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Abstract PWL solution to linear quadratic MPC problems is addressed
in [11, 12], and efficient on-line computation schemes of ex-

Explicit solutions to constrained linear MPC problems can plicit MPC controllers are proposed in [13]. This paper ex-

be obtained by solving multi-parametric quadratic programs . .
) ends the theoretical results of [1], by analyzing several prop-
(mp-QP) where the parameters are the components of th rties of the geometry of the polyhedral partition and its rela-

ﬁgﬁeo;lfhcetosria\i\fssgggg |tr:] gu%rgg E;t 'ffeOmﬁp%?gﬂi?rri?pﬁ:gﬁ0” to the combination of active constraints at the optiml_Jm
wise linear solution and propose a new mp-QP solver. Com_of the quadratic program. Based on these results, we derive a

pared to existing algorithms, our approach adopts a differ-"eW exploration strategy for subdividing the parameter space,

ent exploration strategy for subdividing the parameter spaceWhICh avoids (i) unnecessary partitioning, (ii) the solution to

i s -~ “LP problems for determining an interior point in each new
avoiding unnecessary partitioning and QP problem solving, —_ . .
with a significant improvement of efficiency. region of the parameter space, and (iii) the solution to the QP

problem for such an interior point. As a consequence, there
. is a significant improvement of efficiency with respect to the
1 Introduction algorithm of [1]
Our motivation for investigating multi-parametric quadratic

programming (mp-QP) comes from linear Model Predictive 2 From Linear MPC to an mp-QP Problem

Control (MPC). This refers to a class of control algorithms 1he main aspects of formulating a linear MPC problem as a
that compute a manipulated variable trajectory from a lin- . iti-narametric QP will, for convenience, be repeated here.

ear process model to minimize a quadratic performance in-gee [1] for further details. Consider the linear system
dex subject to linear constraints on a prediction horizon. The

first control input is then applied to the process. At the next z(t+ 1) = Az(t) + Bu(t) (1)
sample, measurements are used to update the optimization (t) = Ca(t)
problem, and the optimization is repeated. In this way, this yw) =t

becomes a closed-loop approach. There has been some limj- X n ; m ;
tation to which processes MPC could be used on, due to theé’,vgr?argfég GGRRTJE}Lhe-BStZt?R\T/LirTIna 2:,%(246 éR) islsatr;imfolf

computationally expensive on-line optimization which was lable pair. For the current(t), MPC solves the optimization
required. There has recently been derived explicit SOIUtionSproblem ' '

to the constrained MPC problem, which could increase the
area of use for this kind of controllers. Independent works

: _ .7
by [1], [2], [3] and [4] has reported how a piecewise linear U (U, 2()) = 2y i PresNe

(PWL) solution can be computed off-line, while the on-line + Zszol xtT+k|tQ$t+k\t + U;ﬂkRUHk}

effort is limited to evaluate this PWL function. In particu- s.t. Ymin < Yerklt < Ymax, K =1,..., N

lar, in [1] and [2] such a PWL function is obtained by treat- Umin < Utpk < Umax, kK =0,.., M =1 ()
ing the MPC optimization problem as a parametric program. Uk = Koy, M <kE<N -1
Parametric programming is a term for solving an optimiza- Ty = a(t)

tion problem for a range of parameter values. One can dis- Tipht1)t = ATyqp)e + Bugyr, k>0
tinguish between parametric programs, in which only one Yerklt = CTyppe, K >0

parameter is considered, and multi-parametric programs, in
which a vector of parameters is considered. The algorithmyith respect tad/ £ {uy, ..., uspa—1}, WhereR = R’ = 0,

reported in [1] is the only mp-QP algorithm known to the au- Q=@Q =0,P =P = 0. When the final cost matri® and
thors for solving general linear MPC problems, while single gain K are calculated from the algebraic Riccati equation,
parameter parametric QP is treated in [5]. Multi-parametric ynder the assumption that the constraints are not active for
LP (mp-LP) is treated in [6] and [7], mp-LP in connection j > N (2) exactly solve the constrained (infinite-horizon)
with MPC based on linear programming is investigated in | QR problem for (1) with weights), R (see also [14], [15]

[8], and multi-parametric mixed-integer linear programming and [16]). This and related problems can by some algebraic
[9] is used in [10] for obtaining explicit solutions to hy- manipulation be reformulated as
brid MPC. The problem of reducing the complexity of the
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parameters. Note thdf - 0 sinceR > 0. The number of
inequalities is denoted hyand the number of free variables
isn, = m-N.Thenz € R"*:, H € R"=*"= G ¢ R?*"=,

W € Ri*!, S € R™*" F ¢ R"¥4. The problem we con-
sider here is to find the solution of the optimization problem
(3)—(4) in an explicit formz* = z* (z(t)). Bemporad et. al.
[1] showed that the solutiogi(z(t)) (andU* (x(t))) is a con-
tinuous PWL functiof defined over a polyhedral partition of
the parameter space, abid(x(t)) is a convex (and therefore
continuous) piecewise quadratic function.

3 Background on mp-QP

As shown in [1], the mp-QP problem (3)-(4) can be solved
by applying the Karush-Kuhn-Tucker (KKT) conditions

Hz+GT'A=0, A e RY, (5)

A (G2 = W= S'2) =0,i=1,..,q, (6)
A >0, (7)

Gz—W — Sz <0. (8)

For ease of notation we write instead ofx(t). Superscript
i on some matrix denotes thi& row. SinceH has full rank,
(5) gives

z=—-H'GT\ 9)
Definition 1 Letz*(z) be the optimal solution to (3)-(4) for
a givenz. We defineactive constraintghe constraints with
G'z*(z) — W' — Sz = 0, andinactive constraintthe con-
straints withG?z*(z) — W' — Siz < 0. Theoptimal active
set A*(x) is the set of indices of active constraints at the
optimumA*(z) = {i | G'2*(z) = W' + S’z }. We also de-
fine asweakly active constrain&dn active constraint with an
associated zero Lagrange multipliaf, and asstrongly ac-
tive constraintan active constraint with a positive Lagrange
multiplier A%

Let X be the Lagrange multipliers of the inactive constraints,
A = 0, and \ the Lagrange multipliers of the active con-
straints,\ > 0. Assume for the moment that we know which
constraints are active at the optimum for a giwvenWe can
now form matrice<, W andS which contains the rows",
W*andS"” corresponding to the active constraints.

Definition 2 For an active set, we say that thieear inde-
pendence constraint qualification (LICQRolds if the set of
active constraint gradients are linearly independent, i(e.,
has full row rank.

Assume that LICQ holds, such that the rows@fare lin-
early independent. For the active constraints, (6) and (9) giv

~GH'GTX\ — W — Sz = 0, which leads to

A= —(GHGT)y"Y(W + Sx). (10)
Eqg. (10) can now be substituted into (9) to obtain
z=H 'GT(GH'GT) Y (W + Sx). (11)

1strictly speaking “piecewise affine” would be a more appropriate term.
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Figure 1: State-space exploration strategy.

We have now characterized the solution to (3)-(4) for a given
optimal active setd* C {1,...,q}, and a fixedz. How-
ever, as long agl* remains the optimal active set in a neigh-
borhood ofz, the solution (11) remains optimal, whens
viewed as a function of. Such a neighborhood wherg is
optimal is determined by imposing thamust remain feasi-
ble (8)

GH'GT(GH G Y(W + Sz) <W + Sz., (12)
and that the Lagrange multipliers must remain non-
negative (7)

—(GH'GT)y"Y(W + Sz) > 0.. (13)
Equations (12) and (13) describe a polyhedron in the state
space. This region is denoted as thréical region C'Ry
corresponding to the given set* of active constraints, is
a convex polyhedral set, and represents the largest set of pa-
rameterse such that the combinatioa* of active constraints
at the minimizer is optimal [1].
The recursive algorithm of [1] can be briefly summarized as
follows: Choose a parametey. Solve a QP to find the op-
timal active set4, for =, and then use (10)-(13) to charac-
terize the solution and critical region corresponding4i
Then divide the parameter space as in Figure 1 by reversing
one by one the hyperplanes defining the critical region. Iter-
atively subdivide each new regid®; in a similar way. The
main drawback of this algorithm is that the regiokis are
not related to optimality, as they can split some of the critical
regions likeC'R; in Figure 1d. A consequence is thai?,
will be detected at least twice.

e following theorem characterizes the primal and dual

parametric solutions, and will be useful in the sequel.

Theorem 1 Consider Problem (3)-(4) withH > 0. Let
X € R” be a polyhedron. Then the solutiefi(z) and the
Lagrange multipliers\*(z) of a mp-QP are piecewise lin-
ear, functions of the parametets andz*(x) is continuous.
Moreover, if LICQ holds for alk: € X, \*(z) is also contin-
uous.
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Proof: Follows easily from uniqueness (duefb > 0 and
LICQ) of z*(x) and\*(x), cf. [1], [17]. m

4 Characterization of the Partition

Below, we denote by} (z) the linear expression of the PWL
functionz* (x) over the critical regio' Ry, .

Definition 3 Let a polyhedronX C R"™ be represented by
the linear inequalitiesdoz < b. Let thei?” hyperplane,

{x = b’ be denoted byt. If X NH is (n — 1)-dimensional
thenX N H is called afacetof the polyhedron.

Definition 4 Two polyhedra are calledeighboringpolyhe-
dra if they have a common facet.

Definition 5 Let a polyhedronX be represented bylpz <

b. We say thatl{x < b’ isredundantif A}z < b/ Vj £i=
Alx < b’ (i.e., it can be removed from the description of the
polyhedron). The inequalityis redundant with degree if

it is redundant and there existstadimensional subsét of

X such thatdiz = bi forall z € Y.

Definition 6 A representation of a polyhedron (12)-(13) is
[-minimal if all redundant constraints have degrée> |.

Clearly, a representation of a polyhedrah C R™ is n-
minimal if it contains all inequalities defining facets, and
does not contain two or more coincident hyperplanes.

Proof: Letusfirst prove Type I. In order for some constraint
ij € {i1, ..., 4} notto be in the optimal active set@R;, by
continuity of \* (z) (due to Theorem 1 and LICQ), it follows
that (\*) (z) = A\ (z) = 0 for all z € F. Since there
are no constraints which are weakly active foraak CRy,
this would mean that constraiilt becomes non-active &.
But this contradicts the assumption efminimality since
A (z) > 0 andGU+1 23 (z) < Wi+ + Si+12 would be
coincident. On the other hafd,, ..., i} can not be the op-
timal active set orC'R; because’ Ry is the largest set of
x's such that{iy, ..., i1 } is the optimal active set. Then, the
optimal active set irCR; is a superset ofiy, ..., 75 }. Now
assume that another constraipt ; is active inCR;. That
meangGs+2zF () = W+2 4 S*+2x in CR;, and by con-
tinuity of z* (), the equality also holds far € F. However,
GUr+22 (x) = Wik+2 4 Sh+25 would then coincide with
Gir+izp (x) = Wi+t 4 Sie+1g, which contradicts the as-
sumption ofn-minimality. Therefore, only{i1, ..., i, 511}
can be the optimal active set@R;. The proof for Type Il is
similar. m

Corollary 1 Consider the same assumptions as in Theorem
2, except that the assumptionreiminimality is relaxed into

(n — 1)-minimality, i.e., two or more hyperplanes can coin-
cide. LetZ C {41, ..., 9%} be the set of indices corresponding
to coincident hyperplanes in the ¢ 1)-minimal representa-
tion of (12)-(13) ofC'Ry.

- Every constraint; wherei; € {i1,1i2,...,4x} \ Z is active

- Every constraint; wherei; ¢ {i1, 1o, ..., 7} UZ is inactive

Let us consider a hyperplane defining the common facet be-

tween two polyhedr&’ Ry, C'R; in the optimal partition of

This means that every combination of the indice% tannot

the state space. There are two different kinds of hyperplanespe excluded directly. We remark that coincident hyperplanes

The first (Type 1) are those described by (12), which repre- are rare, as from (12)-(13) one can see that special structures

sents a non-active constraint of (4) that becomes active at thef 7, F', G, W, andS are required for two or more hyper-

optimum asc moves fromC' R, to C'R;. As provedin thefol-  planes to be coincident. Anyway, when for instance two hy-

lowing theorem, this means that if a polyhedron is boundedperplanes are coincident, by Corollary 1 there are three pos-

by a hyperplane which originates from (12), the correspond-sible active sets which have to be checked to find the optimal

ing constraint will be activated on the other side of the facet active set inCR;.

defined by this hyperplane. In addition, the corresponding

Lagrange multiplier may become positive. The other kind Example 1 Consider the double integrator [3]

(Type 1) of hyperplanes which bounds the polyhedra are L7 -
e[ H]

those described by (13). In this case, the corresponding con- A=
straint will be non-active on the other side of the facet defined 101 T

where the sampling intervdl, = 0.05, and consider the
MPC problem over the prediction horizév = 2 with cost

by this hyperplane.

Theorem 2 Consider an optimal active seftiq, iz, ..., ix } , 1 0
and its corresponding-minimal representation of the crit- matricesQ = |
ical regionC' R, obtained by (12)-(13) after removing redun- system are-0.5 < z» < 0.5, —1 < u < 1. The mp-QP
dantinequalities. Let’R; be a full-dimensional neighboring  55sociated with this prc?blem has the form (3)-(4) with
critical region toC' Ry and assume LICQ holds on their com-

mon facetF = C' Ry, N 'H whereH is the separating hyper- "o [ 1.079 0.076 } P [ 1.109 1.036 }
plane betweeilW' Ry and C' R;. Moreover, assume that there — | 0.076 1.073 |>° T | 1.573 1.517 |’
are no constraints which are weakly active at the optimizer

, R = 1. The constraints in the

" r |1 0 -1 0 005 005 —-0.05 —-0.05
z(a)forall = € CFo. Then, o o= [ 01 0 -1 0 005 0 —0.05 } :
Type I. IfH is given byG"*+1 2§ (z) = W'+t 4 S*+17, then . "
the optimal active seti6'R; IS {i1, ..., ig, ij+1}- Wr=[1 11 1 05 05 05 05],S" =
Type Il. I H is given byA}* (z) = 0, then the optimal active 1.0 09 -10 -09 01 01 -01 -0.1
setinCR; is {1, ..., ix_1} 14 13 —-14 -13 —09 —09 09 09
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We start the partitioning by finding the region where no con- Such cases are referred to as degenerate. We will first con-
sider how to handle cases where LICQ is violated, and then
consider weakly active constraints.

0.5 0.5
Sl N R &0 Theorem 3 Consider a generic combinationA* C
' {1,..., ¢} of active constraints and assume that the corre-
e S e sponding row§GG — S — W] are linearly independent. If
@A=0 ®A =) LICQ is violated, then the corresponding critical region is
o8 ost not full-dimensional.
0 o CR ) ) - - -
\ \ Proof:  Let the active constraints b&z = Sz + W.
-05 05, Since LICQ is violated( has not full rank and a reduced
P Gaea DA sl T gty ° set of equations can be defined without changing the solution
o o 2*(x): G’z = S’z + W’. Assume without loss of generality
0.2 that
x' 0.4 <-0.3
-0.4 - G/ - S/ - W/
s G= k:|aS:|: k:|aW:|: k:la (14)
-1.9 -1.8 -1.7 -1.6 -15 -1 -0.8 -0.6 -0.4 -0.2 0 |: G S W

(e) A, = {16} () Ag ={1,7} O infeasibility

where G*, and S* are row-vectors andV* is a scalar.
Let CR’ and CR be the critical regions where the active
sets corresponding t6’ and G, respectively, are optimal.
straints are active. As the mp-QP is created from a feasi-The solution iszf.p (z) = 2% (x) = Lz + v within
ble MPC problem, the empty active set will be optimal in hoth R’ andCR, whereL = H'GT(G'H1G'T)-1g,
some fuII-dllmensmnaI region4p =_Q), andG, W andS are v = H'GT(G'H-'G'T)~"'W'. Itis clear thatCR
empty matrices;*(x) = 0 and the first component &f*(z) I N i

is the unconstrained LQR gain). This critical region is then {x € R"| [G — S} [ CR } = W} — M and
described by) < W + Sz, which contains eight inequali- x

ties. Two of these inequalities are redundant with degree 0 {x R [ a g } { Lo +o } _ { W’ H

Figure 2: Critical regions for double integrator.

(#2 and #4), the remaining six hyperplanes are facet inequal-M = ok _gk Wk
ities of the polyhedron (see Figure 2a). By crossing the facet
given byH;, defined by inequality 1 and of Type I, as pre- zeR"|G'Le—S'v+Gv=W
dicted by Theorem 2 the optimal active set across this facetis = J(GFL — 8Kz + GFo = WP

A; = {1}, which leads to the critical regiadfiR; (see Figure " i A A A
2b). After removing redundant inequalities we are left with = {2 eR"[(G*L - S")z+ Grv=W"}.
a n-minimal representation of' R; containing four facets. . ~
The first of these is of Type I\l () = 0. The other three T G*L # S or G*v # W" it follows that M is
are of Type I. These are inequalities #2, #6 and #7. Considehot a full-dimensional subspace &f*, and sinceCR C
first the other side of the facet which comes frahiz) = 0, M, neither isCR. Suppose this does not hold, i.e.,

X

(15)

see Figure 2c. The region should not have constraint 1 acgk;, — S% and Gkv = WP¥. Since ¢ has not
tive, so the optimal active set id; = (. This is the same fy|| rank, G* = aG’, where o is a row-vector, and
combination of active constraints &), as expected, sd, Sk = oG'H'GT(G'HIGT)"18 = oS, Wk =

isf not purisued. Next, gonsider crossing éhe fresE]ective ﬁacetaG/HqG/T(G/HqG/T)71W/ — oW'. Then. there is lin-
of inequalities 2, 6 and 7, see Figures 2d-2f. This results in ~ & = )
three different active setsd; = {1,2}, A, = {1,6} and ﬁgg%?i%indence between rowfoff -5 —W ], acon
As = {1,7}. A; and.A, leads to new polyhedra as shown : =
in the figures. The combinatiad; leads to an interesting  |n an MPC problem one might avoid full-dimensional critical
case of “degeneracy”. The associated maffikas linearly  regions with violation of LICQ by simply slightly perturbing
dependentrows, which violates the LICQ assumption. In thisthe weight matrices and the constraints, without producing
case, A5 leads to an infeasible part of the state space. A gen-significant changes of the closed-loop behavior. On the other
eral treatment of degeneracy is given in the next sectia@.  hand, in some situations this may not be possible, for in-
stance equality constraints such as terminal state constraints
Theorem 2 and Corollary 1 show how to find the optimal ac- 24 n|¢ = 0, would lead to violation of LICQ (cf. [5, Exam-
tive set across a facet only by using the knowledge of whichple 6.3]). In such cases, full-dimensional critical regions can
kind of hyperplane the facet corresponds to, except in degenbe handled by solving a QP, as in [18]. One should also a

erate cases, which is the topic of the next section. priori remove redundant constraints frg@ — S][2] < W,
) which might remove linear dependencédh —.S — W], and
5 Degeneracy in mp-QP also would reduce the complexity of the mp-QP.

We have so far assumed that LICQ holds on the common
facet between two polyhedra, and that there are no constraintslext Theorem 4 provides a method to find the optimal active
which are weakly active for alk within a critical region.  setin a neighboring region also when LICQ is violated on the
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common facet. Before proceeding further, we need a techni-Theorem 5 Make the same assumptions as in Theorem 2,
cal Lemma, which is proven in [18]. Since now on, when except that now constraint is weakly active for all: €

we discuss matrices &s, S, or W or the active constraints CRo.

A: according to different active sets, we will use the notation Type I. If / is given bmelZak (z) = Wiktt 4 Siktig,
Glin--ix} to mean the rows of thé matrix corresponding  then the optimal active set i6@'R; is {81, oy ik, tpp1} OF

to the active sefiy, ..., }, etc. {2y oy ik U1}

Type Il. IfH is given byA} (z) = 0, then the optimal active

Lemma 1 Letthe optimal active set in a critical regidriRy SEtINCR, IS (i1, ...y i1} OF {iz,ip_1}

be{iy,...,ix}, and consider am-minimal representation of
CRy. Assume that there are no constraints which are weakly

active for allz € C'Ro and thatG't**+} does nothavelin-  Eyample 1 (contd). We want to show how to handle the
early dependent rows. LELR; be a full-dimensional neigh- 356 when LICQ is violated at a facet. First, notice in Figure
boring (_:r|t|cal region toC Ry, anq let 7 be their common 5 inat the polyhedra made fros and.A, are neighboring
facet with 7 = C'Ro N'H and’H is the Type | hyperplane  olyhedra, but still there are two elementsAg which are
Gierizg (z) = Wikt + Srip. Supposeyti-inin}  different from A4. This is caused by a violation of LICQ
has linearly dependent rows, such that LICQ is violated at on the hyperplane separating these regions. Assume we have
F. Then, if there is a feasible solution MR;, the optimal found CR3, and try to detecC'R,. We cross a hyperplane
active set inC'R; consists of constrainy,.; and some subset  of Type 1, which defines their common facgt This hy-
of {i1, ... ix} perplane says that constraint 6 is becoming active at the op-
timal solution forz € F. Since constraint 1 and 2 was ac-
Theorem 4 Make the same assumptions as in Lemma 1l.tive in C'R3, constraints{1,2,6} are active at the optimal
Consider the following LP: solution forz e F. This obviously leads to linear depen-

dence among the elementsdh and Theorem 4 is applied

. max AT (16) 15 find the optimal active set acrogs A pointzy € F is
S i1y siesins1 )} Citsesinsinrr} needed to initialize the LP (16)-(18), and in this case we use
st Hz+ (G cm ) At =0 (@0 L7218 0.4 ]7. We then solve the LP
Atiniiad > 00 (18) A6 (19)
max

If this LP has a bounded solution, the optimal active set in ~(1,2,6} T (12,6} (1,2,6}

CR; consists of the elements ff;, ..., iy, i1} with A > st.Hz+ (G - ) ALHEEE =0, AU >0 (20)
0 inthe solution. Ifthe LP is unboundedR; is an infeasible
area of the parameter space.

. T /. - T
From (11),H= = (G112 (G{L?}Hl (¢t2) )
Proof: The solutionz*(x) to (5)-(8) onF is known from - - _ _
the solution inC'R,. The optimal Lagrange multiplieps' () (W{LQ} + S{l’Q}mo), and the solution of (19) iat!-26} =
on F is then characterized by (17)-(18). The solution to (5)- T 9
(8) in CR; must also be valid orf, in particular\f () must [ Otnl/l Ot 463%] : Ht?r?f?/\ ti/hom%%g riemcivgd from)t(r_1e
satisfy (17)-(18) onf. From Lemma 1, the optimal active SgcteedseNzxt coen(s)i%ler 2rc?scsinf]iﬁe faté%rév&ﬁa;sea thick
set inC'R;, consists of constrairij,..; and a proper subset of segment in Figure 2f. The optimal active seti, is {1},

{“f U zk}.iTher*efore, there mus;t bf a solution snwhich and the inequality corresponding to the facet says that con-
satlsfles(Af‘“) () > 0and (A;) (z) = Oforatleast  straint 7 is being activated=' andG” are linearly depen-
onei; € {ir,...,ix}. With a fixedXi=+1 = 0, (17) defines dent, so LICQ is violated. We therefore solve the LP (16)-

n. equations ink unknowns ¢. > k). But there exists a  (18), Wittho =[-028 —0.55]": max\7, st Hz+
solution fromC Ry, such that a reduced set of equations can (G{lj} AL — 0, M7 s 0. The solution to this LP

be defined withk equations irk unknowns. When+1 > 0, ) )
(17) consists of: equations ink + 1 unknowns, and\s = is unbounded and according to Theorem 4, we have reached

fi (Nik+1) for anyi; € {i,...,ix}, Wheref is an affine  an infeasible part of the state space, which is easily verified.

function. When\#+1 = 0, the solution of (17)-(18) has ™

A > 0 for all i; € {i1,...,ix} (due to n-minimality and

no weakly active constraints for all in C'Ry). To find a 6 Off-Line Mp-QP Algorithm

solution which satisfies Lemma A/#+1 must be increased i i

from zero until\s = 0 for somei; € {iy, ..., i, }. Thisisthe =~ Based onthe results of Sections 3, 4 and 5, we finally present

only solution of (17)-(18) which satisfies Lemma 1 because @n efficient algorithm for the computation of the solution to

if \e+1 is increased furtheps = fis (Aix+1) < 0 (sincef’s the mp-QP (3)-(4). Generally, there exist active sets WhICh

is an affine function). - are not thlmal anywhere in the parameter space (typically,
most active sets are not optimal anywhere). We need an ac-
tive set which is optimal in a full-dimensional region to start

Constraints that are weakly active foralin a critical region,  the algorithm below. Generally we can do this by choos-

can be handled according to the following result, which caning a feasibler, and find the optimal active set for thisby

be proven similarly to Theorem 2. solving a QP. A special case is when we solve a linear MPC
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Table 1: Computation times, double integrator example.
| Hor. | Alg. from[1] | Alg. 1 | #regions |

2 0.77s 0.13s 9
3 2.63s 0.22s 19
4 5.60s 0.38s 33
5 9.01s 0.65s 51
6 16.48 s 1.06s 73

problem. Then there will be a region where the unconstrained:

controller will be optimal, and we can choose the active set
Ao = 0 (see [8], Prop. 2).

Let L..nq be a list of active sets which are found, but not yet
explored (i.e., are candidates for optimality) alig,;: be the

set of active sets which have been explored (i.e., are found td3]

be optimal).

Algorithm 1

Choose the initial active sefly as in [8], Prop. 2; Let
Lcand — {AO}r Lopt — Qx
while L.qnq # () do
Pick an elementl from Leand. Leand < Leana \ {A};
Build the matricess, M and S from A and determine
the local Lagrange multipliersp(z) and the solution
z(x) from (10) and (9);
Find theC' R where A is optimal from (12) and (13), and
find the (n-1)-minimal representation 61R;
if C'R is full-dimensionathen
Lopt — Lopt U {-A};
for each facetF in the (n-1)-dimensional representa-
tion of CR do
Find the optimal active set af by examining the
type of hyperplané is given by;
Find any possible optimal active sets (hR; ac-
cording to Theorem 2, Corollary 1, Theorem 4 and
Theorem 5. If none of these are applicable, one
can find the active set i’ R; by solving a QP as
in [18];
For any new active set,,.,, found, letL 4 <
Lcand U {Anew}
end for
end if
end while

Example 2 For comparing the efficiency of Algorithm 1 and
the algorithm of [1] we have repeated the double integrator
example from [1]. Some corrections for different CPU fre-
quency are madeSymmetries in the MPC problem are here
exploited, almost halving the computation times.In this ex-

ample more than 60% of the time is spent by both algorithms 16]

lutions to MPC control problems. Being based on the ex-
ploitation of direct relations between neighboring polyhedral
regions and combinations of active constraints, we believe
that our contribution significantly advances the field of ex-
plicit MPC control, both theoretically and practically, as ex-
amples have indicated large improvements over existing mp-
QP algorithms.
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