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Abstract
Algorithms for solving multiparametric quadratic pro-
gramming (mp-QP) were recently proposed in [4, 12]
for computing explicit Model Predictive Control (MPC)
laws. The reason for this interest is that the solution to
mp-QP is a piecewise affine function of the state vector
and thus it is easily implementable on-line. The main
drawback of solving mp-QP exactly is that whenever
the number of linear constraints involved in the opti-
mization problem increases, the number of polyhedral
cells in the piecewise affine partition of the parameter
space may increase exponentially. In this paper we ad-
dress the problem of finding approximate solutions to
mp-QP, where the degree of approximation is arbitrary
and allows to trade off between optimality and a smaller
number of cells in the piecewise affine solution.

1 Introduction

Model Predictive Control (MPC) has become the ac-
cepted standard for complex constrained multivariable
control problems in the process industries [10]. Here at
each sampling time, starting at the current state, an
open-loop optimal control problem is solved over a fi-
nite horizon. At the next time step the computation is
repeated starting from the new state and over a shifted
horizon, leading to a moving horizon policy. The solu-
tion relies on a linear dynamic model, respects all input
and output constraints, and optimizes a quadratic per-
formance index.

For MPC based on linear prediction models and a
quadratic performance index, in [4] the authors pro-
posed a new approach to move off-line all the compu-
tations necessary for the implementation of MPC while
preserving all its other characteristics. The approach
consists of solving off-line the optimization problem as-
sociated with MPC for all the expected measurement
values by using multiparametric quadratic programming
(mp-QP) solvers. The resulting feedback controller in-
herits all the stability and performance properties of
linear MPC, and is piecewise linear. For this reason,
the on-line computation associated with explicit MPC
controllers reduces to a function evaluation of a piece-
wise linear mapping.

The main drawback of explicit MPC techniques is that
whenever the number of constraints involved in the
optimization problem increases, the number of linear
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gains associated with the piecewise linear control al-
gorithm may increase exponentially, with consequent
heavy memory and CPU loads. The technique pro-
posed in [7] attempts to reduce the complexity by re-
ducing a priori the allowed combinations of active con-
straints, based on engineering insight on the control
problem. In [5], the authors propose a method to ef-
ficiently store and compute explicit MPC solutions by
exploiting properties of the value function.

In this paper we compute suboptimal solutions to the
multiparametric quadratic problem, by relaxing the
first order Karush-Kuhn-Tucker (KKT) optimality con-
ditions (except primal feasibility, so that the computed
move is feasible) by some arbitrary degree ε, which
serves as a design knob for tuning the complexity of the
controller. We show that for ε → ∞ the complexity of
the controller is reduced to a linear control law (highly
suboptimal), while for ε → 0 the controller converges
to the explicit MPC controller [4] (fully optimal with
respect to the chosen performance index). We analyze
a general relaxation scheme where all KKT conditions
(except primal feasibility) may be relaxed, and a partic-
ular one where only dual feasibility is relaxed. For the
general perturbation scheme, we show how to compute
a posteriori the maximum error between the optimizer
and the suboptimizer. For the particular perturbation
scheme, we also provide a criterion for choosing ε so
that the distance between the exact and the approxi-
mate solution is bounded a priori.

2 Model Predictive Control

Consider the discrete-time linear time invariant system{
χ(t + 1) = Aχ(t) + Bu(t)

y(t) = Cχ(t) (1)

where χ(t) ∈ R
n, u(t) ∈ R

m, and y(t) ∈ R
p are the

state, input, and output vector respectively, and the
pair (A,B) is stabilizable. The linear MPC problem
associated with system (1) and based on a strictly con-
vex quadratic performance index, amounts to solve at
each t the quadratic program (QP)

min
U

1
2U ′QU + χ′(t)C′U + 1

2χ′(t)Y χ(t)

subj. to AU ≤ b + Fχ(t)
(2)

and set u(t) = u∗
t = I1U(t) as input to system (1),

where I1 , [Im 0 . . . 0]. See [4] for details. In (2)
Q = Q′ � 0, Q ∈ R

s×s, C ∈ R
s×n, Y ∈ R

n×n,
A ∈ R

q×s, b ∈ R
q, F ∈ R

q×n. As only the optimizer
U(t) is needed, the term involving Y is usually removed
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from (2). As (2) depends on the current state χ(t), it
is referred to as a multiparametric quadratic program
(mp-QP).

3 Multi-Parametric Quadratic Programming

Before proceeding further, in order to follow the stan-
dard notation of the mathematical programming liter-
ature, we denote by θ = χ(t) the vector of parameters,
θ ∈ R

n, and by x = U ∈ R
r the vector of optimization

variables. The mp-QP problem (2) is rewritten as

(QPθ) : min
{

θ′C′x +
1
2
x′Qx : Ax ≤ b + Fθ

}
(3)

Usually, polyhedra are defined as closed subsets of R
n.

In the study of problem (QPθ), it is convenient to adopt
the following relaxed definition.

Definition 1 A polyhedral set is the intersection of a
finite number of closed and/or open affine subspaces.
Equivalently, X ⊆ R

n is a polyhedral set if there exist
matrices F and G and vectors f and g such that

X = {x ∈ R
n : Fx ≤ f, Gx < g}. (4)

We assume that θ ∈ Θ, where Θ is a given polyhedral
set of R

n (i.e., a set of states, with respect to the MPC
problem described in the previous section). As Q � 0,
for every θ ∈ Θ, the corresponding quadratic program
either has a unique optimal solution or is infeasible. Let
Θf ⊆ Θ denote the set of parameter vectors such that
(QPθ) has a feasible solution, and let φ∗(θ) : Θf 7→ R

denote the value function, which associates with every
θ ∈ Θf the optimal value of (QPθ).

Multiparametric quadratic programming (mp-QP)
amounts to determining the optimal solution x∗(θ), and
the value function φ∗(θ) as explicit functions of θ, for
all θ ∈ Θf .

For any N ⊆ M , {1, 2, . . . , q} we denote by AN the
submatrix of A consisting of rows indexed by N . Anal-
ogously, if s ∈ R

q then we denote by sN the subvector
of s consisting of entries indexed by N .

Definition 2 Let x∗(θ) be the optimal solution of
(QPθ). The optimal partition of M associated with θ is
the partition (B(θ), N(θ)) where N(θ) is the index set
of active constraints at x∗(θ).

Definition 3 Let (B, N) = (B(θ0), N(θ0)) for some
θ0 ∈ Θf . We call critical region associated with (B, N)
the set of parameters CR0 = {θ ∈ Θf : N(θ) = N}.

The first-order KKT conditions for problem (QPθ) are
given by [1]:

Qx + Cθ + A′λ = 0, (5a)
λ′(Ax − b − Fθ) = 0, (5b)
λ ≥ 0, (5c)
Ax ≤ b + Fθ, (5d)
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where λ ∈ R
m is the vector of Lagrange multipliers.

Once an optimal partition (B, N) is fixed, the above
conditions may be written as follows:

Qx + Cθ + A′λ = 0, (6a)
ABx + sB = bB + FBθ, sB ≥ 0, (6b)
ANx + sN = bN + FNθ, sN = 0, (6c)
λB = 0, (6d)
λN ≥ 0. (6e)

where sB, sN are a partition of the vector of primal
slack variables s ∈ R

q. We solve (6a) for x,

x = −Q−1(A′
NλN + Cθ) (7)

and substitute the result into (6c), getting
−ANQ−1(A′

NλN + Cθ) − bN − FNθ = 0. As-
suming that AN is full row rank, (ANQ−1A′

N )−1 exists
and therefore we obtain

λN = −(ANQ−1A′
N )−1(bN + (FN + ANQ−1C)θ). (8)

Thus λ is an affine function of θ. We can substitute λN

from (8) into (7) to obtain

x = Q−1A′
N (ANQ−1A′

N )−1(bN + (FN + ANQ−1C)θ)
− Q−1Cθ

(9)
and note that x is also an affine function of θ. Rela-
tions (8) and (9) lead to the following result [4].

Theorem 1 Let Q be positive definite. Let (B, N) be
an optimal partition, and let CR0 be the corresponding
critical region. Assume that the rows of AN are lin-
early independent. Then, the optimal x∗ and the asso-
ciated vector of Lagrange multipliers λ∗ are the follow-
ing, uniquely defined, affine functions of θ over CR0:
x∗(θ) = Hxθ + kx, λ∗

N (θ) = Hλθ + kλ, λ∗
B(θ) = 0,

where Hλ = −(ANQ−1A′
N )−1(FN + ANQ−1C), kλ =

−(ANQ−1A′
N )−1bN , Hx = Q−1A′

NHλ − Q−1C, kx =
Q−1A′

Nkλ.

Theorem 1 characterizes the solution only locally in the
neighborhood of a specific θ0, as it does not provide the
construction of the set CR0 where this characteriza-
tion remains valid. On the other hand, this region can
be characterized immediately. By construction, condi-
tions (6a), (6c) and (6d) are satisfied as identities by
x∗(θ) and λ∗(θ). By substituting in (6b) and (6e) the
expressions of x∗(θ) and λ∗(θ) we get

(ABHx − FB)θ ≤ bB − ABkx, (10a)
− Hλθ ≤ kλ. (10b)

After removing the redundant inequalities from (10),
we obtain a compact representation of CR0. Obviously,
CR0 is a polyhedron in the θ-space, and represents the
largest set of θ ∈ Θf such that the combination of active
constraints at the minimizer remains unchanged.

3.1 Degeneracy
So far, we have assumed that the rows of AN are lin-
early independent. It can happen, however, that by
2



solving (QPθ) one determines a set of active constraints
for which this assumption is violated. For instance, this
happens when more than n constraints are active at the
optimizer x∗ ∈ R

r, i.e., in a case of primal degeneracy.
In this case the vector of Lagrange multipliers λ∗ might
not be uniquely defined, as the dual problem of (QPθ)
is not strictly convex (instead, dual degeneracy cannot
occur because we assumed Q � 0, which implies that
the minimizer is always unique). The problem of de-
generacy is addressed in [4], where the authors suggest
a simpler way to handle such a degenerate situation,
which consists of collecting r = rank(AN ) constraints
arbitrarily chosen, and proceed with the new reduced
set.

3.2 Continuity and Convexity Properties
The result stated below makes use of the following

definition.

Definition 4 A function z : X 7→ R
s, where X ⊆ R

n

is a polyhedral set, is piecewise affine (resp. piecewise
quadratic) if the following hold: (1) it is possible to
partition X into finitely many convex polyhedral regions
CRi, i = 1, . . . , p; (2) inside CRi, z is an affine (resp.
quadratic) function, for all i = 1, . . . , p.

Continuity of the value function φ∗(θ) and the solution
x∗(θ), can be shown as simple corollaries of the linear-
ity result of Theorem 1. This fact, together with the
convexity of the set of feasible parameters Θf ⊆ Θ,
and of the value function φ∗(θ), is proved in the next
theorem [4].

Theorem 2 Consider the multiparametric quadratic
program (QPθ) and let Q be positive definite, Θ convex.
Then the set of feasible parameters Θf ⊆ Θ is convex,
the optimizer x∗(θ) : Θf 7→ R

r is continuous and piece-
wise affine, and the value function φ∗(θ) : Θf 7→ R is
continuous, convex and piecewise quadratic.

4 Approximate mp-QP

Let the parameter vector θ0 ∈ Θf be arbitrarily cho-
sen1, and let (B, N) be the corresponding optimal parti-
tion. In order to obtain a suboptimal solution to (QPθ),
we relax the KKT conditions (6) as

−ε1 ≤ Qx + Cθ + A′λ ≤ ε1, (11a)
ABx + sB = bB + FBθ, sB ≥ 0, (11b)
ANx + sN = bN + FNθ, 0 ≤ sN ≤ ε2,(11c)

−ε4 ≤ λB ≤ ε4, λN ≥ −ε3. (11d)

where ε1 ∈ R
r, ε2, ε3 ∈ R

|N |, ε4 ∈ R
|B| are the re-

laxation vectors that determine the degree of approxi-
mation, εk ≥ 0 (componentwise) for k = 1, . . . , 4. Let
ε = (ε1, ε2, ε3, ε4).

The relaxed KKT conditions (11) define a polyhedron
in the (x, θ, λ, s)-space. The approximate critical region

1A vector θ0 ∈ Θf can be computed by finding a pair (x, θ)
satisfying Ax − Fθ ≤ b, θ ∈ Θ, e.g., via linear programming.,
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CRε, is defined as the projection onto the θ-space of
such a polyhedron.

Assume for the moment that CRε has been computed
(this issue will be discussed in Section 4.1). Then, the
rest of the space Rrest = Θ\CRε has to be explored and
new critical regions generated. An effective approach
for partitioning the rest of the space by polyhedral sets,
in the sense of Definition 1, was proposed in [4], and is
based on the following theorem:

Theorem 3 Let Y ⊆ R
p be a polyhedron, and let

CRε = {θ ∈ Y : Wθ ≤ r} be a nonempty polyhedral
subset of Y , where W ∈ R

q×p. Also let

Ri =
{

θ ∈ Y :
W{i}θ > r{i}
W{j}θ ≤ r{j}, ∀j < i

}
i = 1, . . . , q

where W{i} denotes the ith row of W and r{i} denotes
the ith entry of r. Finally, let Rrest = ∪q

i=1Ri. Then
(i) Rrest ∪ CRε = Y ; (ii) CRε ∩ Ri = ∅ for all i and
Ri ∩ Rj = ∅ for all i 6= j, i.e., {CRε, R1, . . . , Rm} is a
partition of Y .

After partitioning the rest of the space, we may proceed
recursively: we choose for each region Ri a new vector
θ0, compute the approximate critical region CRε, com-
pute the rest of the space Ri \ CRε, and so on.

4.1 Orthogonal Projections
Before proceeding further, it is useful to rewrite the

approximate KKT conditions (11a) in the form

Qx + Cθ + A′
NλN + A′

BλB + ν = 0, −ε1 ≤ ν ≤ ε1.
(12)

where ν ∈ R
r represents the violation of the first

KKT condition (5a). From (12) we obtain x =
−Q−1(A′

NλN + A′
BλB + Cθ + ν) and thus, assuming

that ANQ−1A′
N is invertible,

λN = Eνν + EssN + EλλB + Hλθ + kλ, (13)

where Es , (ANQ−1A′
N )−1, Eν , EsANQ−1 and

Eλ , −EνA′
B .

The approximated critical region CRε is now the pro-
jection onto the θ-space of the polyhedron in the
(ν, sN , λB , θ)-space described by the inequalities

− ε1 ≤ ν ≤ ε1, (14a)

− ABQ−1(A′
N (Eνν + EssN + EλλB + Hλθ + kλ)

+ A′
BλB + Cθ + ν) ≤ bB + FBθ, (14b)

0 ≤ sN ≤ ε2, (14c)
− ε4 ≤ λB ≤ ε4, Eνν + EssN + EλλB+

+ Hλθ + kλ ≥ −ε3. (14d)

Rather than projecting with respect to the whole set
of variables ν, sN , λB, we can restrict the amount of
relaxations, and accordingly distinguish among the fol-
lowing three cases:

A. Case ε2 = 0. This special case implies sN = 0,
and therefore amounts to fix the index set N of
3
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constraints which are active at the optimizer of
(QPθ). The projection is performed only with
respect to ν, λB .

B. Case ε2 = 0, ε4 = 0. This special case im-
plies λB = 0, sN = 0, and corresponds to avoid
the relaxation of the second KKT condition (5b).
Equivalently, it implies that the given optimal
partition (B, N) is maintained. The simplifica-
tion of the projection procedure is obvious: we
only need to project with respect to ν.

C. Case ε1 = 0, ε2 = 0, ε4 = 0. In this final special
case, we only relax the nonnegativity condition on
the Lagrange multipliers corresponding to non-
active constraints of (QPθ). Hence we need no
projection, as similarly to (10) for the exact case,
the approximated critical region reduces to

(ABHx − FB)θ ≤ bB − ABkx, (15a)
− Hλθ ≤ ε3 + kλ. (15b)

4.2 Asymptotic Properties
Since the feasibility of the optimizer is never relaxed,

the approximate critical region is always contained in
Θf . It is however of interest its asymptotic behavior.
For convenience, in the following result we use the ex-
tended notation CR(ε1, ε2, ε3, ε4) to denote the approxi-
mated critical region CRε, and denote by CR0 the exact
critical region, represented by (10).

Lemma 1 (see [2]) The following statements hold: (i)
limδ→0 CR(δ, δ, δ, δ) = CR0; (ii) if εk ≤ ε′k, for all k =
1, . . . , 4, then CR(ε1, ε2, ε3, ε4) ⊆ CR(ε′1, ε′2, ε′3, ε′4); (iii)
limδ→+∞ CR(δ, δ, ε3, ε4) = Θf for all ε3, ε4 ≥ 0; (iv)
limδ→+∞ CR(δ, 0, ε3, ε4) = ΘN for all ε3, ε4 ≥ 0, where
ΘN is the projection onto the θ-space of {(x, θ) : ABx−
FBθ ≤ bB, ANx − FNθ = bN}.

Note that point (iv) above applies to the special cases A
and B. In the special case C, if ε3 → +∞ then the limit
approximate critical region is simply obtained from con-
ditions (15) by removing (15b). The obtained set may
be strictly contained in ΘN .

4.3 Approximate Optimizer
So far, we have described a suboptimal method for par-
titioning the parameter set Θ, but contrarily to the ex-
act case described in Theorem 1, we have not specified
yet an approximate optimizer, which will be denoted by
x̂(θ). Similarly to the exact case, we wish to have x̂(θ)
to be a piecewise affine function of θ (defined over the
partition into approximate critical regions given by the
recursive method mentioned above), and such that x̂(θ)
is primal feasible for all θ ∈ CRε, for each approximate
critical region CRε. Moreover, we wish that x̂(θ) is as
close as possible to the exact solution x∗(θ).

For case C, it turns out that x̂(θ) = x∗(θ) is a good
choice, as it is primal feasible for all θ ∈ CRε, and
optimal for θ ∈ CR0 ⊆ CRε.

For cases A and B, primal feasibility should be instead
explicitly enforced. To this end, the following lemma
can be easily proved by convexity.

4

Lemma 2 Let V = {V1, . . . , V`} be a set of vectors of
R

n such that CRε ⊆ conv(V ). Let x̂(θ) be an affine
function of θ. Then, Ax̂(Vi) ≤ b + FVi for all Vi ∈ V
implies Ax̂(θ) ≤ b + Fθ for all θ ∈ CRε.

A natural choice for V is the set of vertices of CRε. Al-
though good packages exist for determining the set of
vertices of CRε (see [6]), for high dimensional θ-spaces
this might be computationally too expensive. In al-
ternative, the set V can be obtained by determining
a union of hyper-rectangles which outer approximates
CRε [3]. After a set V fulfilling Lemma 2 is chosen, we
compute the affine suboptimal solution x̂(θ) = Ĥθ + k̂,
where Ĥ and k̂ are obtained by solving the following
constrained quadratic least squares problem

min
H∈Rn×m, k∈Rn

∑̀
i=1

∥∥W [x∗(Vi) − (Hθi + k)]
∥∥2

(16a)

subj. to A(HVi + k) ≤ b + FVi, i = 1, 2, . . . , `,
(16b)

which provides the best fit to the optimal solutions
x∗(Vi) under the constraint of primal feasibility over
conv(V ) ⊇ CRε, where W is a weighting matrix. When
the approximate mp-QP is used to solve an MPC prob-
lem, a sensible choice for W is W =

[
Im 0
0 0

]
, as only the

first m components of the solution are used to build
the suboptimal explicit MPC law. Moreover, for the
approximate region which contains the origin, in (16)
we impose k = 0, so that asymptotic convergence to
the origin is allowed.

Remark 1 Apart from the special case of MPC prob-
lems with input constraints and soft output constraints,
unless some other particular hypotheses on A, b, F are
assumed, problem (16) may in general be infeasible,
especially for large ε. In this case, a possibility is to
iteratively reduce (e.g., halve) the entries of ε until a
feasible solution to (16) is found. 2

We finally remark that, contrarily to the exact case, the
overall piecewise affine function may not be continuous.

4.4 Approximate Value Function
Because of the property of primal feasibility given
by (16b) (Case A,B) or (15a) (Case C), the following
proposition follows immediately.

Proposition 1 Let φ̂(θ) = θ′C′x̂(θ) + 1
2 x̂(θ)′Qx̂(θ) be

the approximate value function, and φ∗(θ) the (exact)
value function of problem (QPθ). Then, φ̂(θ) ≥ φ(θ)
for all θ ∈ Θf , i.e., φ̂(θ) is an upper-bound for φ∗(θ).

In Lemma 1 we will give a bound on the gap between
φ̂(θ) and φ∗(θ), valid for Case C.

4.5 Suboptimality Figures
Once the suboptimal solution to the mp-QP problem
has been determined, it is interesting to compute (a
posteriori) the degree of suboptimality of the result-
ing approximate explicit MPC controller with respect
to the original MPC problem. In other words, the dif-
ference between the first m components of x̂(θ) and
x∗(θ). To this end, we define the absolute error eabs ,



maxθ∈Θf
‖I1(x̂(θ) − x∗(θ))‖∞ and the relative error

erel , maxθ∈Θf

(‖I1(x̂(θ) − x∗(θ))‖∞ /‖θ‖1

)
. In [2],

we prove constructively how to numerically compute
such errors via Mixed Integer Linear Programming
(MILP), and parametric-MILP.

4.6 A Priori Error Bounds
Analytic forms for expressing the error between the op-
timizer and a feasible vector can be found in [8], [9] for
linear complementarity problems. Although in princi-
ple these results may be applied to our mp-QP context,
they rely on the existence of constants whose determi-
nation is not constructively given. Therefore, in this
paper we follow a different route and develop a direct
approach to analyze the error between the optimal and
the suboptimal solution.

Consider the special case ε1 = 0, ε2 = 0, and ε4 = 0.
Our goal is to impose a priori a bound ρ on the absolute
error eabs , maxθ∈Θf

‖I1(x̂(θ) − x∗(θ))‖∞ ≤ ρ. For
convenience, we define ∆x(θ) , x̂(θ)−x∗(θ) and denote
by CRε3 the approximate critical region defined by (15).

Lemma 1 (see [2]) Let ε1 = 0, ε2 = 0, and ε4 = 0.
Then, for all θ ∈ CRε3 ,

φ̂(θ) − φ∗(θ) ≤ 1
2
ε′3ANQ−1A′

N ε3. (17)

Lemma 2 Let ε1 = 0, ε2 = 0, and ε4 = 0. Then, for
all θ ∈ CRε3 ,

∆x′(θ)Q∆x(θ) ≤ ε′3ANQ−1A′
N ε3. (18)

Proof: We have φ̂(θ) − φ∗(θ) = 1
2 x̂′(θ)Qx̂(θ) +

θ′C′x̂(θ) − 1
2x′∗(θ)Qx∗(θ) + θ′C′x∗(θ), and so

φ̂(θ)−φ∗(θ) = −1
2
∆x′(θ)Q∆x(θ)+∆x′(θ)(Qx̂(θ)+Cθ)

(19)
Define the function f(t) , 1

2 (x̂(θ) − t∆x(θ))′Q(x̂(θ) −
t∆x(θ)) + θ′C′(x̂(θ) − t∆x(θ)). Note that f(t) is the
objective value of (QPθ) associated with x̂(θ)− t∆x(θ),
which is a feasible solution for all t ∈ [0, 1], as x̂(θ) and
x∗(θ) are both feasible. Since f(1) = φ∗(θ), function
f(t) must be decreasing on a left neighbor of t = 1.
Hence, f ′(t) = ∆x′(θ)Q∆x(θ)t−∆x′(θ)(Qx̂(θ)+Cθ) ≤
0 if t = 1, and so

∆x′(θ)(Qx̂(θ) + Cθ) ≥ ∆x′(θ)Q∆x(θ). (20)

From (19) we then obtain

φ̂(θ) − φ∗(θ) ≥ 1
2
∆x′(θ)Q∆x(θ) (21)

which, in addition to (17), implies the thesis.

Lemma 3 (see [2]) Let z ∈ R
s, and consider the fol-

lowing optimization problem

V ∗ , maxz ‖I1z‖∞
s.t. z′Qz ≤ α

(22)

Then, V ∗ = max
{√

α[Q−1]ii : i = 1 . . . m
}
, where [·]ij

denotes the (i, j)th entry of [·].
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Theorem 4 (see [2]) Let ε1 = 0, ε2 = 0, ε4 = 0, and
assume that for each optimal partition (B, N) the corre-
sponding approximated critical region CRε3 is generated
by setting ε3 = ε(N)1, where 1 , [1 1 . . . 1]′, and

ε(N) =
ρ√

1′ANQ−1A′
N1

· min
i=1...m

1√
[Q−1]ii

(23)

Then eabs , maxθ∈Θf
‖I1(x̂(θ) − x∗(θ))‖∞ ≤ ρ.

5 Feasibility and Stability Issues

The two main issues regarding MPC policies are the
feasibility of the optimization problem (2) at each time
step t ≥ 0, and the stability of the resulting closed-loop
system.

As stressed in the previous section, primal feasibility is
maintained in the approximate mp-QP solution. When
the MPC setup of Section 2 is augmented by additional
constraints aimed at guaranteeing feasibility at each
time step t [10], such constraints will be also fulfilled
by the suboptimal MPC solution.

Concerning stability, the suboptimal controller pro-
posed in this paper does not enjoy directly intrinsic
nominal stability properties. Nevertheless, the closed-
loop system, composed by a linear plant in feedback
with the suboptimal explicit MPC controller, is a piece-
wise affine system, and therefore stability criteria based
for example on piecewise (or common) quadratic Lya-
punov functions [11] can be applied in the present con-
text.

6 An Example

Consider the second order non-minimum phase system
y(t) = 2(s − 1)/(s2 + 2s + 5)u(t), sample the dynam-
ics with T = 0.1 s, and obtain the state-space repre-
sentation x(t + 1) =

[
0.7969 −0.2247
0.1798 0.9767

]
x(t) + [ 0.1271

0.0132 ] u(t),
y(t) = [ 1.4142 −0.7071 ] x(t). To regulate the system to
the origin while fulfilling the input constraint −1 ≤
u(t) ≤ 1, we design an MPC controller based on the
optimization problem: min{ut,...,ut+5} x′

t+6|tPxt+6|t +∑5
k=0[x

′
t+k|txt+k|t +0.1u2

t+k] subject to −1 ≤ ut+k ≤ 1,
k = 0, . . . , 5, xt|t = x(t), where P solves the Lyapunov
equation P = A′PA+Q, Q = [ 1 0

0 1 ]. The mp-QP prob-
lem associated with the MPC law has the form (QPθ),
where Q, C, A, b, F are reported in [2]. The exact
explicit MPC controller is depicted in Figure 6.

In order to reduce the number of regions, we apply
the approximate mp-QP algorithm. By setting ε1 = 0,
ε2 = 0, ε4 = 0, and choosing a constant ε3, we get the
solutions shown in Figure 2 (for simplicity, from now on
we let all the components of εk to be equal, and denote
by εk the single component). Each approximate mp-
QP solution was computed in less than 15 s of cpu on
a Pentium III 650 MHz running Matlab 5.3. Note that
despite the relaxation of dual feasibility (ε3 > 0), the
region containing the origin does not change with re-
spect to the exact solution. This is justified by the fact
that, being N = ∅, the constraints defining the critical
region are all of the form Ax∗(θ) ≤ b+Fθ, and therefore
5
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Figure 1: Explicit MPC controller: exact polyhedral par-
tition of the state-space [4]
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(a) ε3 = 0.1, eabs = 0.1845
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(b) ε3 = 0.15, eabs =
0.2768
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(c) ε3 = 0.25, eabs =
0.2796
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(d) ε3 = 0.4, eabs = 0.2796

Figure 2: Approximate mp-QP solutions for different val-
ues of ε3, and ε1 = ε2 = ε4 = 0

are not affected by the relaxation. For all the subopti-
mal MPC laws, the closed-loop system is quadratically
stable, as it admits the common quadratic Lyapunov
function x′Lx [11], where L are reported in [2]. The
maximum absolute errors eabs are also reported in [2],
and the state where such an error is achieved is marked
by an asterisk in Figure 2.

By choosing ε3 adaptively in accordance with Theo-
rem 4, we obtain: eabs = 0.0514 and 59 regions for
ρ = 0.1, eabs = 0.1219 and 43 regions for ρ = 0.25,
eabs = 0.1951 and 27 regions for ρ = 0.5, eabs = 0.2796
and 15 regions for ρ = 1, eabs = 0.2796 and 15 re-
gions for ρ = 5. It is apparent that the a posteri-
ori error bound eabs is always smaller than the pre-
specified a priori error bound ρ. This is not surprising,
as the choice for ε3 suggested by Theorem 4 is based
on the conservative over-estimate (18). Moreover, for
θ ∈ CRε, the piecewise affine function x̂(θ)−x∗(θ) does
485
not span the whole ellipsoidal set described by the con-
straint in (22), so that further conservativeness is intro-
duced. The fact that the intrinsic polyhedral structure
of the partition may not allow to reach the a priori er-
ror bound ρ is further testified by the fact that as ρ
increases, eabs saturates at 0.2796. Results obtained by
varying all εi are reported in [2].

7 Conclusions

In this paper we addressed the problem of reducing
the number of polyhedral cells associated with explicit
solutions to MPC problems, by relaxing the KKT con-
ditions for optimality (except primal feasibility). The
degree of approximation is arbitrary and allows to trade
off between optimality and a comparatively small num-
ber of cells in the piecewise affine solution. We thank
Domenico Mignone for providing us the LMI-based rou-
tine for computing common quadratic and piecewise-
quadratic Lyapunov functions.
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