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On the Equivalence of Classes of Hybrid Dynamical Models

W.P.M.H. Heemels B. De Schutter A. Bemporad
Abstract can still model several non-linear and non-smooth processes
with arbitrary accuracy and are capable of handling hybrid

We establish equivalences among five classes of hybrid sys-
tems, that we have encountered in previous research: mixed
logical dynamical systems, linear complementarity systems, 2.2 Mixed Logical Dynamical (MLD) Systems

extended linear complementarity systems, piecewise affine  |n [4] Bemporad and Morari introduced MLD systems, a
systems, and max-min-plus-scaling systems. These results c|ass of hybrid systems in which logic, dynamics and con-

are of paramount importance for transferring properties and straints are integrated. This led to a description of the form
tools from one class to another.

phenomena.

w(k+1) = AbL(k) + Bru(k) + Bad(k) + Baz(k) (28)

1 Introduction y(k) = ( ) + Dyu(k) + D26(k) + Dsz(k) (2b)

Hybrid dynamical systems are systems that contain both ~ E12(k) + Eau(k) + E56(k) 4+ Esz(k) < es, (20)
analog (continuous) and logical (discrete) components. Re- _

cently, these systems receive a lot of attention from both the Wherexz(k) = [z (k) xy (k) ]" with z,(k) € R™ and

computer science and the control community. As tractable n(k) € {0,1}™ (y(k) andu( ) have a similar structure),
methods to analyze general hybrid systems are not available, and wherez(k) € R™ andd(k) € {0,1}™ are auxiliary
several authors have focused on special subclasses for whichvariables. The inequalities (2c) have to be interpreted com-
analysis and control design techniques are currently being de- ponentwise.

veloped. We show that some of these classes are equivalent In [4] it has been shown that the class of MLD systems
(under mild assumptions). The equivalence should be un- includes piecewise affine dynamic systems, linear hybrid sys-
derstand in the sense that the “input-state-output behaviour” tems, finite state machines, (bi)linear systems with discrete
generated by the model classes are equal (cf. below for a inputs and so on. For MLD systems, several tools were in-
more exact definition). These results enable the transfer of troduced for modeling [30], control [4], state estimation and
knowledge from one class to another, they show that more ap- fault detection [3], verification and safety analysis [3].
plications belong to these classes and moreover, for the study
of a particular hybrid system one can choose the modeling
framework that is most suitable.

2.3 Linear Complementarity (LC) Systems
LC systems are studied in e.g. [6,17,25-27]. In discrete
time these systems are given by the equations

2 Classes of Hybrid Models z(k+1) = Az(k) + Byu(k) + Bow(k) (3a)
2.1 Piecewise Affine (PWA) Systems y(k) = Cx(k) + Dyu(k) + Dyw(k) (3b)
PWA systems [28,29] are described by v(k) = Erx(k) + Eau(k) + Esw(k) +es  (3€)
0<w(k)Lw(k)>0 (3d)
o(k+1)= Aiz(k) + Biu(k) + fi [m(k)} cq
y(k) = Ciz(k) + Dyu(k) + g; u(k) v withv(k), w(k) € R* and wherel denotes the orthogonality
1) of vectors (i.ev(k) Lw(k) means thab T (k)w(k) = 0). We
where(); are convex polyhedra (i.e. given by a finite number  call 4(k) andw(k) the complementarity variables.
of inequalities) in the input/state space. The variablég € In[6,17,26,27] (linear) complementarity systemsam-
R™, z(k) € R" andy(k) € R' denote the input, state and  tinuoustime have been studied. Applications include con-
output, respectively, at time. strained mechanical systems, electrical networks with ideal

PWA systems have been studied by several authors (see diodes or other dynamical systems with piecewise linear re-
[2,18,22,24, 28, 29,31-33] and the references therein) as |ations, variable structure systems, constrained optimal con-
they form the “simplest” extension of linear systems that tro| problems and so on. Issues related to modeling, well-
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> 11 (ea = Bra(k) — Ezu(k) — Esd(k)), = 0, (4d)
=1 jed;

whered(k) € R" is an auxiliary variable. Due to (4c), con-
dition (4d) is equivalenttd] ., (es — Erz(k) — Equ(k) —
Esd(k)); = 0 for eachi. This implies that (4c)—(4d) can be
considered as a system of linear inequalities (i.e. (4c)), where
there arep groups of linear inequalities (one group for each
index setp;) such that in each group at least one inequality
should hold with equality.

Remark 1 For ELC systems inequalities of the form (2c)
can be incorporated directly, whereas in LC systems these
inequalities have to be transformed into a (void) comple-
mentarity condition by using slack variables. For LC sys-
tems products consisting of more than 2 factors (such as e.g.
uy (k)ua(k)uz(k) = 0) are not allowed (directly) while in
ELC systems products of 3 or more factors are possildle.

In[11, 12] it has been shown that the class of ELC systems
encompasses max-plus-linear systems [1], first order linear
hybrid systems subject to saturation [11], aimgtonstrained
max-min-plus-scaling systems (see next section).

2.5 Max-Min-Plus-Scaling (MMPS) Systems
An MMPS expressionf of the variablesry, . .
defined by the grammar

[ = zi|a| max(fy, fi)| min(fx, fi)lfx + filBfe

with i € {1,...,n}, o, 8 € R, and f, f; again MMPS
expressions. An example of an MMPS expression is
max(min(2z, —8x3),z2 — 3z3). The symbol| stands
for OR and the definition is recursive. Note that thén
operation is in fact not explicitly needed since we have

min( fy, fi) = — max(—fx, — f1).

MMPS systems are now described by

., Tp IS

z(k+1) = Mg (x(k),u(k),d(k)) (5a)
y(k) = My (z(k), u(k), d(k)) (5b)

together with the constraiht
Me(z(k), u(k),d(k)) < c, (5¢)

where M, M, and M. are MMPS expressions in terms
of the components of:(k), u(k) and the auxiliary vari-
ablesd(k). Model (5a)—(5b) is a generalized framework

that encompasses several special subclasses of hybrid and
discrete-event systems such as max-plus-linear discrete event

systems [1], max-min-plus systems [14, 23], and max-plus-
polynomial systems [12].

To each of the above models one can associate a behaviour

[34] consisting of all sequences: N — R™, z : N —
R™ andy : N — R! such that these sequences satisfy the

model equations (e.qg. (3) for LC systems) for some sequences

of auxiliary variables (e.g. for an LC model (3) for some
sequences : N — R® andw € R®). We say that every
system in a model class A can be rewritten as one in a model

1If (5¢) is absent, we speak of unconstrained MMPS systems.
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class B, if for each system in A, there is a system in B such
that the behaviour of A and B are equal.

Before proving the equivalences among the five classes
of hybrid models described so far, we recall a few results
on piecewise linear functions developed by the circuit and
systems community.

3 Piecewise Linear (PWL) Functions

PWA systems have been around for quite some time in the
systems and control community [28], but only recently the
attention they receive has boosted. Also in the circuits and
systems community piecewise linear (P\Wdaticrepresen-
tations play an important role [7-9, 15, 19, 20, 22, 32] for the
analysis of nonlinear circuits. These representations of PWL
functions are of course immediately relevant for the dynam-
ical systems considered here as the right-hand sides of the
PWA models are multi-variable PWL mappings. As such we
will give a brief overview of the work that is already available
in the literature. For a more extensive survey, see [21,22].

In the circuit theory community one has mainly focused
on PWL mappings that amntinuousand the first represen-
tations were in an explicit form [7,9, 15, 19, 20].

A (continuous) PWL function is a functiofi: R™ — R™
satisfying the following conditions [7]:

1. The domain spacR" is divided into polyhedral re-
gionsQ;, i = 1,..., N by a finite number of bound-
aries such that each boundary is (a subset ofpanl )
dimensional hyperplane, » — 3; = 0 with ; € R",
Bi € R, and cannot be coverddy any (n — 2)-
dimensional hyperplane.

. For any regior);, f can be expressed by an affine
representatiorf (z) = J;x + w; for all z € Q.

. f is continuous over the boundary between two re-
gions, i.e.J;x +w; = Jjx +w; forall z € ;N Q;.

The first canonical representation of PWL functions pro-
posed in [8,9,20] is of the fornfi : R™ — R™ with

P
f(@)=a+Bz+) clalz— 5 6)

i=1

The notation| - | indicates the absolute value (or “vee”)-
function. Any one-dimensional PWL functioh: R — R
can be written in this form. A drawback of this representation
is that it cannot capture all PWL models (see [7]).

To overcome the limitations of (6) @élis came up with
a more general canonical form (see also [22, Ch. 2]) based
on 2-nested “vee” functions of the form

P
flz) = a+BI+Zbi|a;I*ﬂi|+

i=1
q
+ E Cj
j=1

r
d; +73Tx+zdji|a;$+ﬂi| (7
i=1
2Strictly speaking “piecewise affine” might be a more appropriate termi-
nology (and therefore we have used it in Section 2.1). For historical reasons
we will use PWL in the context of circuit theory.
3A boundaryB is said to be covered by a hyperplaHeif B C H.




This representation allows boundaries that are PWL them-
selves. However, the example in [22, p. 40] demonstrates
that still not all continuous PWL mappings can be described
using this model.

Yet another extension was formulated by Kahlert and
Chua [19] that could represent all two-dimensional (contin-
uous) PWL functionsf : R? — R2. Instead of presenting
the details of this representation, which can be found in [19]
or in one of the overviews [21,22], we will now go from the
explicitmodels above to the more generaplicit model as
proposed by Van Bokhoven [31] and based on the linear com-
plementarity problem (LCP) [10]. In [31] a PWL function
f:R™ — R™ has been recast in the form

y=Ar+Bw+g (8a)
v=Cz+Dw+h (8b)
0<vlw>0 (8c)

with z the argument of andy its value. Givenz one has

to solve (8b)—(8c) forv and v after whichv can be sub-
stituted in (8a) to obtai. By this implicit modeling one
can eveninclude certain “one-to-many” or “set-valued” map-
pings. However, for some the above representation may
not define any function valug as the LCP (8b)—(8c) may
have no solutions at all.

In [21, 22] it has been shown that the model description
(8) includes all the previously mentioned canonical repre-
sentations introduced by Chua and Kang [8}z€lis and
Goknar [15], and Kahlert and Chua [19]. The only issue left
is related to the question if amyontinuousPWL mapping
can be cast into the formulation (8).

Theorem 1 Any continuous PWL mappinf: R — R™
can be written in terms of the representation (8).

Proof: Combining Theorem 5.2 and the second remark in
Section 6 of [13] proves the result. ]

4 Relations Inherited from Circuit Theory

The results of the previous section yield immediately
specific relations between certain classesiméonstrained
MMPS (systems with right-hand sides being explicit canon-
ical representations based on “vee” functions), PWA (with
right-hand sides beingontinuousPWL functions) and LC
systems (via the explicit model based on LCPs):

Corollary 1 The classes ofinconstrainedMMPS systems
with right-hand sides given by (6), (7) or as in [19] can be
written as LC systems [21,22].

Corollary 2 EverycontinuousPWA system can be written
as an LC system (Theorem 1).

5 The Equivalence of MLD, LC, ELC, PWA and
MMPS Systems

The relations in Section 4 are far from complete. Now we
will actually show that MLD, LC, ELC, PWA and MMPS
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Rewl. 4

Figure 1: Graphical representation of the links between the classes
of hybrid systems considered in this paper. An arrow
going from class A to class B means that A is a subset
of B. The label next to each arrow corresponds to the
result that states this relation. Moreover, arrows with
a star &) require conditions to establish the indicated
inclusion.

systems are equivalent (although in some cases additional
assumptions are required). The relations between the dif-
ferent models proved in this paper are depicted in Figure 1.
Unless specified otherwise, the proofs of the propositions can
be found in [16]. The examples in Section 7 will illustrate
some of the ideas used in the proofs.

Proposition 1 Every MLD system can be written as an LC
system.

Proposition 2 Every LC system can be written as an MLD
system, provided that the variablegk) andwv (k) are (com-
ponentwise) bounded.

Proposition 2 assumes that upper boundsuwoand v are
known. This hypothesis is not restrictive in practice, as these
quantities are related to continuous inputs and states of the
system, which are usually bounded for physical reasons.

Proposition 3 Every LC system can be written as an ELC
system.

A PWA system of the form (1) is calledell-posed if (1)

is uniquely solvable in:(k + 1) andy(k) oncex(k) and
u(k) are specified. Similar definitions apply to the MLD,
LC, ELC and MMPS systems.

Proposition 4 [4] Every well-posed PWA system can be
rewritten as an MLD system assuming that the set of feasible
states and inputs is bounded.

Remark 2 As MLD models only allow nonstrict inequalities

in (2c¢), in rewriting a discontinuous PWA system as an MLD
model strictinequalities like(k) < 0 must be approximated
by z(k) < —e for somes > 0 (typically the machine preci-
sion) and the conditior-e < x(k) < 0 is included implic-
itly. It can be argued thatthe situatierz < x(k) < 0 cannot
occur due to the finite number of bits used for representing



real numbers (no problem exists when the PWA system is Proof Consider for simplicity autonomous well-posed PWA
continuous, where the strict inequality can be equivalently systems of the form

rewritten as nonstrict, i.ec = 0). See [4] for more details

and Section 7 for a discontinuous example. From a strictly ek+1) = Aw(k) o(k) € ©)
theoretical point of view, the inclusion stated in Proposition 4 y(k) Cix(k) v

is therefore not exact for discontinuous PWA systems, and

the same clearly holds for an LC, ELC or MMPS reformula- where); = {z : H;z < K;} C R™ are convex polyhedra
tion of a discontinuous PWA system when the route viaMLD ~ With H; € R%*™ andK; € R%, i = 1,...,m, which form
systems is taken. One way to circumvent such an inexactness @ partition of the state-spate

is to allow a part of the inequalities in (2c) to be strict. Onthe ~ The equivalent MMPS of (9) is

other hand, from a numerical point of view this issue is not

relevant. The equivalence of LC and MLD systems implies B . "
that all continuous PWA systems can be exactly written as v(k+1)= Zl Aidi(k) (102)
LC systems as well (see also Corollary 2). g m

k)= Cid;i(k 10b
Proposition 5 [2] A completely well-posédVLD system y(k) ; *) (100)
can be rewritten as a PWA system. Hix(k) — w; (k) < K (10c)
Proposition 6 The classes of (constrained) MMPS and ELC wi(k) 20 (10d)
systems coincide. min <'nlmx ((x(k) _di(k))jD) ~o (10e)

1=1,....m \g=1,..., n

Remark 3 As a consequence of the above result and Propo- o
sition 3 it is obvious that every LC system can be recast . . - R
as an MMPS system. A more direct route rewrites an LC R i (k);1; Zwi(k)j =0i=1...,m
system (3) as the contrained MMPS system (3a)—(3b) and =t 7=1
min((Eyz(k) + Eyu(k) + Esw(k) + e4);,w;(k)) = 0 for (10f)
all j. |

whered,;(k) € R", w;(k) a real vector of the same di-
mension ag<’. Note that|(z(k) — d(k));| is equivalent to
max((z(k) — d(k));, (d(k) — x(k));)). Givenz(k), (10e)
imposes that at least for onéhe corresponding; (k) equals
x(k), and (10f) imposes the logic condition

Proposition 7 Every MLD system can be rewritten as an
ELC system.

Remark 4 To prove that an MLD model can be written as an
MMPS system we can use ELC systems as an intermediate
(Theorem 7). However; (k) € {0, 1} is also equivalent to

the MMPS constraintin(d; (k), 1 — 6;(k)) = 0. O

35 wi(k); > 0] = [di(k) =0, Vi=1, ..., m

i.e., that if the constraints (10c) can be satisfied only with
. . the aid of nonzerav;(k); slack variables, then the vector
Proposition 8 Every ELC system can be written as an MLD d;(k) must be0. Because of (10c) and the fact that the
system, provided that the quantity — £,z(k) — Eau(k) — polyhedra are disjointd;(k) can only be nonzero for the
Esd(k) is (componentwise) bounded. index: of the region(; wherez(k) lies. The extension to

Inthe next section we present a direct equivalence between Non-autonomous systemswhére= {[5,] : Hyz+Hj'u <

PWA and MMPS systems, which is a new and stronger result K; } can be easily proved by replacirg with [, B; f”L Ci

6 Direct Equivalence between PWA and MMPS

Systems
y 7 Examples

Well-posed PWA systems form a subset of MMPS systems
by applying Proposition 4, 7 and 6, respectively. However, ; ! " )
tge ir?t%ymgdiatepequivalence through MpLD syst)éms requires some idea on the proofs in [16], we will con;uder two exam-
that bounds on input and state variables are specified. We PI€S of PWA systems: one for which the right-hand side is
provide here a direct proof which does not require any bound- ontinuous and one for which itis discontinuous.
edness conditions. Moreover, this constructive proof leads
in general to “smaller” models.

To demonstrate the equivalences given above and to give

Example 1 Consider the following hybrid system:

; [ <
Proposition 9 Every well-posed PWA system can be written ~ 2(k+ 1) = { z(k) Tu(k) :]t 583 izgg > 1 (11)

as an MMPS system.

5As observed in Remark 2, in case of discontinuities of the PWA func-

4The MLD system (2a) is called completely well-posedy ik + 1), tions in the right-hand side of (9), we should replace some of the strict
y(k), 6(k) andz(k) are uniquely defined in their domain, oneék) and inequalities by non-strict inequalities. To keep the proof compact this will
u(k) are assigned [4]. be avoided here.
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representing an integrator with upper saturation, within the
range—10 < z(k) < 10, -1 < u(k) < 1. System (11)

is in PWA form with the two-dimensional input/state space
partitioned by the hyperplang k) + u(k) = 1. In order to
get the MLD form of (11), we introduce a binary variable
d(k) € {0,1} and a continuous variablgk), to obtain

x(k+1) = z(k) (12a)
together with the linear inequalities
(k) +u(k) +106(k) <1 (12b)
—x(k) —u(k) — (124¢)d(k) < —1—¢ (12c)
—106(k ) z2(k) <1 (12d)
—120(k) — z(k) < — (12e)
—z(k) —u(k) + 126(k )+ z(k) <12 (12f)
(k) +u(k) + 105(k) — z(k) < 10 (129)

where, using the techniques of [4], (12b)—(12c) translate the
relation[d(k) = 1] <> [z(k) + u(k) < 1], (12d)—(12g) the
relationz(k) = (z(k)+u(k))d(k)+(1—4(k)),ands > Ois
a small number (e.g. the machine precision) used to replace
the strict inequalityc(k) + u(k) > 1 by z(k) + u(k) >
1+ e. In view of Remark 2 observe that= 0 results in
a mathematically exact MLD model, which is well-posed as
x(k + 1) is uniquely determined given(k) andu(k), but
not completely well-posed ag’k) + u(k) = 1 allows both
0(k) =0andd(k) =

One can easily verify that (11) can be rewritten as the
(unconstrained) MMPS model

x(k+1) = x(k)+u(k) —max(0, z(k) +u(k)—1) , (13)
as the LC formulation

z(k+1) = z(k)+u(k) —w(k) (14a)
v(k) = —xk)—u(k)+w(k)+1 (14b)
0 < o(k)Lwk)>0, (14c)

and as the ELC representation
x(k+1) = z(k) + u(k) — d(k) (15a)
—d(k) <0, z(k)+u(k)—dk) <1 (15b)
d(k) (1 — (k) — u(k) +d(k)) =0 . (15c)

While the MLD representation (12) requires bounds:¢oh),
u(k) to be specified (although such bounds can be arbitrarily
large), the PWA, MMPS, LC, and ELC expressions do not
require such a specification. m|

Note that we only need one max-operator in (13) and one
complementarity pair in (14). If we would transform the
MLD system (12) into e.g. the LC model as indicated by the
equivalence proof in [16], this would require nine comple-
mentarity pairs (one for each inequality in (12), one for the
binary variablej(k) and two for the auxiliary variable(k)).
Hence, it is clear that the proofs only show that the system

representations can be transferred into each other, but do not

result in the most efficient models.
The following example illustrates some of the issues re-
lated to discontinuous PWA systems (cf. Remark 2).
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Example 2 Consider the PWA system

alk+1) = {‘1)

(16)
which represents a discrete-time relay system with a discon-
tinuity on the planeu(k) = 0. Similarly as above we can
rewrite (16) as the MLD (17) by assuming thatk) is re-
stricted to[m, M| ande > 0 is a small constant.

w(k+1) = 6(k) (17a)
u(k) < M(1-4(k)) (17b)
u(k) = e+ (m—e)i(k) (17¢c)
5(k) e {0,1} (17d)

Note thatu(k) > 0 has been replaced hyk) > <. More-
over, the relations in (17) contain implicitly the condition
u(k) € [m,0] U [e, M] meaning thai:(k) is not allowed to

be situated in the intervdl, ). Of course, the MLD model
can be written as an ELC or (constrained) MMPS system
by replacing the condition (17d) byd(k) < 0, §(k) <1
andd(k)(1 — 6(k)) = 0 or by min(1 — §(k),d(k)) < 0
and —min(1 — 6(k),d(k)) < 0, respectively. An explicit
(unconstrained) MMPS may be of the form

1 1
x(k+1) =1— B max(u(k), OH_E max(u(k)—

€,0), (18)
where in the interva(0, ¢) a linear interpolation is used be-
tween the discontinuous pieces. As mentioned, the MLD
formulation includes the condition(k) € [m,0] U [e, M]
implicitly. Here we have to add this restriction to (18) to
prevent the state from lying in the regidf, ) (where the
model (18) does not comply with (16)) or assume that this is
implied by the computer implementation of the model.

Under the condition tha < u(k) < e willnothappen, an
LC model can be obtained by rewriting a relay characteristic
in complementarity terms as in [27]:

e(k+1) = 1—wa(k) (19a)
v1(k) 1 —wo(k) (19b)
va(k) = g — u(k) + wi (k) (19¢)
0<wi(k) L wik)>0fori=12  (19d)

Observe that the discontinuity is now placed awhich lies

in the “forbidden region.” Also the method in the proof of
Proposition 1 may be used to obtain another LC model, which
is exactly equivalent to the MLD model (i.e. including the
conditionu(k) € [m, 0] U [e, M]) given by

z(k+1) wy (k) (20a)
vi(k) = 1—wi(k) (20b)
va (k) M — Mwy(k) — u(k) (20c)
v3(k) = —e—(m—e)wi(k)+u(k) (20d)
0<wi(k) L wi(k)>0fori=1,23. (20e)

Note thatw,(k) and ws(k) do not influence any of the
equations and can be taken equal to zero to saisfy



vi(k)Lw;(k) > 0,4 = 2,3. In fact, the “dummy” comple-
mentarity conditiond) < wv;(k)Lw;(k) > 0, @ 2,3
and (20c¢)-(20d) are equivalent to (17b)-(17c). The comple-
mentarity betweenv, (k) and v, (k) implies thatw, (k) €
{0,1} asin (17d) and is actually equal &¢k) in (17). O

8 Conclusions and Topics for Future Research

In this paper we have shown the equivalence of five classes
of hybrid systems: MLD, LC, ELC, PWA, and MMPS sys-
tems. For some of the transformations additional conditions
like boundedness of the state and input variables or well-
posedness had to be made.

Animportant topic for future research is to use the equiva-
lences to transfer techniques for analysis and synthesis from
one class of hybrid systems to another. By doing so, a com-
bined effort will be realized for researching systems with a
behaviour that can be modeled by any of the hybrid model
descriptions as presented in this paper. Moreover, it is inter-
esting to study which modeling framework is most appropri-
ate for solving specific control problems related to e.g. well-
posedness, safety analysis, and stability. Also the computa-
tional side is crucial; one might pose the question which rep-
resentation leads to the most efficient numerical algorithms
for synthesizing and analyzing control strategies. A related
questionis suggested by Example 1, which demonstrated that
certain hybrid models are more compact (“economical”) than
others if one considers a specific application. The construc-
tive proofs of the equivalences will not always yield the most
efficient models in going from one class to another. Hence,
it deserves more attention which model class should be cho-
sen for a particular kind of application and how to obtain a
model within the class of “smallest size,” which will lead to
computational advantages.
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