plot of the counterexample reported in Fig-
ure 8, one can see that the controller fails to reach the
requested vehicle speed within the specified time frame.

Acknowledgments

This research was supported by the Swiss National Sci-
ence Foundation and the Federal Office for Education
and Science through the Esprit Project 26270 VHS
(Verification of Hybrid Systems).

References

[1] P.J. Antsaklis. A brief introduction to the theory and
applications of hybrid systems. Proc. IEEE, Special Issue
on Hybrid Systems: Theory and Applications, 88(7):879–
886, July 2000.

[2] E. Asarin, O. Bournez, T. Dang, and O. Maler.
Reachability analysis of piecewise-linear dynamical systems.
volume 1790 of Lecture Notes in Computer Science, pages
20–31. Springer-Verlag, 2000.

[3] A. Bemporad, C. Filippi, and F.D. Torrisi. Inner and
outer approximation of polytopes using hyper-rectangles.
Technical Report AUT00-02, Automatic Control Lab, ETH
Zurich, 2000.

[4] A. Bemporad, L. Giovanardi, and F.D. Torrisi. Per-
formance driven reachability analysis for optimal scheduling
and control of hybrid systems. In Proc. 39th IEEE Conf.
on Decision and Control, pages 969–974, Sydney, Australia,
December 2000.

[5] A. Bemporad and M. Morari. Control of systems
integrating logic, dynamics, and constraints. Automatica,
35(3):407–427, March 1999.

[6] A. Bemporad, F.D. Torrisi, and M. Morari.
Optimization-based verification and stability characteriza-
tion of piecewise affine and hybrid systems. volume 1790 of
Lecture Notes in Computer Science, pages 45–58. Springer
Verlag, 2000.

[7] A. Bemporad, F.D. Torrisi, and M. Morari. Discrete-
time hybrid modeling and verification of the batch evap-
orator process benchmark. European Journal of Control,
7(4):382–399, 2001.
290
[8] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson,
Y. Wang, and C. Weise. New Generation of Uppaal. In Int.
Workshop on Software Tools for Technology Transfer, June
1998.

[9] R. Bosch. Automotive Handbook. Society of Automo-
tive Engineer, fifth edition, December 2000.

[10] A. Chutinan and B.H. Krogh. Verification of poly-
hedral invariant hybrid automata using polygonal flow pipe
approximations. volume 1569 of Lecture Notes in Computer
Science, pages 76–90. Springer-Verlag, 1999.

[11] W.P.M.H. Heemels, B. De Schutter, and A. Bempo-
rad. Equivalence of hybrid dynamical models. Automatica,
37(7):1085–1091, July 2001.

[12] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi.
HyTech: a model checker for hybrid systems. Software
Tools for Technology Transfer, 1:110–122, 1997.

[13] Fredriksson J. and B.S. Egardt. Nonlinear control
applied to gearshifting in automated manual transmissions.
In Proc. 39th IEEE Conf. on Decision and Control, pages
444–449, Sydney, Australia, December 2000.

[14] K.H. Johansson, M. Egerstedt, J. Lygeros, and S. Sas-
try. On the regularization of Zeno hybrid automata. System
& Control Letters, 38:141–150, 1999.

[15] P. Julián. A High Level Canonical Piecewise Lin-
ear Representation: Theory and Applications. PhD the-
sis, Univerisidad Nacional del Sur, May 1999. Toolbox
available online at http://lcr.uns.edu.ar/personales/
pjulian/cpwl.htm.

[16] J. Preussig, O. Stursberg, and S. Kowalewski. Reach-
ability analysis of a class of switched continuous systems
by integrating rectangular approximation and rectangular
analysis. volume 1569 of Lecture Notes in Computer Sci-
ence, pages 210–222. Springer-Verlag, 1999.

[17] F.D. Torrisi and A. Bemporad. Discrete-time hybrid
modeling and verification. Technical Report AUT01-17, Au-
tomatic Control Lab, ETH Zurich, 2001.

[18] F.D. Torrisi, A. Bemporad, and D. Mignone. HYS-
DEL - A language for describing hybrid systems. Technical
Report AUT00-03, ETH Zurich, 2000. Tool available at:
http://control.ethz.ch/~hybrid/hysdel.

[19] H.P. Williams. Model Building in Mathematical Pro-
gramming. John Wiley & Sons, Third Edition, 1993.
4


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	header1: 
	footer: 


