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Abstract

We establish equivalences among five classes of hybrid
tems, that we have encountered in previous research: m
logical dynamical systems, linear complementarity syste
extended linear complementarity systems, piecewise af
systems, and max-min-plus-scaling systems. These re
are of paramount importance for transferring properties
tools from one class to another.

1 Introduction

Hybrid dynamical systems are systems that contain b
analog (continuous) and logical (discrete) components.
cently, these systems receive a lot of attention from both
computer science and the control community. As tracta
methods to analyze general hybrid systems are not availa
several authors have focused on special subclasses for w
analysis and control design techniques are currently being
veloped. We show that some of these classes are equiv
(under mild assumptions). The equivalence should be
derstand in the sense that the “input-state-output behavi
generated by the model classes are equal (cf. below f
more exact definition). These results enable the transfe
knowledge from one class to another, they show that more
plications belong to these classes and moreover, for the s
of a particular hybrid system one can choose the mode
framework that is most suitable.

2 Classes of Hybrid Models

2.1 Piecewise Affine (PWA) Systems
PWA systems [28,29] are described by

x(k + 1) = Aix(k) + Biu(k) + fi

y(k) = Cix(k) + Diu(k) + gi
for

[
x(k)
u(k)

]
∈ Ωi,

(1)
whereΩi are convex polyhedra (i.e. given by a finite numb
of inequalities) in the input/state space. The variablesu(k) ∈
R

m, x(k) ∈ R
n andy(k) ∈ R

l denote the input, state an
output, respectively, at timek.

PWA systems have been studied by several authors
[2, 18, 22, 24, 28, 29, 31–33] and the references therein
they form the “simplest” extension of linear systems th
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can still model several non-linear and non-smooth process
with arbitrary accuracy and are capable of handling hybri
phenomena.

2.2 Mixed Logical Dynamical (MLD) Systems
In [4] Bemporad and Morari introduced MLD systems, a

class of hybrid systems in which logic, dynamics and con
straints are integrated. This led to a description of the form

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k) (2a)

y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k) (2b)

E1x(k) + E2u(k) + E3δ(k) + E4z(k) 6 e5, (2c)

wherex(k) = [ x>
r (k) x>

b (k) ]> with xr(k) ∈ R
nr and

xb(k) ∈ {0, 1}nb (y(k) andu(k) have a similar structure),
and wherez(k) ∈ R

rr and δ(k) ∈ {0, 1}rb are auxiliary
variables. The inequalities (2c) have to be interpreted com
ponentwise.

In [4] it has been shown that the class of MLD system
includes piecewise affine dynamic systems, linear hybrid sy
tems, finite state machines, (bi)linear systems with discre
inputs and so on. For MLD systems, several tools were in
troduced for modeling [30], control [4], state estimation an
fault detection [3], verification and safety analysis [5].

2.3 Linear Complementarity (LC) Systems
LC systems are studied in e.g. [6, 17, 25–27]. In discre

time these systems are given by the equations

x(k + 1) = Ax(k) + B1u(k) + B2w(k) (3a)

y(k) = Cx(k) + D1u(k) + D2w(k) (3b)

v(k) = E1x(k) + E2u(k) + E3w(k) + e4 (3c)

0 ≤ v(k)⊥w(k) ≥ 0 (3d)

with v(k), w(k) ∈ R
s and where⊥denotes the orthogonality

of vectors (i.e.v(k)⊥w(k) means thatv>(k)w(k) = 0). We
call v(k) andw(k) the complementarity variables.

In [6,17,26,27] (linear) complementarity systems incon-
tinuoustime have been studied. Applications include con
strained mechanical systems, electrical networks with ide
diodes or other dynamical systems with piecewise linear r
lations, variable structure systems, constrained optimal co
trol problems and so on. Issues related to modeling, we
posedness [17,26,27], simulation and discretization [6] ha
been of particular interest.

2.4 Extended Linear Complementarity (ELC) Systems
ELC systems are described by:

x(k + 1) = Ax(k) + B1u(k) + B2d(k) (4a)

y(k) = Cx(k) + D1u(k) + D2d(k) (4b)

E1x(k) + E2u(k) + E3d(k) 6 e4 (4c)
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p∑
i=1

∏
j∈φi

(
e4 − E1x(k) − E2u(k) − E3d(k)

)
j

= 0, (4d)

whered(k) ∈ R
r is an auxiliary variable. Due to (4c), con-

dition (4d) is equivalent to
∏

j∈φi
(e4 −E1x(k)−E2u(k)−

E3d(k))j = 0 for eachi. This implies that (4c)–(4d) can be
considered as a system of linear inequalities (i.e. (4c)), wh
there arep groups of linear inequalities (one group for eac
index setφi) such that in each group at least one inequali
should hold with equality.

Remark 1 For ELC systems inequalities of the form (2c
can be incorporated directly, whereas in LC systems the
inequalities have to be transformed into a (void) compl
mentarity condition by using slack variables. For LC sys
tems products consisting of more than 2 factors (such as e
u1(k)u2(k)u3(k) = 0) are not allowed (directly) while in
ELC systems products of 3 or more factors are possible.2

In [11, 12] it has been shown that the class of ELC system
encompasses max-plus-linear systems [1], first order line
hybrid systems subject to saturation [11], andunconstrained
max-min-plus-scaling systems (see next section).

2.5 Max-Min-Plus-Scaling (MMPS) Systems
An MMPS expressionf of the variablesx1, . . . , xn is

defined by the grammar

f := xi|α|max(fk, fl)|min(fk, fl)|fk + fl|βfk

with i ∈ {1, . . . , n}, α, β ∈ R, andfk, fl again MMPS
expressions. An example of an MMPS expression
max(min(2x1,−8x2), x2 − 3x3). The symbol| stands
for OR and the definition is recursive. Note that themin
operation is in fact not explicitly needed since we hav
min(fk, fl) = − max(−fk,−fl).

MMPS systems are now described by

x(k + 1) = Mx(x(k), u(k), d(k)) (5a)

y(k) = My(x(k), u(k), d(k)) (5b)

together with the constraint1

Mc(x(k), u(k), d(k)) 6 c, (5c)

whereMx, My andMc are MMPS expressions in terms
of the components ofx(k), u(k) and the auxiliary vari-
ablesd(k). Model (5a)–(5b) is a generalized framewor
that encompasses several special subclasses of hybrid
discrete-event systems such as max-plus-linear discrete e
systems [1], max-min-plus systems [14, 23], and max-plu
polynomial systems [12].

To each of the above models one can associate a behav
[34] consisting of all sequencesu : N 7→ R

m, x : N 7→
R

n andy : N 7→ R
l such that these sequences satisfy th

model equations (e.g. (3) for LC systems) for some sequen
of auxiliary variables (e.g. for an LC model (3) for som
sequencesv : N 7→ R

s andw ∈ R
s). We say that every

system in a model class A can be rewritten as one in a mo

1If (5c) is absent, we speak of unconstrained MMPS systems.
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class B, if for each system in A, there is a system in B suc
that the behaviour of A and B are equal.

Before proving the equivalences among the five class
of hybrid models described so far, we recall a few resul
on piecewise linear functions developed by the circuit an
systems community.

3 Piecewise Linear (PWL) Functions

PWA systems have been around for quite some time in t
systems and control community [28], but only recently th
attention they receive has boosted. Also in the circuits a
systems community piecewise linear (PWL)2 staticrepresen-
tations play an important role [7–9,15,19,20,22,32] for th
analysis of nonlinear circuits. These representations of PW
functions are of course immediately relevant for the dynam
ical systems considered here as the right-hand sides of
PWA models are multi-variable PWL mappings. As such w
will give a brief overview of the work that is already available
in the literature. For a more extensive survey, see [21,22]

In the circuit theory community one has mainly focuse
on PWL mappings that arecontinuousand the first represen-
tations were in an explicit form [7,9,15,19,20].

A (continuous) PWL function is a functionf : R
n → R

m

satisfying the following conditions [7]:

1. The domain spaceRn is divided into polyhedral re-
gionsΩi, i = 1, . . . , N by a finite number of bound-
aries such that each boundary is (a subset of) an(n−1)
dimensional hyperplaneα>

i x−βi = 0 with αi ∈ R
n,

βi ∈ R, and cannot be covered3 by any (n − 2)-
dimensional hyperplane.

2. For any regionΩi, f can be expressed by an affine
representationf(x) = Jix + wi for all x ∈ Ωi.

3. f is continuous over the boundary between two re
gions, i.e.Jix + wi = Jjx + wj for all x ∈ Ωi ∩ Ωj .

The first canonical representation of PWL functions pro
posed in [8,9,20] is of the formf : R

n → R
m with

f(x) = a + Bx +
p∑

i=1

ci|α>
i x − βi| (6)

The notation| · | indicates the absolute value (or “vee”)-
function. Any one-dimensional PWL functionf : R → R

can be written in this form. A drawback of this representatio
is that it cannot capture all PWL models (see [7]).

To overcome the limitations of (6) G¨uzelis came up with
a more general canonical form (see also [22, Ch. 2]) bas
on2-nested “vee” functions of the form

f(x) = a + Bx +
p∑

i=1

bi|α>
i x − βi|+

+
q∑

j=1

cj

∣∣∣δj + γ>
j x +

r∑
i=1

dji|α>
i x + βi|

∣∣∣ (7)

2Strictly speaking “piecewise affine” might be a more appropriate term
nology (and therefore we have used it in Section 2.1). For historical reaso
we will use PWL in the context of circuit theory.

3A boundaryB is said to be covered by a hyperplaneH, if B ⊆ H.
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This representation allows boundaries that are PWL the
selves. However, the example in [22, p. 40] demonstra
that still not all continuous PWL mappings can be describ
using this model.

Yet another extension was formulated by Kahlert a
Chua [19] that could represent all two-dimensional (cont
uous) PWL functionsf : R

2 → R
2. Instead of presenting

the details of this representation, which can be found in [1
or in one of the overviews [21,22], we will now go from th
explicit models above to the more generalimplicit model as
proposed byVan Bokhoven [31] and based on the linear co
plementarity problem (LCP) [10]. In [31] a PWL function
f : R

n → R
m has been recast in the form

y = Ax + Bw + g (8a)

v = Cx + Dw + h (8b)

0 ≤ v⊥w ≥ 0 (8c)

with x the argument off andy its value. Givenx one has
to solve (8b)–(8c) forw and v after whichv can be sub-
stituted in (8a) to obtainy. By this implicit modeling one
can even include certain “one-to-many” or “set-valued” ma
pings. However, for somex the above representation ma
not define any function valuey as the LCP (8b)–(8c) may
have no solutions at all.

In [21, 22] it has been shown that the model descripti
(8) includes all the previously mentioned canonical rep
sentations introduced by Chua and Kang [8], G¨uzelis and
Göknar [15], and Kahlert and Chua [19]. The only issue le
is related to the question if anycontinuousPWL mapping
can be cast into the formulation (8).

Theorem 1 Any continuous PWL mappingf : R
n → R

m

can be written in terms of the representation (8).

Proof: Combining Theorem 5.2 and the second remark
Section 6 of [13] proves the result. 2

4 Relations Inherited from Circuit Theory

The results of the previous section yield immediate
specific relations between certain classes ofunconstrained
MMPS (systems with right-hand sides being explicit cano
ical representations based on “vee” functions), PWA (w
right-hand sides beingcontinuousPWL functions) and LC
systems (via the explicit model based on LCPs):

Corollary 1 The classes ofunconstrainedMMPS systems
with right-hand sides given by (6), (7) or as in [19] can b
written as LC systems [21,22].

Corollary 2 EverycontinuousPWA system can be written
as an LC system (Theorem 1).

5 The Equivalence of MLD, LC, ELC, PWA and
MMPS Systems

The relations in Section 4 are far from complete. Now w
will actually show that MLD, LC, ELC, PWA and MMPS

3

-

-
MLD

PWA MMPS

ELC

LC
Prop. 1

Prop. 2 Prop. 3
Prop. 4

Prop. 5

Prop. 6

Prop. 7

Prop. 8

Cor. 1
Cor. 2

Cor. 3

?

?

?

?

Prop. 9 ?

?

?

?

Rem. 3

Rem. 4

Figure 1: Graphical representation of the links between the class
of hybrid systems considered in this paper. An arrow
going from class A to class B means that A is a subs
of B. The label next to each arrow corresponds to th
result that states this relation. Moreover, arrows wit
a star (?) require conditions to establish the indicated
inclusion.

systems are equivalent (although in some cases additio
assumptions are required). The relations between the d
ferent models proved in this paper are depicted in Figure
Unless specified otherwise, the proofs of the propositions c
be found in [16]. The examples in Section 7 will illustrate
some of the ideas used in the proofs.

Proposition 1 Every MLD system can be written as an LC
system.

Proposition 2 Every LC system can be written as an MLD
system, provided that the variablesw(k) andv(k) are (com-
ponentwise) bounded.

Proposition 2 assumes that upper bounds onw and v are
known. This hypothesis is not restrictive in practice, as the
quantities are related to continuous inputs and states of
system, which are usually bounded for physical reasons.

Proposition 3 Every LC system can be written as an ELC
system.

A PWA system of the form (1) is calledwell-posed, if (1)
is uniquely solvable inx(k + 1) andy(k) oncex(k) and
u(k) are specified. Similar definitions apply to the MLD,
LC, ELC and MMPS systems.

Proposition 4 [4] Every well-posed PWA system can b
rewritten as an MLD system assuming that the set of feasib
states and inputs is bounded.

Remark 2 As MLD models only allow nonstrict inequalities
in (2c), in rewriting a discontinuous PWA system as an MLD
model strict inequalities likex(k) < 0 must be approximated
by x(k) ≤ −ε for someε > 0 (typically the machine preci-
sion) and the condition−ε < x(k) < 0 is included implic-
itly. It can be argued that the situation−ε < x(k) < 0 cannot
occur due to the finite number of bits used for representin
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real numbers (no problem exists when the PWA system
continuous, where the strict inequality can be equivalen
rewritten as nonstrict, i.e.ε = 0). See [4] for more details
and Section 7 for a discontinuous example. From a stric
theoretical point of view, the inclusion stated in Proposition
is therefore not exact for discontinuous PWA systems, a
the same clearly holds for an LC, ELC or MMPS reformula
tion of a discontinuous PWA system when the route via ML
systems is taken. One way to circumvent such an inexactn
is to allow a part of the inequalities in (2c) to be strict. On th
other hand, from a numerical point of view this issue is n
relevant. The equivalence of LC and MLD systems implie
that all continuous PWA systems can be exactly written
LC systems as well (see also Corollary 2). 2

Proposition 5 [2] A completely well-posed4 MLD system
can be rewritten as a PWA system.

Proposition 6 The classes of (constrained) MMPS and EL
systems coincide.

Remark 3 As a consequence of the above result and Prop
sition 3 it is obvious that every LC system can be reca
as an MMPS system. A more direct route rewrites an L
system (3) as the contrained MMPS system (3a)–(3b) a
min((E1x(k) + E2u(k) + E3w(k) + e4)j , wj(k)) = 0 for
all j. 2

Proposition 7 Every MLD system can be rewritten as a
ELC system.

Remark 4 To prove that an MLD model can be written as a
MMPS system we can use ELC systems as an intermed
(Theorem 7). However,δi(k) ∈ {0, 1} is also equivalent to
the MMPS constraintmin(δi(k), 1 − δi(k)) = 0. 2

Proposition 8 Every ELC system can be written as an MLD
system, provided that the quantitye4 − E1x(k) − E2u(k) −
E3d(k) is (componentwise) bounded.

In the next section we present a direct equivalence betwe
PWA and MMPS systems, which is a new and stronger res
than in [16].

6 Direct Equivalence between PWA and MMPS
Systems

Well-posed PWA systems form a subset of MMPS system
by applying Proposition 4, 7 and 6, respectively. Howeve
the intermediate equivalence through MLD systems requir
that bounds on input and state variables are specified.
provide here a direct proof which does not require any boun
edness conditions. Moreover, this constructive proof lea
in general to “smaller” models.

Proposition 9 Every well-posed PWA system can be writte
as an MMPS system.

4The MLD system (2a) is called completely well-posed, ifx(k + 1),
y(k), δ(k) andz(k) are uniquely defined in their domain, oncex(k) and
u(k) are assigned [4].
367
s

Proof Consider for simplicity autonomous well-posed PWA
systems of the form

x(k + 1) = Aix(k)
y(k) = Cix(k) for x(k) ∈ Ωi, (9)

whereΩi = {x : Hix ≤ Ki} ⊆ R
n are convex polyhedra

with Hi ∈ R
qi×n andKi ∈ R

qi , i = 1, . . . , m, which form
a partition of the state-space5.

The equivalent MMPS of (9) is

x(k + 1) =
m∑

i=1

Aidi(k) (10a)

y(k) =
m∑

i=1

Cidi(k) (10b)

Hix(k) − wi(k) 6 Ki (10c)

wi(k) > 0 (10d)

min
i=1,...,m

(
max

j=1,...,n
(|(x(k) − di(k))j |)

)
= 0 (10e)

min


 n∑

j=1

|di(k)j |,
qi∑

j=1

wi(k)j


 = 0, i = 1, . . . , m

(10f)

wheredi(k) ∈ R
n, wi(k) a real vector of the same di-

mension asKi. Note that|(x(k) − d(k))j | is equivalent to
max((x(k) − d(k))j , (d(k) − x(k))j)). Givenx(k), (10e)
imposes that at least for onei the correspondingdi(k) equals
x(k), and (10f) imposes the logic condition

[∃ j : wi(k)j > 0] → [di(k) = 0], ∀i = 1, . . . , m

i.e., that if the constraints (10c) can be satisfied only with
the aid of nonzerowi(k)j slack variables, then the vector
di(k) must be0. Because of (10c) and the fact that the
polyhedra are disjoint,di(k) can only be nonzero for the
index i of the regionΩi wherex(k) lies. The extension to
non-autonomous systems whereΩi = {[ x

u ] : Hx
i x+Hu

i u ≤
Ki} can be easily proved by replacingAi with [Ai Bi fi], Ci

with [Ci Di gi], Hi(di(k) − wi(k)) 6 Ki with [Hx
i Hu

i −
Ki](di(k) − wi(k)) 6 0. 2

7 Examples

To demonstrate the equivalences given above and to gi
some idea on the proofs in [16], we will consider two exam
ples of PWA systems: one for which the right-hand side i
continuous and one for which it is discontinuous.

Example 1 Consider the following hybrid system:

x(k + 1) =
{

x(k) + u(k) if x(k) + u(k) ≤ 1
1 if x(k) + u(k) > 1 (11)

5As observed in Remark 2, in case of discontinuities of the PWA func
tions in the right-hand side of (9), we should replace some of the stric
inequalities by non-strict inequalities. To keep the proof compact this wil
be avoided here.
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representing an integrator with upper saturation, within th
range−10 ≤ x(k) ≤ 10, −1 ≤ u(k) ≤ 1. System (11)
is in PWA form with the two-dimensional input/state space
partitioned by the hyperplanex(k) + u(k) = 1. In order to
get the MLD form of (11), we introduce a binary variable
δ(k) ∈ {0, 1} and a continuous variablez(k), to obtain

x(k + 1) = z(k) (12a)

together with the linear inequalities

x(k) + u(k) + 10δ(k) ≤ 11 (12b)

−x(k) − u(k) − (12 + ε)δ(k) ≤ −1 − ε (12c)

−10δ(k) + z(k) ≤ 1 (12d)

−12δ(k) − z(k) ≤ −1 (12e)

−x(k) − u(k) + 12δ(k) + z(k) ≤ 12 (12f)

x(k) + u(k) + 10δ(k) − z(k) ≤ 10 (12g)

where, using the techniques of [4], (12b)–(12c) translate th
relation[δ(k) = 1] ↔ [x(k) + u(k) ≤ 1], (12d)–(12g) the
relationz(k) = (x(k)+u(k))δ(k)+(1−δ(k)), andε > 0 is
a small number (e.g. the machine precision) used to repla
the strict inequalityx(k) + u(k) > 1 by x(k) + u(k) ≥
1 + ε. In view of Remark 2 observe thatε = 0 results in
a mathematically exact MLD model, which is well-posed as
x(k + 1) is uniquely determined givenx(k) andu(k), but
not completely well-posed asx(k) + u(k) = 1 allows both
δ(k) = 0 andδ(k) = 1.

One can easily verify that (11) can be rewritten as the
(unconstrained) MMPS model

x(k+1) = x(k)+u(k)−max(0, x(k)+u(k)−1) , (13)

as the LC formulation

x(k + 1) = x(k) + u(k) − w(k) (14a)

v(k) = −x(k) − u(k) + w(k) + 1 (14b)

0 ≤ v(k) ⊥ w(k) ≥ 0 , (14c)

and as the ELC representation

x(k + 1) = x(k) + u(k) − d(k) (15a)

− d(k) ≤ 0, x(k) + u(k) − d(k) ≤ 1 (15b)

d(k)
(
1 − x(k) − u(k) + d(k)

)
= 0 . (15c)

While the MLD representation (12) requires bounds onx(k),
u(k) to be specified (although such bounds can be arbitraril
large), the PWA, MMPS, LC, and ELC expressions do no
require such a specification. 2

Note that we only need one max-operator in (13) and on
complementarity pair in (14). If we would transform the
MLD system (12) into e.g. the LC model as indicated by the
equivalence proof in [16], this would require nine comple-
mentarity pairs (one for each inequality in (12), one for the
binary variableδ(k) and two for the auxiliary variablez(k)).
Hence, it is clear that the proofs only show that the system
representations can be transferred into each other, but do n
result in the most efficient models.

The following example illustrates some of the issues re
lated to discontinuous PWA systems (cf. Remark 2).

36
t

Example 2 Consider the PWA system

x(k + 1) =

{
0, u(k) > 0
1, u(k) ≤ 0

(16)

which represents a discrete-time relay system with a discon
tinuity on the planeu(k) = 0. Similarly as above we can
rewrite (16) as the MLD (17) by assuming thatu(k) is re-
stricted to[m, M ] andε > 0 is a small constant.

x(k + 1) = δ(k) (17a)

u(k) ≤ M(1 − δ(k)) (17b)

u(k) ≥ ε + (m − ε)δ(k) (17c)

δ(k) ∈ {0, 1} (17d)

Note thatu(k) > 0 has been replaced byu(k) ≥ ε. More-
over, the relations in (17) contain implicitly the condition
u(k) ∈ [m, 0] ∪ [ε, M ] meaning thatu(k) is not allowed to
be situated in the interval(0, ε). Of course, the MLD model
can be written as an ELC or (constrained) MMPS system
by replacing the condition (17d) by−δ(k) ≤ 0, δ(k) ≤ 1,
and δ(k)(1 − δ(k)) = 0 or by min(1 − δ(k), δ(k)) ≤ 0
and−min(1 − δ(k), δ(k)) ≤ 0, respectively. An explicit
(unconstrained) MMPS may be of the form

x(k+1) = 1− 1
ε

max(u(k), 0)+
1
ε

max(u(k)−ε, 0), (18)

where in the interval(0, ε) a linear interpolation is used be-
tween the discontinuous pieces. As mentioned, the MLD
formulation includes the conditionu(k) ∈ [m, 0] ∪ [ε, M ]
implicitly. Here we have to add this restriction to (18) to
prevent the state from lying in the region(0, ε) (where the
model (18) does not comply with (16)) or assume that this is
implied by the computer implementation of the model.

Under the condition that0 < u(k) < ε will not happen, an
LC model can be obtained by rewriting a relay characteristic
in complementarity terms as in [27]:

x(k + 1) = 1 − w2(k) (19a)

v1(k) = 1 − w2(k) (19b)

v2(k) =
ε

2
− u(k) + w1(k) (19c)

0 ≤ vi(k) ⊥ wi(k) ≥ 0 for i = 1, 2. (19d)

Observe that the discontinuity is now placed atε
2 , which lies

in the “forbidden region.” Also the method in the proof of
Proposition 1 may be used to obtain another LC model, which
is exactly equivalent to the MLD model (i.e. including the
conditionu(k) ∈ [m, 0] ∪ [ε, M ]) given by

x(k + 1) = w1(k) (20a)

v1(k) = 1 − w1(k) (20b)

v2(k) = M − Mw1(k) − u(k) (20c)

v3(k) = −ε − (m − ε)w1(k) + u(k) (20d)

0 ≤ vi(k) ⊥ wi(k) ≥ 0 for i = 1, 2, 3. (20e)

Note thatw2(k) and w3(k) do not influence any of the
equations and can be taken equal to zero to satisfy0 ≤
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vi(k)⊥wi(k) ≥ 0, i = 2, 3. In fact, the “dummy” comple-
mentarity conditions0 ≤ vi(k)⊥wi(k) ≥ 0, i = 2, 3
and (20c)-(20d) are equivalent to (17b)-(17c). The comple
mentarity betweenw1(k) andv1(k) implies thatw1(k) ∈
{0, 1} as in (17d) and is actually equal toδ(k) in (17). 2

8 Conclusions and Topics for Future Research

In this paper we have shown the equivalence of five class
of hybrid systems: MLD, LC, ELC, PWA, and MMPS sys-
tems. For some of the transformations additional condition
like boundedness of the state and input variables or we
posedness had to be made.

An important topic for future research is to use the equiva
lences to transfer techniques for analysis and synthesis fro
one class of hybrid systems to another. By doing so, a com
bined effort will be realized for researching systems with
behaviour that can be modeled by any of the hybrid mod
descriptions as presented in this paper. Moreover, it is inte
esting to study which modeling framework is most appropr
ate for solving specific control problems related to e.g. wel
posedness, safety analysis, and stability. Also the compu
tional side is crucial; one might pose the question which rep
resentation leads to the most efficient numerical algorithm
for synthesizing and analyzing control strategies. A relate
question is suggested by Example 1, which demonstrated t
certain hybrid models are more compact (“economical”) tha
others if one considers a specific application. The constru
tive proofs of the equivalences will not always yield the mos
efficient models in going from one class to another. Henc
it deserves more attention which model class should be ch
sen for a particular kind of application and how to obtain
model within the class of “smallest size,” which will lead to
computational advantages.
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