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Abstract

Explicit solutions to constrained linear MPC problems c
be obtained by solving multi-parametric quadratic progra
(mp-QP) where the parameters are the components of
state vector. We study the properties of the polyhedral pa
tion of the state-space induced by the multiparametric pie
wise linear solution and propose a new mp-QP solver. Co
pared to existing algorithms, our approach adopts a dif
ent exploration strategy for subdividing the parameter spa
avoiding unnecessary partitioning and QP problem solvi
with a significant improvement of efficiency.

1 Introduction

Our motivation for investigating multi-parametric quadra
programming (mp-QP) comes from linear Model Predicti
Control (MPC). This refers to a class of control algorithm
that compute a manipulated variable trajectory from a l
ear process model to minimize a quadratic performance
dex subject to linear constraints on a prediction horizon. T
first control input is then applied to the process. At the n
sample, measurements are used to update the optimiz
problem, and the optimization is repeated. In this way, t
becomes a closed-loop approach. There has been some
tation to which processes MPC could be used on, due to
computationally expensive on-line optimization which w
required. There has recently been derived explicit soluti
to the constrained MPC problem, which could increase
area of use for this kind of controllers. Independent wo
by [1], [2], [3] and [4] has reported how a piecewise line
(PWL) solution can be computed off-line, while the on-lin
effort is limited to evaluate this PWL function. In particu
lar, in [1] and [2] such a PWL function is obtained by trea
ing the MPC optimization problem as a parametric progra
Parametric programming is a term for solving an optimiz
tion problem for a range of parameter values. One can
tinguish between parametric programs, in which only o
parameter is considered, and multi-parametric programs
which a vector of parameters is considered. The algorit
reported in [1] is the only mp-QP algorithm known to the a
thors for solving general linear MPC problems, while sing
parameter parametric QP is treated in [5]. Multi-parame
LP (mp-LP) is treated in [6] and [7], mp-LP in connectio
with MPC based on linear programming is investigated
[8], and multi-parametric mixed-integer linear programmi
[9] is used in [10] for obtaining explicit solutions to hy
brid MPC. The problem of reducing the complexity of th
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PWL solution to linear quadratic MPC problems is addresse
in [11, 12], and efficient on-line computation schemes of ex
plicit MPC controllers are proposed in [13]. This paper ex
tends the theoretical results of [1], by analyzing several pro
erties of the geometry of the polyhedral partition and its rel
tion to the combination of active constraints at the optimu
of the quadratic program. Based on these results, we deriv
new exploration strategy for subdividing the parameter spac
which avoids (i) unnecessary partitioning, (ii) the solution t
LP problems for determining an interior point in each new
region of the parameter space, and (iii) the solution to the Q
problem for such an interior point. As a consequence, the
is a significant improvement of efficiency with respect to th
algorithm of [1].

2 From Linear MPC to an mp-QP Problem

The main aspects of formulating a linear MPC problem as
multi-parametric QP will, for convenience, be repeated her
See [1] for further details. Consider the linear system

x(t + 1) = Ax(t) + Bu(t) (1)
y(t) = Cx(t)

wherex(t) ∈ R
n is the state variable,u(t) ∈ R

m is the input
variable,A ∈ R

n×n, B ∈ R
n×m and(A, B) is a control-

lable pair. For the currentx(t), MPC solves the optimization
problem

minU {J(U, x(t)) = xT
t+N |tPxt+N |t

+
∑N−1

k=0 xT
t+k|tQxt+k|t + uT

t+kRut+k}
s.t. ymin ≤ yt+k|t ≤ ymax, k = 1, ..., N

umin ≤ ut+k ≤ umax, k = 0, ..., M − 1
ut+k = Kxt+k|t, M ≤ k ≤ N − 1
xt|t = x(t)
xt+k+1|t = Axt+k|t + But+k, k ≥ 0
yt+k|t = Cxt+k|t, k ≥ 0

(2)

with respect toU , {ut, ..., ut+M−1}, whereR = R′ � 0,
Q = Q′ � 0, P = P ′ � 0. When the final cost matrixP and
gain K are calculated from the algebraic Riccati equatio
under the assumption that the constraints are not active
k ≥ N , (2) exactly solve the constrained (infinite-horizon
LQR problem for (1) with weightsQ, R (see also [14], [15]
and [16]). This and related problems can by some algebra
manipulation be reformulated as

Vz(x(t)) = min
z

1
2
zT Hz (3)

s.t. Gz ≤W + Sx(t) (4)

wherez , U + H−1FT x(t), U =
[
uT

t , ..., uT
t+M−1

]T
, and

x(t) is the current state, which can be treated as a vector
9
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parameters. Note thatH � 0 sinceR � 0. The number of
inequalities is denoted byq and the number of free variables
is nz = m · N. Thenz ∈ R

nz , H ∈ R
nz×nz , G ∈ R

q×nz ,
W ∈ R

q×1, S ∈ R
q×n, F ∈ R

n×q. The problem we con-
sider here is to find the solution of the optimization proble
(3)–(4) in an explicit formz∗ = z∗ (x(t)). Bemporad et. al.
[1] showed that the solutionz∗(x(t)) (andU∗(x(t))) is a con-
tinuous PWL function1 defined over a polyhedral partition o
the parameter space, andVz(x(t)) is a convex (and therefore
continuous) piecewise quadratic function.

3 Background on mp-QP

As shown in [1], the mp-QP problem (3)-(4) can be solve
by applying the Karush-Kuhn-Tucker (KKT) conditions

Hz + GT λ = 0, λ ∈ R
q, (5)

λi

(
Giz −W i − Six

)
= 0, i = 1, ..., q, (6)

λ ≥ 0, (7)
Gz −W − Sx ≤ 0. (8)

For ease of notation we writex instead ofx(t). Superscript
i on some matrix denotes theith row. SinceH has full rank,
(5) gives

z = −H−1GT λ (9)

Definition 1 Let z∗(x) be the optimal solution to (3)-(4) for
a givenx. We defineactive constraintsthe constraints with
Giz∗(x)−W i− Six = 0, andinactive constraintsthe con-
straints withGiz∗(x) −W i − Six < 0. Theoptimal active
setA∗(x) is the set of indices of active constraints at th
optimumA∗(x) =

{
i | Giz∗(x) = W i + Six

}
. We also de-

fine asweakly active constraintan active constraint with an
associated zero Lagrange multiplierλi, and asstrongly ac-
tive constraintan active constraint with a positive Lagrange
multiplier λi.

Let λ̆ be the Lagrange multipliers of the inactive constraint
λ̆ = 0, and λ̃ the Lagrange multipliers of the active con
straints,̃λ ≥ 0. Assume for the moment that we know whic
constraints are active at the optimum for a givenx. We can
now form matrices̃G, W̃ andS̃ which contains the rowsGi,
W i andSi corresponding to the active constraints.

Definition 2 For an active set, we say that thelinear inde-
pendence constraint qualification (LICQ)holds if the set of
active constraint gradients are linearly independent, i.e.,G̃
has full row rank.

Assume that LICQ holds, such that the rows ofG̃ are lin-
early independent. For the active constraints, (6) and (9) g
−G̃H−1G̃T λ̃− W̃ − S̃x = 0, which leads to

λ̃ = −(G̃H−1G̃T )−1(W̃ + S̃x). (10)

Eq. (10) can now be substituted into (9) to obtain

z = H−1G̃T (G̃H−1G̃T )−1(W̃ + S̃x). (11)

1Strictly speaking “piecewise affine” would be a more appropriate term
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Figure 1: State-space exploration strategy.

We have now characterized the solution to (3)-(4) for a give
optimal active setA∗ ⊆ {1, . . . , q}, and a fixedx. How-
ever, as long asA∗ remains the optimal active set in a neigh
borhood ofx, the solution (11) remains optimal, whenz is
viewed as a function ofx. Such a neighborhood whereA∗ is
optimal is determined by imposing thatz must remain feasi-
ble (8)

GH−1G̃T (G̃H−1G̃T )−1(W̃ + S̃x) ≤W + Sx., (12)

and that the Lagrange multipliersλ must remain non-
negative (7)

−(G̃H−1G̃T )−1(W̃ + S̃x) ≥ 0.. (13)

Equations (12) and (13) describe a polyhedron in the sta
space. This region is denoted as thecritical region CR0

corresponding to the given setA∗ of active constraints, is
a convex polyhedral set, and represents the largest set of
rametersx such that the combinationA∗ of active constraints
at the minimizer is optimal [1].
The recursive algorithm of [1] can be briefly summarized a
follows: Choose a parameterx0. Solve a QP to find the op-
timal active setA0 for x0, and then use (10)-(13) to charac-
terize the solution and critical region corresponding toA0.
Then divide the parameter space as in Figure 1 by reversi
one by one the hyperplanes defining the critical region. Ite
atively subdivide each new regionRi in a similar way. The
main drawback of this algorithm is that the regionsRi are
not related to optimality, as they can split some of the critica
regions likeCR1 in Figure 1d. A consequence is thatCR1

will be detected at least twice.
The following theorem characterizes the primal and dua
parametric solutions, and will be useful in the sequel.

Theorem 1 Consider Problem (3)-(4) withH � 0. Let
X ∈ R

n be a polyhedron. Then the solutionz∗(x) and the
Lagrange multipliersλ∗(x) of a mp-QP are piecewise lin-
ear, functions of the parametersx, andz∗(x) is continuous.
Moreover, if LICQ holds for allx ∈ X , λ∗(x) is also contin-
uous.
0
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Proof: Follows easily from uniqueness (due toH � 0 and
LICQ) of z∗(x) andλ∗(x), cf. [1], [17].

4 Characterization of the Partition

Below, we denote byz∗k (x) the linear expression of the PWL
functionz∗ (x) over the critical regionCRk.

Definition 3 Let a polyhedronX ⊂ R
n be represented by

the linear inequalitiesA0x ≤ b. Let theith hyperplane,
Ai

0x = bi be denoted byH. If X ∩H is (n− 1)-dimensional
thenX ∩H is called afacetof the polyhedron.

Definition 4 Two polyhedra are calledneighboringpolyhe-
dra if they have a common facet.

Definition 5 Let a polyhedronX be represented byA0x ≤
b. We say thatAi

0x ≤ bi is redundantif Aj
0x ≤ bj ∀j 6= i⇒

Ai
0x ≤ bi (i.e., it can be removed from the description of th

polyhedron). The inequalityi is redundant with degreeh if
it is redundant and there exists ah-dimensional subsetY of
X such thatAi

0x = bi for all x ∈ Y .

Definition 6 A representation of a polyhedron (12)-(13) is
l-minimal if all redundant constraints have degreeh ≥ l.

Clearly, a representation of a polyhedronX ⊂ R
n is n-

minimal if it contains all inequalities defining facets, and
does not contain two or more coincident hyperplanes.
Let us consider a hyperplane defining the common facet b
tween two polyhedraCR0, CRi in the optimal partition of
the state space. There are two different kinds of hyperplan
The first (Type I) are those described by (12), which repr
sents a non-active constraint of (4) that becomes active at
optimum asx moves fromCR0 to CRi. As proved in the fol-
lowing theorem, this means that if a polyhedron is bounde
by a hyperplane which originates from (12), the correspon
ing constraint will be activated on the other side of the fac
defined by this hyperplane. In addition, the correspondin
Lagrange multiplier may become positive. The other kin
(Type II) of hyperplanes which bounds the polyhedra ar
those described by (13). In this case, the corresponding co
straint will be non-active on the other side of the facet define
by this hyperplane.

Theorem 2 Consider an optimal active set{i1, i2, ..., ik}
and its correspondingn-minimal representation of the crit-
ical regionCR0 obtained by (12)-(13) after removing redun-
dant inequalities. LetCRi be a full-dimensional neighboring
critical region toCR0 and assume LICQ holds on their com-
mon facetF = CR0 ∩ H whereH is the separating hyper-
plane betweenCR0 andCRi. Moreover, assume that there
are no constraints which are weakly active at the optimize
z∗(x) for all x ∈ CR0. Then,

Type I. IfH is given byGik+1z∗0 (x) = W ik+1 +Sik+1x, then
the optimal active set inCRi is {i1, ..., ik, ik+1}.
Type II. IfH is given byλik

0 (x) = 0, then the optimal active
set inCRi is {i1, ..., ik−1}.
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Proof: Let us first prove Type I. In order for some constraint
ij ∈ {i1, ..., ik} not to be in the optimal active set inCRi, by
continuity ofλ∗ (x) (due to Theorem 1 and LICQ), it follows
that (λ∗)ij (x) = λ

ij

0 (x) = 0 for all x ∈ F . Since there
are no constraints which are weakly active for allx ∈ CR0,
this would mean that constraintij becomes non-active atF .
But this contradicts the assumption ofn-minimality since
λ

ij

0 (x) ≥ 0 andGik+1z∗0 (x) ≤ W ik+1 + Sik+1x would be
coincident. On the other hand{i1, ..., ik} can not be the op-
timal active set onCRi becauseCR0 is the largest set of
x’s such that{i1, ..., ik} is the optimal active set. Then, the
optimal active set inCRi is a superset of{i1, ..., ik}. Now
assume that another constraintik+2 is active inCRi. That
meansGik+2z∗i (x) = W ik+2 + Sik+2x in CRi, and by con-
tinuity of z∗ (x), the equality also holds forx ∈ F . However,
Gik+2z∗0 (x) = W ik+2 + Sik+2x would then coincide with
Gik+1z∗0 (x) = W ik+1 + Sik+1x, which contradicts the as-
sumption ofn-minimality. Therefore, only{i1, ..., ik, ik+1}
can be the optimal active set inCRi. The proof for Type II is
similar.

Corollary 1 Consider the same assumptions as in Theorem
2, except that the assumption ofn-minimality is relaxed into
(n − 1)-minimality, i.e., two or more hyperplanes can coin-
cide. LetI ⊂ {i1, ..., ik} be the set of indices corresponding
to coincident hyperplanes in the (n− 1)-minimal representa-
tion of (12)-(13) ofCR0.

- Every constraintij whereij ∈ {i1, i2, ..., ik} \ I is active
in CRi.
- Every constraintij whereij /∈ {i1, i2, ..., ik}∪I is inactive
in CRi.

This means that every combination of the indices inI cannot
be excluded directly. We remark that coincident hyperplane
are rare, as from (12)-(13) one can see that special structur
of H , F , G, W , andS are required for two or more hyper-
planes to be coincident. Anyway, when for instance two hy
perplanes are coincident, by Corollary 1 there are three po
sible active sets which have to be checked to find the optima
active set inCRi.

Example 1. Consider the double integrator [3]

A =
[

1 Ts

0 1

]
, B =

[
T 2

s
Ts

]
where the sampling intervalTs = 0.05, and consider the
MPC problem over the prediction horizonN = 2 with cost

matricesQ =
[

1 0
0 0

]
, R = 1. The constraints in the

system are−0.5 ≤ x2 ≤ 0.5, −1 ≤ u ≤ 1. The mp-QP
associated with this problem has the form (3)-(4) with

H =
[

1.079 0.076
0.076 1.073

]
, F =

[
1.109 1.036
1.573 1.517

]
,

GT =
[

1 0 −1 0 0.05 0.05 −0.05 −0.05
0 1 0 −1 0 0.05 0 −0.05

]
,

WT = [ 1 1 1 1 0.5 0.5 0.5 0.5 ] , ST =[
1.0 0.9 −1.0 −0.9 0.1 0.1 −0.1 −0.1
1.4 1.3 −1.4 −1.3 −0.9 −0.9 0.9 0.9

]

01
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Figure 2: Critical regions for double integrator.

straints are active. As the mp-QP is created from a fea
ble MPC problem, the empty active set will be optimal in
some full-dimensional region (A0 = ∅, andG̃, W̃ andS̃ are
empty matrices,z∗(x) = 0 and the first component ofU∗(x)
is the unconstrained LQR gain). This critical region is the
described by0 ≤ W + Sx, which contains eight inequali-
ties. Two of these inequalities are redundant with degree
(#2 and #4), the remaining six hyperplanes are facet inequ
ities of the polyhedron (see Figure 2a). By crossing the fac
given byH1, defined by inequality 1 and of Type I, as pre
dicted by Theorem 2 the optimal active set across this face
A1 = {1}, which leads to the critical regionCR1 (see Figure
2b). After removing redundant inequalities we are left wit
a n-minimal representation ofCR1 containing four facets.
The first of these is of Type II,λ1(x) = 0. The other three
are of Type I. These are inequalities #2, #6 and #7. Consid
first the other side of the facet which comes fromλ1(x) = 0,
see Figure 2c. The region should not have constraint 1 a
tive, so the optimal active set isA2 = ∅. This is the same
combination of active constraints asA0, as expected, soA2

is not pursued. Next, consider crossing the respective fac
of inequalities 2, 6 and 7, see Figures 2d–2f. This results
three different active sets:A3 = {1, 2}, A4 = {1, 6} and
A5 = {1, 7}. A3 andA4 leads to new polyhedra as shown
in the figures. The combinationA5 leads to an interesting
case of “degeneracy”. The associated matrixG̃ has linearly
dependent rows, which violates the LICQ assumption. In th
case,A5 leads to an infeasible part of the state space. A ge
eral treatment of degeneracy is given in the next section.

Theorem 2 and Corollary 1 show how to find the optimal ac
tive set across a facet only by using the knowledge of whic
kind of hyperplane the facet corresponds to, except in dege
erate cases, which is the topic of the next section.

5 Degeneracy in mp-QP

We have so far assumed that LICQ holds on the comm
facet between two polyhedra, and that there are no constra
which are weakly active for allx within a critical region.
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Such cases are referred to as degenerate. We will first co
sider how to handle cases where LICQ is violated, and the
consider weakly active constraints.

Theorem 3 Consider a generic combinationA∗ ⊆
{1, . . . , q} of active constraints and assume that the corre
sponding rows[G̃ − S̃ − W̃ ] are linearly independent. If
LICQ is violated, then the corresponding critical region is
not full-dimensional.

Proof: Let the active constraints bẽGz = S̃x + W̃ .
Since LICQ is violated,G̃ has not full rank and a reduced
set of equations can be defined without changing the solutio
z∗(x): G′z = S′x + W ′. Assume without loss of generality
that

G̃ =
[

G′

Gk

]
, S̃ =

[
S′

Sk

]
, W̃ =

[
W ′

W k

]
, (14)

where Gk, and Sk are row-vectors andW k is a scalar.
Let CR′ and C̃R be the critical regions where the active
sets corresponding toG′ and G̃, respectively, are optimal.
The solution isz∗CR′(x) = z∗

C̃R
(x) = Lx + v within

bothCR′ andC̃R, whereL = H−1G′T (G′H−1G′T )−1S′,
v = H−1G′T (G′H−1G′T )−1W ′. It is clear thatC̃R ⊂{

x ∈ R
n|

[
G̃ − S̃

] [
z∗

C̃R
(x)

x

]
= W̃

}
= M̃ and

M̃ =
{

x ∈ R
n|

[
G′ −S′

Gk −Sk

] [
Lx + v

x

]
=

[
W ′

W k

]}

=
{

x ∈ R
n | G′Lx− S′x + G′v = W ′

, (GkL− Sk)x + Gkv = W k

}
(15)

=
{
x ∈ R

n | (GkL− Sk)x + Gkv = W k
}

.

If GkL 6= Sk or Gkv 6= W k it follows that M̃ is
not a full-dimensional subspace ofR

n, and sinceC̃R ⊂
M̃ , neither is C̃R. Suppose this does not hold, i.e.,
GkL = Sk and Gkv = W k. Since G̃ has not
full rank, Gk = αG′, where α is a row-vector, and
Sk = αG′H−1G′T (G′H−1G′T )−1S′ = αS′, W k =
αG′H−1G′T (G′H−1G′T )−1W ′ = αW ′. Then, there is lin-
ear dependence between rows of

[
G̃ −S̃ −W̃

]
, a con-

tradiction.

In an MPC problem one might avoid full-dimensional critical
regions with violation of LICQ by simply slightly perturbing
the weight matrices and the constraints, without producin
significant changes of the closed-loop behavior. On the oth
hand, in some situations this may not be possible, for in
stance equality constraints such as terminal state constrain
xt+N |t = 0, would lead to violation of LICQ (cf. [5, Exam-
ple 6.3]). In such cases, full-dimensional critical regions can
be handled by solving a QP, as in [18]. One should also
priori remove redundant constraints from[G − S] [ z

x ] ≤W ,
which might remove linear dependence in[G̃ − S̃ −W̃ ], and
also would reduce the complexity of the mp-QP.

Next Theorem 4 provides a method to find the optimal activ
set in a neighboring region also when LICQ is violated on the
02
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common facet. Before proceeding further, we need a techn
cal Lemma, which is proven in [18]. Since now on, when
we discuss matrices as̃G, S̃, or W̃ or the active constraints
λ̃, according to different active sets, we will use the notation
G̃{i1,...,ik} to mean the rows of theG matrix corresponding
to the active set{i1, ..., ik}, etc.

Lemma 1 Let the optimal active set in a critical regionCR0

be{i1, ..., ik}, and consider ann-minimal representation of
CR0. Assume that there are no constraints which are weakl
active for allx ∈ CR0 and thatG̃{i1,...,ik} does not have lin-
early dependent rows. LetCRi be a full-dimensional neigh-
boring critical region toCR0, and letF be their common
facet withF = CR0 ∩ H andH is the Type I hyperplane
Gik+1z∗0 (x) = W ik+1 + Sik+1x. SupposẽG{i1,...,ik,ik+1}
has linearly dependent rows, such that LICQ is violated a
F . Then, if there is a feasible solution inCRi, the optimal
active set inCRi consists of constraintik+1 and some subset
of {i1, ..., ik}.
Theorem 4 Make the same assumptions as in Lemma 1
Consider the following LP:

maxλik+1 (16)

s.t. Hz +
(
G̃{i1,...,ik,ik+1}

)T

λ{i1,...,ik,ik+1} = 0 (17)

λ{i1,...,ik,ik+1} ≥ 0 (18)

If this LP has a bounded solution, the optimal active set in
CRi consists of the elements of{i1, ..., ik, ik+1} with λij >
0 in the solution. If the LP is unbounded,CRi is an infeasible
area of the parameter space.

Proof: The solutionz∗(x) to (5)-(8) onF is known from
the solution inCR0. The optimal Lagrange multipliersλ∗(x)
onF is then characterized by (17)-(18). The solution to (5)-
(8) in CRi must also be valid onF , in particular,λ∗

i (x) must
satisfy (17)-(18) onF . From Lemma 1, the optimal active
set inCRi, consists of constraintik+1 and a proper subset of
{i1, ..., ik}. Therefore, there must be a solution onF which

satisfies
(
λ

ik+1
i

)∗
(x) > 0 and

(
λ

ij

i

)∗
(x) = 0 for at least

oneij ∈ {i1, ..., ik}. With a fixedλik+1 = 0, (17) defines
nz equations ink unknowns (nz ≥ k). But there exists a
solution fromCR0, such that a reduced set of equations can
be defined withk equations ink unknowns. Whenλik+1 ≥ 0,
(17) consists ofk equations ink + 1 unknowns, andλij =
f ij (λik+1 ) for any ij ∈ {i1, ..., ik}, wheref ij is an affine
function. Whenλik+1 = 0, the solution of (17)-(18) has
λij > 0 for all ij ∈ {i1, ..., ik} (due to n-minimality and
no weakly active constraints for allx in CR0). To find a
solution which satisfies Lemma 1,λik+1 must be increased
from zero untilλij = 0 for someij ∈ {i1, ..., ik}. This is the
only solution of (17)-(18) which satisfies Lemma 1 becaus
if λik+1 is increased further,λij = f ij (λik+1) < 0 (sincef ij

is an affine function).

Constraints that are weakly active for allx in a critical region,
can be handled according to the following result, which can
be proven similarly to Theorem 2.
12
i-

y

t

.

e

Theorem 5 Make the same assumptions as in Theorem 2
except that now constrainti1 is weakly active for allx ∈
CR0.

Type I. IfH is given byGik+1z∗0 (x) = W ik+1 + Sik+1x,
then the optimal active set inCRi is {i1, ..., ik, ik+1} or
{i2, ..., ik, ik+1}.
Type II. IfH is given byλik

0 (x) = 0, then the optimal active
set inCRi is {i1, ..., ik−1} or {i2, ..., ik−1}.

Example 1 (cont’d). We want to show how to handle the
case when LICQ is violated at a facet. First, notice in Figure
2 that the polyhedra made fromA3 andA4 are neighboring
polyhedra, but still there are two elements inA3 which are
different fromA4. This is caused by a violation of LICQ
on the hyperplane separating these regions. Assume we ha
foundCR3, and try to detectCR4. We cross a hyperplane
of Type 1, which defines their common facetF . This hy-
perplane says that constraint 6 is becoming active at the o
timal solution forx ∈ F . Since constraint 1 and 2 was ac-
tive in CR3, constraints{1, 2, 6} are active at the optimal
solution forx ∈ F . This obviously leads to linear depen-
dence among the elements iñG, and Theorem 4 is applied
to find the optimal active set acrossF . A point x0 ∈ F is
needed to initialize the LP (16)-(18), and in this case we us
x0 = [ −1.8 0.4 ]T . We then solve the LP

max λ6 (19)

s.t.Hz +
(
G̃{1,2,6}

)T

λ{1,2,6} = 0, λ{1,2,6} > 0 (20)

From (11),Hz =
(
G̃{1,2}

)T
(

G̃{1,2}H−1
(
G̃{1,2}

)T
)−1

·(
W̃ {1,2} + S̃{1,2}x0

)
, and the solution of (19) isλ{1,2,6} =

[ 0.11 0 4.25 ]T . Hence,λ2 should be removed from the
active set, and the optimal active set inCR4 is {1, 6}, as ex-
pected. Next, consider crossing the facet drawn as a thic
segment in Figure 2f. The optimal active set inCR1 is {1},
and the inequality corresponding to the facet says that con
straint 7 is being activated.G1 andG7 are linearly depen-
dent, so LICQ is violated. We therefore solve the LP (16)-
(18), with x0 = [ −0.28 −0.55 ]T : max λ7, s.t. Hz +(
G̃{1,7}

)T

λ{1,7} = 0, λ{1,7} > 0. The solution to this LP

is unbounded and according to Theorem 4, we have reach
an infeasible part of the state space, which is easily verified

6 Off-Line Mp-QP Algorithm

Based on the results of Sections 3, 4 and 5, we finally prese
an efficient algorithm for the computation of the solution to
the mp-QP (3)-(4). Generally, there exist active sets which
are not optimal anywhere in the parameter space (typically
most active sets are not optimal anywhere). We need an a
tive set which is optimal in a full-dimensional region to start
the algorithm below. Generally we can do this by choos-
ing a feasiblex, and find the optimal active set for thisx by
solving a QP. A special case is when we solve a linear MPC
03
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Table 1: Computation times, double integrator example.
Hor. Alg. from [1] Alg. 1 # regions

2 0.77 s 0.13 s 9
3 2.63 s 0.22 s 19
4 5.60 s 0.38 s 33
5 9.01 s 0.65 s 51
6 16.48 s 1.06 s 73

problem. Then there will be a region where the unconstraine
controller will be optimal, and we can choose the active se
A0 = ∅ (see [8], Prop. 2).
Let Lcand be a list of active sets which are found, but not yet
explored (i.e., are candidates for optimality) andLopt be the
set of active sets which have been explored (i.e., are found
be optimal).

Algorithm 1
Choose the initial active setA0 as in [8], Prop. 2; Let
Lcand ← {A0}, Lopt ← ∅;
while Lcand 6= ∅ do

Pick an elementA fromLcand. Lcand ← Lcand \ {A};
Build the matricesG̃, M̃ and S̃ fromA and determine
the local Lagrange multipliers,̃λ(x) and the solution
z(x) from (10) and (9);
Find theCR whereA is optimal from (12) and (13), and
find the (n-1)-minimal representation ofCR;
if CR is full-dimensionalthen

Lopt ← Lopt ∪ {A};
for each facetF in the (n-1)-dimensional representa-
tion ofCR do

Find the optimal active set onF by examining the
type of hyperplaneF is given by;
Find any possible optimal active sets inCRi ac-
cording to Theorem 2, Corollary 1, Theorem 4 and
Theorem 5. If none of these are applicable, one
can find the active set inCRi by solving a QP as
in [18];
For any new active setAnew found, letLcand ←
Lcand ∪ {Anew}

end for
end if

end while

Example 2. For comparing the efficiency of Algorithm 1 and
the algorithm of [1] we have repeated the double integrato
example from [1]. Some corrections for different CPU fre-
quency are made.2 Symmetries in the MPC problem are here
exploited, almost halving the computation times.In this ex
ample more than 60% of the time is spent by both algorithm
on removing redundant constraints from the polyhedra. Thi
is done by solving one LP for each hyperplane in each poly
hedron.

7 Conclusions

In this paper we have proposed a new approach for solvin
mp-QP problems giving off-line piecewise linear explicit so-

2Both methods were implemented in MATLAB using the NAG Founda-
tion Toolbox to solve LP/QP subproblems.
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lutions to MPC control problems. Being based on the ex-
ploitation of direct relations between neighboring polyhedral
regions and combinations of active constraints, we believe
that our contribution significantly advances the field of ex-
plicit MPC control, both theoretically and practically, as ex-
amples have indicated large improvements over existing mp
QP algorithms.
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