
Efficient On-Line Computation of

Constrained Optimal Control
†Francesco Borrelli, †Mato Baotic, ‡†Alberto Bemporad, †Manfred Morari

†Automatic Control Laboratory, ETH Zentrum - ETL, CH-8092 Zürich, Switzerland

tel: +41-1-632 4158, fax: +41-1-632 1211, borrelli,baotic,bemporad,morari@aut.ee.ethz.ch

‡Dip. Ingegneria dell’Informazione, Università di Siena, Via Roma 56, I-53100 Siena, Italy

tel: +39-0577-23 46 31, fax: +39-0577-23 46 32, bemporad@dii.unisi.it

http://control.ethz.ch/~hybrid

TuP11-2
Abstract

For discrete-time linear time-invariant systems with con-
straints on inputs and outputs, the constrained finite
time optimal controller can be obtained explicitly as a
piecewise affine function of the initial state via multi-
parametric programming [2, 1].
Exploiting the properties of the value function, we
present two algorithms that efficiently perform the on-
line evaluation of the explicit optimal control law both
in terms of storage demands and computational com-
plexity. The algorithms are particularly effective when
used for Model Predictive Control (MPC) where an open
loop constrained finite time optimal control problem has
to be solved at each sampling time.

1 Introduction

Recently in [2] and in [1] the authors have shown how to
compute the solution of the constrained finite time op-
timal control (CFTOC) problem as a explicit piecewise
affine function of the initial state. Such a function is
computed off-line by using a multiparametric program-
ming solver [2, 4], which divides the state space into
polyhedral regions, and for each region determines the
linear gain which produces the optimal control action.
This method reveals its effectiveness when applied to
Model Predictive Control (MPC) [8, 6]. MPC requires
to solve at each sampling time an open-loop CFTOC
problem. The optimal command signal is applied to the
process only during the following sampling interval. At
the next time step a new optimal control problem based
on new measurements of the state is solved over a shifted
horizon. Clearly the explicit solution reduces the on-line
computation of the MPC control law to the evaluation of
a piecewise affine function instead of the on-line solution
of a quadratic or linear program.
The only drawback of such explicit optimal control laws
is that the number of polyhedral regions could grow ex-
ponentially with the size of the optimal control problem.
In this paper we focus on efficient on-line methods for
the evaluation of this piecewise affine control law. The
simplest algorithm would require: (i) the storage of the
list of polyhedral regions and of the corresponding lin-
ear control laws, (ii) a sequential search through the list
of polyhedra for the i-th polyhedron that contains the
current state in order to implement the i-th control law.
118
By exploiting the properties of the value function, for
CFTOC based on LP and QP, we propose two new al-
gorithms that avoid storing the polyhedral regions. The
new algorithms significantly reduce the on-line storage
demands and computational complexity of the evalua-
tion of the explicit CFTOC control law and consequently
of the explicit MPC control law.

2 CFTOC, MPC and Their Explicit Solution

2.1 CFTOC problem formulation
Consider the linear time-invariant system{

xt+1 = Axt + But

yt = Cxt

(1)

subject to the constraints
ymin ≤ yt ≤ ymax, umin ≤ ut ≤ umax

1 (2)

at all time instants t ≥ 0.
In (1)–(2), xt ∈ R

n, ut ∈ R
m, and yt ∈ R

p are the
state, input, and output vector respectively, ymin ≤ ymax

(umin ≤ umax) are bounds on outputs (inputs), and the
pair (A, B) is stabilizable.
Let x(t) be the state at the generic time t and consider
the constrained finite time optimal control problem

J∗(x(t)) = min
U

‖xt+N‖P
p +

N−1∑
k=0

‖(x′
t+k)‖Q

p + ‖u′
t+k‖R

p

subj. to ymin ≤ yt+k ≤ ymax, k = 1, . . . , N

umin ≤ ut+k ≤ umax, k = 0, . . . , N − 1

xt+k+1 = Axt+k + But+k, k ≥ 0

(3)

In (3) we denote with U , [u′
t, . . . , u

′
t+N−1]

′ the op-
timization vector and with ‖x‖M

p the p-norm of the
vector x weighted with the matrix M , in particular
‖x‖M

p = x′Mx for p = 2, ‖x‖M
p = ‖Mx‖p for p = 1,∞.

In the following, we will assume that Q = Q′ � 0, R =
R′ � 0, P � 0, for p = 2, and that Q, R, P are full
column rank matrices for p = 1,∞.
Depending on the norm p used in the cost function, the
optimization problem (3) can be translated into an LP

1Although the form (2) is very common in practical implemen-

tations of CFTOC, the results of this paper also hold for the more

general mixed constraints Ext + Lut ≤ M arising, for example,

from constraints on the input rate ∆ut , ut − ut−1.
7

(p = 1 or p = +∞) or into a QP (p = 2). The optimizer
U∗(t) = {u∗

t , . . . , u
∗
t+N−1} of problem (3) is a function

of the initial state x(t). It can be computed by solving
a QP or an LP once x(t) is fixed or it can be computed
explicitly for all x(t) within a given range of values as
explained in the following.

2.2 MPC formulation
The solution U∗(t) = {u∗

t , . . . , u
∗
t+N−1} of problem (3)

is an open loop optimal control trajectory over a finite
horizon. MPC uses it together with a receding horizon
strategy to obtain an infinite horizon feedback control
law.
Consider the problem of regulating to the origin the
discrete-time linear time-invariant system (1) while ful-
filling the constraints (2). MPC solves such a con-
strained regulation problem in the following way. As-
sume that a full measurement of the state x(t) is avail-
able at the current time t. Then, the CFTOC prob-
lem (3) is solved at each time t for t ≥ 0.
Let U∗(t) = {u∗

t , . . . , u
∗
t+N−1} be the optimal solution

of (3). Then at time t

u(t) = u∗
t (4)

is applied as input to system (1).
The two main issues regarding this policy are the fea-
sibility of the optimization problem (3) for all t ≥ 0
and the stability of the resulting closed-loop system.
We will assume that the matrices Q, R, P , the hori-
zon length N and the terminal constraints in (3) have
been chosen to guarantee the stability and the feasibil-
ity of MPC control law (3)-(4). For a detailed discussion
see, e.g. [2, 1, 6].

2.3 Explicit Solution Based on LP
Consider the case of p = 1 or p = +∞ in problem (3).
Is well known (e.g. [1]) that by introducing the vec-
tor z , {εx

1 , . . . , εx
N , εu

1 , . . . , εu
N , ut, . . . , ut+N−1} ∈ R

s,
s , (m + 2)N , εx

k ≥ ‖Qxt+k‖∞, εx
N ≥ ‖Pxt+N‖∞,

εu
k ≥ ‖Rut+k‖∞, and substituting xt+k = Akx(t) +∑k−1

j=0 AjBut+k−1−j in (3), the optimization problem (3)
can be rewritten in the form

J∗(x) = min
z

fT z

subj. to Gz ≤ S + Fx
(5)

where x = x(t), and the matrices f ∈ R
s, G ∈ R

q×s,
F ∈ R

q×n, S ∈ R
q are easily obtained from Q, R, P

and (3), as explained in [1].
Because the problem depends on x = x(t) the imple-
mentation of MPC can be performed in two different
ways: solving the LP (5) on-line at each time step or by
solving problem (5) off-line for all x within a given range
of values, i.e., by considering (5) as a multi-parametric
Linear Program (mp-LP).
The mp-LP problem consists of computing the optimizer
z∗(x) and the value function J∗(x) for all possible vec-
tors x in a given compact set X . The solution of mp-LP
problems can be approached as proposed in [4] or [5].
118
Once the multi-parametric problem (5) has been solved
off-line for a polyhedral set X ⊆ R

n of states, the
CFTOC explicit solution z∗(x) of (5) is available as a
piecewise affine function of x, and the model predictive
controller (3)-(4) is also available explicitly, as the opti-
mal input u(t) consists simply of m components of z∗(x)

u(t) = [0 . . . 0 Im 0 . . . 0]z∗(x). (6)

In [5] the following results about the properties of the
solution are proved:
Theorem 1 Consider the multi-parametric linear pro-
gram (5). Then the set of feasible parameters Xf is con-
vex, the optimizer (if unique) z∗(x) : Xf 7→ R

s is con-
tinuous and piecewise affine, and the optimal solution
J∗(x) : Xf 7→ R is continuous, convex and piecewise
linear.

Corollary 1 The MPC control law (6) u(t) = f(x),
f : R

n 7→ R
m, defined by the optimization problem (3)

and (4) is continuous and piecewise affine.

2.4 Explicit Solution Based on QP
Consider the case p = 2 in problem (3). By substitut-
ing xt+k|t = Akx(t) +

∑k−1
j=0 AjBut+k−1−j in (3), the

optimization problem (3) can be rewritten as the QP

J∗(x) = 1
2x′Y x+ min

U

1
2
U ′HU + x′FU

subj. to GU ≤ W + Ex
(7)

where x = x(t), the column vector U ,
[u′

t, . . . , u
′
t+N−1]

′ ∈ R
s, s , mN , is the optimization

vector, H = H ′ � 0, and H , F , Y , G, W , E are easily
obtained from Q, R, P and (3). As only the optimizer
U is needed, the term involving Y is usually removed
from (7).
As in the 1-norm or ∞-norm case, because the problem
depends on x(t), the implementation of MPC can be per-
formed in two different ways: solving the QP (7) on-line
at each time step or, as recently proposed in [2], by solv-
ing problem (7) off-line for all x(t) within a given range
of values, i.e., by considering (7) as a multi-parametric
Quadratic Program (mp-QP).
The mp-QP problem consists of computing the opti-
mizer U∗(x) and the value function J∗(x) for all possible
vectors x in a given set X . Once the multi-parametric
problem (7) has been solved off line, i.e., the CFTOC
solution U∗(x) of (7) has been found, the explicit MPC
law is simply

u(t) = [Im 0 . . . 0]U∗(x). (8)

In [2] the authors prove the following results about the
properties of the solution

Theorem 2 Consider the multi-parametric quadratic
program (7) and let H � 0. Then the set of feasible pa-
rameters Xf is convex, the optimizer U∗(x) : Xf 7→ R

s

is continuous and piecewise affine, and the optimal so-
lution J∗(x) : Xf 7→ R is continuous, convex and piece-
wise quadratic.
8

Corollary 2 The MPC control law (8) u(t) = f(x),
f : R

n 7→ R
m, defined by the optimization problem (3)

and (4) is continuous and piecewise affine.

Corollary 2 states that by using an mp-QP solver the
computational effort for MPC is reduced to a piecewise
affine function evaluation. In the next section we pro-
pose a method to efficiently evaluate such a piecewise
affine function without storing the polyhedral regions of
the feasible domain Xf .

3 Efficient On-Line Algorithms

Let the explicit optimal control law be:

u∗(x) = Fix + Gi, ∀x ∈ Pi, i = 1, . . . , Nr (9)

where Fi ∈ R
m×n, Gi ∈ R

m, and Pi ={
x ∈ R

n | Hix ≤ Ki, Hi ∈ R
Ni

c×n, Ki ∈ R
Ni

c

}
, i =

1, . . . , Nr is a polyhedral partition of Xf . In the fol-
lowing Hj

i denotes the j-row of the matrix Hi. The on-
line implementation of the control law (9) can be simply
executed according to the following steps:

Algorithm 1

1. Measure the current state x
2. Search for the j-th polyhedron that
contains x, i.e. Hjx ≤ Kj

3. Implement the j-th control law, i.e.
u∗(x) = Fj(x) + Gj

In Algorithm 1, step (2.) is critical and it is the only
step whose efficiency can be improved. A trivial im-
plementation of step (2.) would consist of searching for
the polyhedral region that contains the state x as in the
following algorithm

Algorithm 2

1. i = 0, notfound=1;
2. while i ≤ Nr and notfound
2.1. j = 0, feasible=1
2.2. while j ≤ N i

c and feasible
2.2.1. if Hj

i x > Kj
i then feasible=0

2.2.2. else j = j + 1
2.3. end
2.4. if feasible=1 then notfound=0

3. end

Algorithm 2 requires the storage of all polyhedra Pi, i.e.,
(n+1)NC real numbers and in the worst case (the state
is contained in the last region of the list) it will give a
solution after nNC multiplications, (n−1)NC sums and
NC comparisons, where NC ,

∑Nr

i=1 N i
c .

By using the properties of the value function we show
how Algorithm 2 can be replaced by a more efficient
algorithm that avoids storing the polyhedral regions
Pi, i = 1, . . . , Nr and is computationally faster.
In the following we need to distinguish between optimal
control based on LP and optimal control based on QP.
118
0 1 2 3 4 5 6 7
0

1

2

3

4

5

x

P
1

f
x(
) f

1
()x

f
2
()x

f
3
()x

f
4
()x

P
2

P
3

P
4

Figure 1: Example for Algorithm 3 in one-dimensional

case. For a given point x ∈ P3 (x = 5) we have

f3(x) = max(f1(x), f2(x), f3(x), f4(x)).

3.1 Efficient Implementation - LP case
From Theorem 1, the value function J∗(x) correspond-
ing to the explicit solution of CFTOC (3) based on LP
is convex and piecewise affine:

J∗(x) = T ′
ix + Vi, ∀x ∈ Pi, i = 1, . . . , Nr. (10)

The value function can be used to avoid storing the poly-
hedral regions Pi. From the equivalence of the repre-
sentations of piecewise linear convex functions [9], the
function J∗(x) in equation (10) can be represented al-
ternatively as

J∗(x) = max {T ′
ix + Vi, i = 1, . . . , N} for x ∈ Xf (11)

Exploiting the equivalence of (10) and (11), the poly-
hedral region Pj containing the state x can simply be
identified by searching for the maximum among the list
{T ′

ix + Vi, }Nr

i=1:

x ∈ Pj ⇔ T ′
jx + Vj = max {T ′

ix + Vi, i = 1, . . . , Nr} .
(12)

Therefore, instead of searching for the polyhedron j that
contains the point x, we store the expression of the
piecewise-linear value function and identify the region
j by searching for the maximum in the list of numbers
composed of the single affine function T ′

ix+Vi evaluated
at x (see Figure 1).
Algorithm 2 is then substituted by the following:
Algorithm 3

1. Compute the vector n ∈ R
Nr, where ni =

T ′
ix + Vi

2. Find j such that nj = max(n)

Algorithm 3 does not require the storage of any poly-
hedra Pi, but it only requires the storage of the value
function, i.e., (n + 1)Nr real numbers, and it will give a
solution after nNr multiplications, (n− 1)Nr sums, and
Nr − 1 comparisons. In Table 1 we compare the com-
plexity of Algorithm 2 against Algorithm 3 in terms of
storage demand and number of flops.

Table 1: Complexity of Algorithm 2 and Algorithm 3
Algorithm 2 Algorithm 3

Storage (real numbers) (n + 1)NC (n + 1)Nr

Flops (worst case) 2nNC 2nNr
9

3.2 Efficient Implementation - QP case
Consider the explicit solution of CFTOC (3) based on
QP. From Theorem 2, the value function J∗(x) is con-
vex and piecewise quadratic. The simple Algorithm 3
described in the previous subsection cannot be applied.
Therefore in a new algorithm is proposed.

Definition 1 Two polyhedra Pi, Pj are called neighbor-
ing polyhedra if they share a facet.

Let {Pi}Nr

i=1 be the polyhedral partition ob-
tained by solving the mp-QP (7) and denote by
Ci = {j | Pj is a neighbor of Pi, j = 1, . . . , Nr, j 6= i}
the list of all neighboring polyhedra of Pi.
Theorem 3 Let f(x) be a continuous real-valued PWA
function

f(x) = {fi(x) = Aix + Bi | x ∈ Pi, i = 1, . . . , Nr} , (13)

with
Ai 6= Aj , ∀j ∈ Ci, i = 1, . . . , Nr. (14)

Define the list Oi(x) =
{
oi

j(x) | j ∈ Ci

}
, where

oi
j(x) =

{
+1 fi(x) > fj(x)
−1 fi(x) < fj(x)

(15)

Then Oi(x) has the following properties:

(i) Oi(x) = Si = const, ∀x ∈ Pi, i = 1, . . . , Nr.

(ii) Oi(x) 6= Si, ∀x /∈ Pi, i = 1, . . . , Nr.

Proof: Let F = Pi ∩ Pj be the common facet of Pi

and Pj . Define the linear function

gi
j(x) = fi(x) − fj(x). (16)

From the continuity of f(x) it follows that gi
j(x) =

0, ∀x ∈ F . From convexity of Pi and Pj it follows that
gi

j(x) is the separating hyperplane between Pi and Pj.

(i) Because gi
j(x) = 0 is a separating hyperplane, the

function gi
j(x) does not change its sign for all x ∈ Pi,

i.e., oi
j(x) = si

j , ∀x ∈ Pi with si
j = +1 or si

j = −1. The
same reasoning can be applied to all neighbors of Pi to
get Si = {si

j , ∀j ∈ Ci, x ∈ Pi}. (ii) ∀x /∈ Pi, ∃j ∈ Ci

such that Hj
i x > Kj

i . Since gi
j(x) = 0 is a separating

hyperplane, oi
j(x) = −si

j.
Equivalently, Theorem 3 states the following property

x ∈ Pi ⇔ Oi(x) = Si (17)
where Si uniquely characterizes Pi. Therefore to check
on-line if the polyhedral region i contains the state x
it is sufficient to compute the binary vector Oi(x) and
compare it with Si. List Si = {si

j | j ∈ Ci} is calculated
off-line, by comparing the values of fi(x) and fj(x) for
j ∈ Ci in a point x belonging to Pi, for instance, the
Chebychev center of Pi.
Figure 2 illustrates the procedure with 4 regions. The
list of neighboring regions Ci and the list Si can be
constructed by simply looking at the figure: C1 =
{2}, C2 = {1, 3}, C3 = {2, 4}, C4 = {3}, S1 =
{−1}, S2 = {−1, 1}, S3 = {1,−1}, S4 = {−1}. The
point x = 4 is in region 2 and we have O2(x) =
{−1, 1} = S2, while O3(x) = {−1,−1} 6= S3, O1(x) =
119
0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

x

f
x(
)

f
1
()x

f
2
()x

f
3
()x

f
4
()x

P
1

P
2

P
3

P
4

Figure 2: Example for Algorithm 4 in one-dimension.

{1} 6= S1, O4(x) = {1} 6= S4. Obviously, if we are in the
wrong region, the checking procedure gives us informa-
tion about the right search direction(s). The solution
can be found by searching in the direction where con-
straint(s) are violated, i.e., we should check the neigh-
boring region Pj for which oi

j(x) 6= si
j .

The overall procedure is composed of two parts:
1. (off-line) Construction of the PWA function f(x)

in (13) satisfying (14) and computation of the list
of neighbors Ci and the list Si,

2. (on-line) Execution of the following algorithm

Algorithm 4
1. i = 1, notfound=1;
2. while notfound
2.1. compute Oi(x)
2.2. if Oi(x) = Si then notfound=0
2.3. else i = q, where oi

q(x) 6= si
q, q ∈ Ci

3. end

Algorithm 4 does not require the storage of the poly-
hedra Pi, but it only requires the storage of one linear
function fi(x) per polyhedron, i.e., (n + 1)Nr real num-
bers and the list of neighbors Ci which requires NC in-
tegers. In the worst case Algorithm 4 terminates after
nNr multiplications, (n − 1)Nr sums and NC compar-
isons. In Table 2 we compare the complexity of Algo-
rithm 4 against Algorithm 2 in terms of storage demand
and number of flops.
Remark 1 Note that the computation of Oi(x) in Al-
gorithm 4 requires the evaluation of N i

c linear functions,
but the overall computation never exceeds Nr linear
function evaluations. Consequently, Algorithm 4 will
outperform Algorithm 2, since typically NC � Nr.

Table 2: Complexity of Algorithm 2 and Algorithm 4
Algorithm 2 Algorithm 4

Storage (real n.) (n + 1)NC (n + 1)Nr

Flops (worst case) 2nNC (2n − 1)Nr + NC

The PWA function f(x) in (13) satisfying (14) will be re-
ferred to as PWA descriptor function. In the rest of the
section we propose a way to construct a PWA descriptor
function from the PWQ value function. In the following
we will assume that the mp-QP (7) is not degenerate
(refer to [7] for a detailed discussion on the degeneracy
of mp-QP).
0

-3 -2 -1 0 1 2 3
0

1

2

3

4

5

Pi
Pj

q x()i

q x()j

-3 -2 -1 0 1 2 3
0

1

2

3

4

5

Pi
Pj

q x()i

q x()j

(a) (b)

Figure 3: Two convex piecewise quadratic functions: (a)

not differentiable one, (b) differentiable one.

Let J∗(x) be the convex and piecewise quadratic
(CPWQ) value function corresponding to the explicit
solution of CFTOC (3) based on QP:

J∗(x) =
{

qi(x) , x′Qix + T ′
i x + Vi, for x ∈ Pi, i = 1, . . . , Nr

}
,

(18)
We will prove that the J∗(x) is a C(1) function and we
will obtain a PWA descriptor function by differentiating
it. Before going further we recall the following result [2,
7]:

Theorem 4 Consider the set of active constraints at
the optimum of QP (7) and assume there are no degen-
eracies:

A∗(x) = {i | GiU∗(x) = W i + Six}, (19)

then

1. A∗(x) is constant ∀x ∈ Pi, i = 1, . . . , Nr, i.e.
A∗(x) , Ai ∀x ∈ Pi

2. If Pi and Pj are neighboring polyhedra then Ai ⊂
Aj or Aj ⊂ Ai.

Theorem 5 Consider the value function J∗(x) in (18).
Let Pi, Pj be two neighboring polyhedra then

Qi − Qj � 0 or Qi − Qj � 0 and Qi 6= Qj (20)

and
Qi − Qj � 0 iff Ai ⊂ Aj (21)

Proof: The proof is given in [3].
We recall a property of convex piecewise quadratic func-
tions [9]:

Proposition 1 Consider the value function J∗(x)
in (18) satisfying (20) and its quadratic expression qi(x)
and qj(x) on two neighboring polyhedra Pi, Pj with com-
mon boundary a′x = b. Then there exist constants
γ ∈ R/{0} and b̄ such that

qi(x) = qj(x) + (a′x − b)(γa′x − b̄) (22)
Equation (22) states that the neighboring expressions
qi(x) and qj(x) of a CPWQ function satisfying (20) ei-
ther intersect on two parallel hyperplanes a′x = b and
γa′x = b̄ if b̄ 6= γb (see Figure 3(a)), or they are tangent
in one hyperplane a′x = b if b̄ = γb (see Figure 3(b)).

Theorem 6 Under the hypothesis of Theorem 4, the
value function J∗(x) in (18) is C(1).
119
Proof: We will prove that b̄ and b in (22) sat-
isfy b̄ = γb by contradiction. Suppose there exists
i ∈ {1, . . . , Nr} and j ∈ Ci such that b̄ 6= γb. With-
out loss of generality we assume that (i) Qi − Qj � 0
and (ii) Pi is on the side a′x ≤ b of the common bound-
ary. Let F̄ij be the common facet between Pi and Pj

and Fij its interior.
From (i) and from (22), γ < 0 and γ = 0 iff Qi−Qj = 0.
Take x0 ∈ Fij , for sufficiently small ε ≥ 0, the point
x = x0 − aε belongs to Pi.
Let J∗(ε) = J∗(x0 − aε) then

qi(ε) = qj(ε) + (a′aε)(γa′aε − (b̄ − γb)) (23)

From convexity of J∗(ε), J∗−(ε) ≤ J∗+(ε) where J∗−(ε)
and J∗+(ε) are the left and right derivatives of J∗(ε).
This implies q′j(ε) ≤ q′i(ε) where q′j(ε) and q′i(ε) are the
derivatives of qj(ε) and qi(ε). From (23) the latter is
true if and only if (a′a)(b̄ − γb)) ≤ 2 ∗ γ(a′a)2ε, that
implies b̄ < γb since γ < 0 and ε > 0.

From (23) qi(ε) < qj(ε) for all ε ∈ (0, b̄−γb
γa′a).

Thus there exists x ∈ Pi with qj(x) < qi(x). This is a
contradiction since from Theorem 4, Ai ⊂ Aj .
Note that in case of degeneracy the value function J∗(x)
in (18) is not C(1), counterexamples are given in [5].
Combining Theorem 6 and (22), we obtain

qi(x) = qj(x) + γ(a′x − b)2 (24)

Theorem 7 Consider the value function J∗(x) in (18).
Let m(x) , ∇J∗(x), be the gradient vector of J∗(x),
i.e., m(x) = {mi(x) , ∇qi(x) = 2Qix+Ti | x ∈ Pi, i =
1, . . . , Nr}, where m : x ∈ R

n 7→ m(x) ∈ R
n satisfies

the following properties

(i) m(x) is continuous;
(ii) ∃w ∈ R

n such that for each i and j with Pi,
Pj neighboring polyhedra gi

j(x) , w′(mi(x) −
mj(x)) 6= 0 for any x which is not an element
of their common hyperplane.

Proof: (i) Follows easily from Theorem 6. (ii) Con-
sider two neighboring polyhedra Pi, Pj and their com-
mon hyperplane a′x = b, a 6= 0. From equation (24) we
get

gi
j(x) = 2γw′a(a′x − b). (25)

Since γ 6= 0, a 6= 0, and a′x − b 6= 0 it follows that
gi

j(x) = 0 if and only if w′a = 0 (i.e., vectors w and
a are orthogonal). In order to have gi

j(x) 6= 0 for all
neighboring polyhedra Pi and Pj, the vector w must not
be parallel to any of the common hyperplanes. As the
number of common hyperplanes defining the polyhedral
partition is finite, such a vector w exists and can be
easily computed.
It follows from Theorem 7 that an appropriate PWA
descriptor function f(x) can be calculated from the gra-
dient of the value function. It is sufficient to find off-line
1

a vector w that is not parallel to any hyperplane of the
polyhedral partition. Then fi(x) = Aix + Bi, where
Ai = 2w′Qi and Bi = w′Ti.
Remark 2 Note that Algorithm 4 applies also to the
LP case by using the value function J∗(x) in (10) as
descriptor function. Algorithm 4 is less simple than Al-
gorithm 3 but it requires the evaluation of Nr linear
functions only in the worst case.

4 Example

We compare the performance of Algorithm 2, Algo-
rithm 3 and Algorithm 4 on an CFTOC problem for
the linear system

y(t) =
1
s4

u(t), (26)

or its equivalent discrete-time (Ts = 1) state-space rep-
resentation

x(t + 1) =




4 −1.5 0.5 −0.25

4 0 0 0

0 2 0 0

0 0 0.5 0


 x(t) +




0.5

0

0

0


 u(t)

y(t) =
[

0.083 0.22 0.11 0.02
]

x(t)

(27)
subject to the input constraint

−1 ≤ u(k) ≤ 1 (28)
and the output constraint

−10 ≤ y(k) ≤ 10 (29)

4.1 Explicit MPC based on LP
To regulate (27), we design an MPC controller based
on the optimization problem (3) where p = ∞, N = 2,
Q = diag{[5 10 10 10]}, R = 0.8, P = 0. The explicit
solution of the mp-LP problem consist of a polyhedral
partition of the state-space consist in 136 regions. In Ta-
ble 3 we report the comparison between the complexity
of Algorithm 2 and Algorithm 3 for this example.
The average on-line MPC computation for a set of 1000
random points in the state space is 2259 flops (Algo-
rithm 2), and 1088 flops (Algorithm 3). The implicit
solution with Matlab Optimization Toolbox LP solver
takes 25459 flops on average.

Table 3: Complexity comparison of Algorithm 2 and Algo-

rithm 3 for example in Section 4.1

Algorithm 2 Algorithm 3

Storage (real numbers) 5690 680

Flops (worst case) 9104 1088

4.2 Explicit MPC based on QP
To regulate (27), we design an MPC controller based
on the optimization problem (3) where p = 2, N = 7,
Q = diag{[1 1 1 1]}, R = 0.01, P = 0. The explicit solu-
tion of the mp-QP problem consists of a polyhedral par-
tition of the state-space consist in 213 regions. For this
example the choice of w = [1 0 0 0]′ is satisfactory. In
Table 4 we report the comparison between Algorithm 2
and Algorithm 4 for this example.
11
The average on-line MPC computation for a set of 1000
random points in the state space is 2114 flops (Algo-
rithm 2), and 175 flops (Algorithm 4). The implicit
solution with Matlab’s QP solver takes 25221 flops on
average.
Table 4: Complexity comparison of Algorithm 2 and Algo-

rithm 4 for example in Section 4.2

Algorithm 2 Algorithm 4

Storage (real numbers) 9740 1065

Flops (worst case) 15584 3439

5 Conclusion

By exploiting the properties of the value function of
MPC, we presented two algorithms that significantly im-
prove the efficiency of the on-line explicit MPC (both
based on LP and QP) in terms of storage demands and
computational complexity. The following improvements
are achieved

1. There is no need to store the polyhedral partition
of the state space for computing the optimal con-
trol law.

2. In the worst case, the optimal control law is com-
puted after the evaluation of one linear function
per polyhedron.

References

[1] A. Bemporad, F. Borrelli, and M. Morari. Explicit solution

of constrained 1/∞-norm model predictive control. In Proc. 39th

IEEE Conf. on Decision and Control, December 2000.

[2] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos.

The explicit linear quadratic regulator for constrained systems.

Automatica, to appear.

[3] F. Borrelli, M. Baotic, A. Bemporad, and M. Morari.

Efficient on-line computation of explicit model predictive con-

trol. Technical Report AUT01-15, Automatic Control Laboratory,

ETH Zurich, Switzerland, August 2001.

[4] F. Borrelli, A. Bemporad, and M. Morari. A geometric

algorithm for multi-parametric linear programming. Technical

Report AUT00-06, Automatic Control Laboratory, ETH Zurich,

Switzerland, February 2000.

[5] T. Gal. Postoptimal Analyses, Parametric Programming,

and Related Topics. de Gruyter, Berlin, 2nd edition, 1995.

[6] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M.

Scokaert. Constrained model predictive control: Stability and

optimality. Automatica, 36(6):789–814, June 2000.

[7] P. Tøndel, T.A. Johansen, and A. Bemporad. An algorithm

for multi-parametric quadratic programming and explicit MPC

solutions. In Proc. 40th IEEE Conf. on Decision and Control,

December 2001.

[8] S.J. Qin and T.A. Badgwell. An overview of industrial

model predictive control technology. In Chemical Process Control

- V, volume 93, no. 316, pages 232–256. AIChE Symposium Series

- American Institute of Chemical Engineers, 1997.

[9] M. Schechter. Polyhedral functions and multiparametric

linear programming. Journal of Optimization Theory and Appli-

cations, 53(2):269–280, May 1987.
92

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	header1:
	footer:

