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Abstract

The following five classes of hybrid systems were re-
cently proved to be equivalent: linear complemen-
tarity (LC) systems, extended linear complementarity
(ELC) systems, mixed logical dynamical (MLD) sys-
tems, piecewise affine (PWA) systems, and max-min-
plus-scaling (MMPS) systems. Some of the equiv-
alences were obtained under additional assumptions,
such as boundedness of system variables. In this pa-
per, for linear or hybrid plants in closed-loop with a
model predictive control (MPC) controller based on a
linear model and fulfilling linear constraints on input
and state variables, we provide a simple and direct proof
that the closed-loop system (cl-MPC) is a subclass of
any of the former five classes of hybrid systems. This re-
sult opens the use of tools developed for hybrid systems
(such as stability, robust stability, and safety analysis
tools) to study closed-loop properties of MPC.

1 Introduction

Hybrid dynamical models describe systems where both
analog (continuous) and logical (discrete) components
are relevant and interacting [1]. Recently, hybrid sys-
tems received a lot of attention from both the computer
science and the control community, but general analysis
and control design methods for hybrid systems are not
yet available. For this reason, several authors have fo-
cused on special subclasses of hybrid systems for which
safety analysis, stability analysis, and control design
techniques are currently being developed.

Some examples of such subclasses are: linear com-
plementarity (LC) systems [2], extended linear com-
plementarity systems (ELC) [3, 4], mixed logical dy-
namical (MLD) systems [5, 6], piecewise affine (PWA)
systems [7], and max-min-plus-scaling (MMPS) sys-
tems [8].

Each subclass has its own advantages over the others,
for instance stability criteria were proposed for PWA
systems [9], control and verification techniques for MLD
hybrid models [5,6,10], and conditions for existence and
uniqueness of solution trajectories (well-posedness) for
LC systems [2]. In particular, MLD models were proven
successful for recasting hybrid dynamical optimization
problems into mixed-integer linear and quadratic pro-
grams, and a language was developed in [11] for au-
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tomatically generating MLD models from a high level
textual description of the hybrid dynamics.

In [12] we showed that several subclasses of discrete-
time hybrid systems are equivalent. Some of the equiv-
alences were obtained under additional assumptions re-
lated to well-posedness (i.e., existence and uniqueness
of solution trajectories) and boundedness of (combina-
tions of) input, state, output and auxiliary variables.
These results are extremely important, as they allow
to transfer all the above analysis and synthesis tools to
any of the equivalent subclasses of hybrid systems.

In this paper we show that closed-loop Model Predictive
Control (cl-MPC) systems can be written as LC and
MLD systems. The latter result is of extreme practical
importance, as it allows to analyze cl-MPC systems by
using hybrid tools (e.g., for safety/reachability and (ro-
bust) stability analysis). Related results were obtained
in [13], where the authors showed that MPC control is
equal to a piecewise affine control law that can be com-
puted off-line by using multiparametric quadratic pro-
gramming solvers (and, therefore, that the closed-loop
system is a PWA system). Based on this result, in [14]
the authors used reachability analysis for stability and
performance characterization of cl-MPC. Rather than
exploiting the equivalence results of [12] to convert from
PWA to LC and MLD, which would require additional
assumptions on the boundedness of the Lagrange mul-
tipliers associated with the MPC optimization problem,
we provide a simple, direct, and constructive proof to
rewrite cl-MPC systems as LC and MLD systems.

Despite the fact that MPC schemes are typically de-
signed so that they are intrinsically stable and fulfill
operating constraints, stability is guaranteed through
the introduction of stability constraints, which are of-
ten removed in practical MPC schemes as they typically
deteriorate performance or complicate the optimization
problem. Moreover, such guarantees only hold when the
nominal model of the plant and the prediction model co-
incide. An important issue is to analyze the behavior
of the feedback loop when the nominal model and the
plant model differ, e.g., because of the presence of non-
linearities. Robust MPC techniques [15] partially solve
this issue, by taking into account a class of linear un-
certain models rather than one single prediction model,
although this typically requires increased computation
effort and, again, leads to deterioration of performance.

The results of this paper allow to transfer the stabil-
ity analysis, robust stability analysis, well-posedness,
and safety analysis tools developed for hybrid systems
to any combination of a linear MPC controller and a
linear plant, possibly against disturbances and model



uncertainties. The results can be easily extended to
arbitrary combinations of linear MPC controllers and
hybrid plants, such as hybrid approximations of com-
plex nonlinear dynamic models of the process to be
controlled.

2 Classes of Hybrid Dynamical Models

In this paper we consider discrete-time models of the
form

x(k + 1) = f(x(k), u(k), w(k)) (1a)
y(k) = g(x(k), u(k), w(k)) (1b)

0 ≤ h(x(k), u(k), w(k)) (1c)

where the variables u(k) ∈ R
m, x(k) ∈ R

n and y(k) ∈
R

l denote the input, state and output, respectively,
at time k, and w(k) ∈ R

r is a vector of auxiliary
variables (this notation also holds for all the hybrid
models introduced later), f : R

n × R
m × R

r �→ R
n,

g : R
n × R

m × R
r �→ R

p, h : R
n × R

m × R
r �→ R

q, and
the last inequality should be interpreted component-
wise. Specific choices of the form of the functions f , g,
h will determine different classes of hybrid systems, as
we will detail in the rest of this section.
Remark 1 The general formulation (1) allows to spec-
ify that some of the state, input, output, or auxil-
iary variables only assume discrete values, for instance
wi(k) ∈ {0, 1} can be represented by the two in-
equalities max(wi(k) − 1,−wi(k)) ≥ 0, −max(wi(k) −
1,−wi(k)) ≥ 0. Equivalently, it can be also represented
as wi(k)(1 − wi(k)) ≤ 0, wi(k) ≥ 0, 1 − wi(k) ≥ 0. �

Definition 1 Let Ω ⊆ R
n×R

m be a set of input+state
pairs. A hybrid system of the form (1) is called well-
posed on Ω, if (1) is uniquely solvable in x(k + 1) and
y(k) for all pairs (x(k), u(k)) ∈ Ω.

Definition 2 Let X(0) ⊆ R
n be a set of initial con-

ditions, and U ⊆ R
m a set of inputs. A hybrid sys-

tem of the form (1) is called persistently well-posed on
(X(0), U) if for all k ≥ 0 (1) is uniquely solvable in
x(k + 1) and y(k), for all pairs (x(k), u(k)) such that
x(0) ∈ X(0), u(k) ∈ U .

Definitions 1, 2 imply that x(k + 1), y(k) are unique
functions of (x(k), u(k)), and therefore that the com-
ponents of w(k) which affect x(k + 1), y(k) through f ,
and g, respectively, are implicitly defined by the vector
inequality (1c).

Note that while Definition 1 concerns a spatial prop-
erty of f , g, and h, Definition 2 also involves temporal
properties, namely the dynamics of system (1). The
property of persistent well-posedness is therefore more
difficult to test than simpler well-posedness on a given
set Ω of state+inputs. Nevertheless, it can be addressed
by using formal verification methods and reachability
analysis [10].
Remark 2 As will be also clarified later for PWA
and MLD systems, for well-posedness of several in-
stances of (1) over compact sets of R

n × R
m, the in-

equalities in (1) should be split into strict inequali-
ties hi(x(k), u(k), w(k)) > 0, i ∈ I, and nonstrict in-
equalities hj(x(k), u(k), w(k)) ≥ 0, j ∈ J , I ∩ J = ∅,

I ∪ J = {1, . . . , q}. Although this would be important
from a system theoretical point of view, it is not of prac-
tical interest from a numerical point of view, as “>”
cannot be represented in numerical algorithms working
in finite precision. Indeed, h > 0 can be only repre-
sented as h ≥ ε, and ε is some pre-specified tolerance,
e.g., the machine precision. �

2.1 Piecewise Affine (PWA) Systems
Piecewise affine (PWA) systems [7] are described by

x(k + 1) = Aix(k) + Biu(k) + fi

y(k) = Cix(k) + Diu(k) + gi
for

[
x(k)
u(k)

]
∈ Ωi,

(2)
where Ωi � {[ x

u ] : Hx
i x + Hu

i u ≤ Ki}, i = 1, . . . , s,
are convex polyhedra in the input+state space. PWA
systems have been studied by several authors (see
[6, 7, 9, 16, 17] and the references therein) as they form
the “simplest” extension of linear systems that can still
model non-linear and non-smooth processes with ar-
bitrary accuracy and are capable of handling hybrid
phenomena.

System (2) belongs to the general class (1) by letting
f , g be PWA functions defined over Ω̆ � ∪s

i=1Ωi, and
r = q = 0 (i.e., w(k) and h(x(k), u(k), w(k)) are not
required). A necessary and sufficient condition for the
PWA system (2) to be well-posed over Ω̆ is therefore
that f , g are single-valued PWA functions. Therefore,
typically the sets Ωi have mutually disjoint interiors,
and are often defined as the partition of a convex poly-
hedral set Ω̆. In case of discontinuities of f , g over
overlapping boundaries of the regions Ωi, to ensure well-
posedness we should write some of the inequalities in
the form (Hx

i )jx + (Hu
i )ju < Kj

i (see Remark 2). In
the following, for the sake of compactness of notation,
we shall neglect this issue.
2.2 Mixed Logical Dynamical (MLD) Systems
In [5] the authors have introduced a class of hybrid
systems in which logic, dynamics and constraints are
integrated. This leads to a description of the form

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k) (3a)
y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k) (3b)

E1x(k) + E2u(k) + E3δ(k) + E4z(k) � g5, (3c)

where x(k) = [ xr
′(k) xb

′(k) ]′, xr(k) ∈ R
nr and

xb(k) ∈ {0, 1}nb (y(k) and u(k) have a similar struc-
ture), and where z(k) ∈ R

rr and δ(k) ∈ {0, 1}rb are
auxiliary variables. The inequalities (3c) have to be
interpreted componentwise. Systems that can be de-
scribed by model (3) are called Mixed Logical Dynam-
ical (MLD) systems. By letting w(k) � [z′(k) δ′(k)]′,
clearly (3) together with the integrality conditions over
δ, xb, yb, and ub (expressed as inequalities, see Re-
mark 1), is a subclass of (1).

The MLD formalism allows specifying the evolution of
continuous variables through linear dynamic equations,
of discrete variables through propositional logic state-
ments and automata, and the mutual interaction be-
tween the two. The key idea of the approach consists



of embedding the logic part in the state equations by
transforming Boolean variables into 0-1 integers, and
by expressing the relations as mixed-integer linear in-
equalities (see [5] and references therein). MLD systems
are therefore capable of modeling a broad class of sys-
tems, and several tools were introduced for control [5],
state estimation and fault detection [18], verification
and safety analysis [10]. Moreover, the language HYS-
DEL (HYbrid Systems DEscription Language) was de-
veloped in [11] to obtain MLD models from of a high
level textual description of the hybrid dynamics.
2.3 Linear Complementarity (LC) Systems
Linear complementarity (LC) systems are given in
discrete-time by the equations

x(k + 1) = Ax(k) + B1u(k) + B2w(k) (4a)
y(k) = Cx(k) + D1u(k) + D2w(k) (4b)
v(k) = E1x(k) + E2u(k) + E3w(k) + g4(4c)

0 ≤ v(k) ⊥ w(k) ≥ 0 (4d)

with v(k), w(k) ∈ R
s and where ⊥ denotes the or-

thogonality of vectors (i.e. v(k)⊥w(k) means that
v′(k)w(k) = 0). We call v(k) and w(k) the comple-
mentarity variables. Clearly, (4) is a subclass of (1).

In [19,20] (linear) complementarity systems in continu-
ous time have been studied. Applications include con-
strained mechanical systems, electrical networks with
ideal diodes or other dynamical systems with piecewise
linear relations, variable structure systems, constrained
optimal control problems, projected dynamical systems
and so on [19, Ch. 2]. Issues related to modeling, well-
posedness (existence and uniqueness of solution trajec-
tories) [19, 20], simulation and discretization [19] have
been of particular interest.

For the definition of extended linear complementarity
(ELC) systems and min-max-plus-scaling (MMPS) sys-
tems, the reader is referred to [12], where we also proved
the following result:
Theorem 1 PWA systems, MLD systems, LC sys-
tems, ELC systems, and MMPS systems are equivalent
(possibly under some assumptions on the boundedness
of input, state, and auxiliary variables), and are a sub-
set of the general class of hybrid systems (1).

3 Closed-Loop Model Predictive Control
(cl-MPC) Systems and Hybrid Systems

Model Predictive Control (MPC) has become the ac-
cepted standard for complex constrained multivariable
control problems in the process industries. Here at
each sampling time, starting at the current state, an
open-loop optimal control problem is solved over a fi-
nite horizon. Only the first computed control value
in the sequence is implemented. At the next time step
the computation is repeated starting from the new state
and over a shifted horizon, leading to a moving horizon
policy [21].

For the discrete-time linear time invariant system{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) (5)

where x(k) ∈ R
n, u(k) ∈ R

m, and y(k) ∈ R
p are

the state, input, and output vector respectively, and
the pair (A, B) is stabilizable, consider the problem of
tracking the output reference signal r(k) ∈ R

p while
fulfilling the constraints

D1x(k) + D2u(k) + D3∆u(k) ≤ d4 (6)

at all time instants k ≥ 0, where ∆u(k) � u(k)−u(k−1)
are the increments of the input.

Assume that a full measurement of the state x(k) is
available at the current time k. Then, the optimization
problem

min
U


 Ny∑

t=1

ε′k+t|kQεk+t|k +
Ny−1∑
t=1

∆u′
k+tR∆uk+t




subj. to D1xk+t|k + D2uk+t + D3∆uk+t ≤ d4,
t = 0, 1, . . . , Nc

xk+t+1|k = Axk+t|k + Buk+t, t ≥ 0
yk+t|k = Cxk+t|k, t ≥ 1
uk+t = uk+t−1 + ∆uk+t, t ≥ 1
∆uk+t = 0, Nu ≤ t < Ny

xk|k = x(k), uk = ∆uk + u(k − 1)
(7)

is solved with respect to the column vector U �
[∆u′

k, . . . , ∆u′
k+Nu−1]

′ ∈ R
s, s � mNu, at each time

k, where xk+t|k denotes the predicted state vector at
time k + t, obtained by applying the input sequence
uk, . . . , uk+t−1 to model (5) starting from the state
x(k), and εk+t|k � yk+t|k−r(k) is the predicted tracking
error1. In (7), we assume that Q = Q′ � 0, R = R′ � 0
(“�” denotes matrix positive definiteness), (Q

1
2 , A) de-

tectable (for instance Q = C′C with (C, A) detectable),
Ny, Nu, Nc are the output, input, and constraint hori-
zons, respectively, with Nu ≤ Ny and Nc ≤ Ny − 1.

The MPC control law is based on the following idea:
At time k compute the optimal solution U(k) =
{∆u∗

k, . . . , ∆u∗
k+Nu−1} to problem (7), apply

u(k) = xu(k) + ∆u∗
k (8)

as input to system (5), where xu(k) � u(k − 1) is an
additional state required to store the input from the
previous step, and repeat the optimization (7) at the
next time step k + 1, based on the new measured (or
estimated) state x(k + 1). By substituting xk+t|k =
Atx(k)+

∑t−1
j=0 AjBuk+t−1−j in (7), this can be written

as

min
U

1
2U ′HU + ξ′(k)FU + 1

2ξ′(k)Y ξ(k)

subj. to GU ≤ W + Sξ(k)
(9)

where ξ(k) � [x′(k) x′
u(k) r′(k)]′, H = H ′ � 0, and H ,

F , Y , G, W , S are easily obtained from (7) (as only
1If the reference is known in advance, in (7) one can replace

r(k) with r(k + t), with a consequent anticipative action of the
resulting MPC controller. Otherwise, we assume that r(k + t) =
r(k) for t ≥ 0.
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Figure 1: Closed-loop model predictive control system

the optimizer U(k) is needed, the term involving Y is
usually removed from (9)).

The optimization problem (9) is a quadratic program
(QP), which depends on the current state x(k), past in-
put xu(k) = u(k − 1), and reference r(k). The optimal
input u(k) is obtained by defining the new input incre-
ment ∆u(k) to be used in (8) as the first m components
of the optimizer U(k) of (9),

∆u(k) = I1U(k), (10)

where I1 � [Im 0 . . . 0].

Consider the closed-loop model predictive control sys-
tem depicted in Fig. 1. The plant Σ is described by the
difference equations

Σ :
{

χ(k + 1) = Aχ(k) + Bu(k) + Hd(k)
y(k) = Cχ(k) + Dd(k), (11)

where χ(k) ∈ R
n̄ is the state vector, and d(k) ∈ R

� is
a vector of unmeasured disturbances. We distinguish
between model Σ in (11), which is the model generat-
ing the data, and model (5), which is the linear model
used for designing the MPC controller. Typically (5)
is an approximation of (11), for instance a low-order
approximation where only the relevant dynamics are
kept. As the MPC optimization problem (7) is based
on model (5), it requires a state x(k) which is coherent
with the same model (5). A common solution consists
of generating x(k) via the state observer

x(k + 1) = Ax(k) + Bu(k) + Ke(y(k) − Cx(k)). (12)

In [13], by exploiting the fact that the coefficients of the
linear term in the cost function and the right hand side
of the constraints in (9) depend linearly on a vector
ξ(k) of parameters, the authors tackle the quadratic
program (9) as a multi-parametric quadratic program
(mp-QP), analyze the properties of mp-QP, develop
an efficient algorithm to solve it, and show that the
optimal solution is a piecewise affine function of the
state. As a result, the authors show that the MPC
controller admits the explicit continuous PWA form
u(k) = Fiξ(k) + gi if ξ(k) ∈ Ωξ

i , i = 1, . . . , N , where
Ωξ

i � {ξ : Hξ
i ξ(k) ≤ Kξ

i }, and {Ωi}N
i=1 is a partition

of a given state+input+reference set Ξ. This allows to
immediately state the following result:

Theorem 2 Every cl-MPC system (7), (10)–(12) can
be written as a continuous PWA system.

By applying the results 4 and 1 of Theorem 1, one
can also show that cl-MPC systems can be equivalently
rewritten as LC systems. However, this requires bound-
edness assumptions over some of the variables, as the
transformation through MLD is involved, plus a large
number of complementarity pairs. Here below we prove
directly that cl-MPC systems are a subclass of LC sys-
tems, which does not require such assumptions and lim-
its the number of required complementarity pairs.

Theorem 3 Every cl-MPC system (7), (10)–(12) can
be written as an LC system.

Proof: The proof simply follows from the first-order
Karush Kuhn Tucker (KKT) conditions for QP (9) [22,
Ch. 10.6]

HU(k) + F ′ξ(k) + G′λ(k) = 0, λ(k) ∈ R
q (13a)

λ′(k)(GU(k) − W − Sξ(k)) = 0 (13b)
λ(k) ≥ 0 (13c)
W + Sξ(k) − GU ≥ 0 (13d)

From (13a), it follows that

U(k) = −H−1F ′ξ(k) − H−1G′λ(k)
� Tx(k) + V xu(k) + Zr(k) + Λλ(k).

(14)

By letting Mx(k) + Nxu(k) + Lr(k) � Sξ(k), v(k) �
W + Mx(k) + Nxu(k) + Lr(k) − GU(k), w(k) � λ(k),
and recalling (10) we can rewrite the closed-loop MPC
system in the LC form
�
� χ(k + 1)

x(k + 1)
xu(k + 1)

�
� =

�
� A BI1T B(Im + I1V )

KeC A − KeC + BI1T B(Im + I1V )
0 I1T (Im + I1V )

�
� ·

�
� χ(k)

x(k)
xu(k)

�
� +

�
�BI1Z H

BI1Z KeD
I1Z 0

�
��r(k)

d(k)

�
+

�
�BI1Λ

BI1Λ
Λ

�
�w(k)

y(k) = Cχ(k) + Dd(k)

v(k) =
�
0 M − GT N − GV

� �� χ(k)
x(k)
xu(k)

�
�

+ (L − GZ)r(k) − GΛw(k) + W

0 ≤ v(k)⊥w(k) ≥ 0 (15)

where
[

χ
x
xu

]
, [ r

d ] are the state and input vectors, respec-
tively, of the LC system.

Note that the result of Theorem 3 also holds when
model (11) is replaced by any of the hybrid models de-
scribed in the previous sections. Consequently, stabil-
ity, feasibility/safety, and performance properties of cl-
MPC where a simple linear model is used in the synthe-
sis of the controller, and a more accurate hybrid model
approximating the plant dynamics is used for analysis,
can be tested using tools developed for hybrid systems.

Remark 3 For each weight matrix R � 0, the cl-MPC
system (7), (11) is well-posed on the set of x(k), xu(k),



r(k) where (9) is feasible. In fact, the Hessian ma-
trix H � 0 in (9), and therefore ∆u(k) is uniquely
determined once x(k), r(k), xu(k) are assigned. Con-
sequently, the equivalent LC form (15) is well-posed,
despite the fact that w(k) might not be uniquely de-
fined by the KKT conditions (e.g., in case of primal
degeneracy of the QP problem (9)). �

In order to show directly that cl-MPC systems are also
a subclass of MLD systems, we prove the following
Lemma:
Lemma 1 Let ξ � [x′ x′

u r′]′ belong to a bounded set
Ξ. Then, there exists an upper-bound λ+ ≥ 0 such that
at least one vector of Lagrange multipliers λ is optimal
for (9) and satisfies 0 ≤ λ ≤ λ+.

Proof: Consider the combination I ⊆ {1, . . . , k} of
active constraints GIU = WI + SIξ at the optimum,
where I denotes the submatrix obtained by collect-
ing the rows indicized by the elements of I, and as-
sume that GI is full row rank. From the KKT condi-
tions (13), U = −H−1(F ′ξ+G′

IλI(ξ)), where λI(ξ) ≥ 0
is a vector collecting the subset of Lagrange multi-
pliers relative to the active constraints (the remain-
ing multipliers are zero). Substituting U , we obtain
λI(ξ) = −(GIH

−1G′
I)

−1[WI +SIξ+GIH
−1F ′ξ], which

admits an upper-bound λ+
I � maxξ∈Ξ λi(ξ) ≥ 0. Take

λ+ � max λ+
I over all combinations I of linearly in-

dependent active constraints. If for some ξ a linearly
dependent combination of constraints is active at the
optimum, (i.e., the QP is primal degenerate, and λ is
not unique), then a subset of linearly independent con-
straints and a vector λ(ξ) ≤ λ+ can be chosen which
provides the same solution U (cf. [19, Lemma 4.4.5]
and [23, Theorem 2.6.12]).
An alternative proof follows by considering the KKT
conditions (13) in LCP form: v = (GH−1G′)λ +
[W + (GH−1F ′ + S)ξ], 0 ≤ v ⊥ λ ≥ 0, and di-
rectly applying [19, Lemma 7.6.14], showing that, for
all ξ ∈ Ξ such that the QP (9) is feasible, there exists
a unique least-norm solution λ(ξ) satisfying, for some
scalar α ∈ R, ‖λ(ξ)‖ ≤ α‖W + (GH−1F ′ + S)ξ‖ ≤
α(‖W‖ + ‖GH−1F ′ + S)‖ · maxξ∈Ξ ‖ξ‖).
Remark 4 A more efficient way of computing λ+ than
enumerating all possible combinations of linearly inde-
pendent active constraints (as proposed in the first part
of the proof of Lemma 1) consists of computing the so-
lution to the mp-QP problem (9) by applying the algo-
rithm of [13], which provides all and only the combina-
tions of linearly independent active constraints which
are optimal for some ξ ∈ Ξ (Ξ is partitioned into poly-
hedral cells, each one characterized by a different com-
bination). This is illustrated in the example reported
in [24]. �

Remark 5 In case GH−1G � 0 [25, Theorem 2] also
provides a recursive method to write the optimal so-
lution U(k) as an explicit piecewise affine function of
x(k), xu(k) and r(k). Unfortunately, in most QP prob-
lems arising from MPC, only GH−1G � 0 holds, and
therefore such a technique cannot be applied. �

Using arguments similar to those used to prove the sec-
ond point of Theorem 1, we obtain the following result:

Proposition 1 Every linear MPC closed-loop system
can be written as an MLD system, provided that bounds
on the states, inputs, and references, are specified.

Proof: Introduce a vector of binary variables δ(k) ∈
{0, 1}q. The idea is to represent vi(k) = 0, wi(k) ≥ 0
with δi(k) = 1, and vi(k) ≥ 0, wi(k) = 0 with δi(k) = 0.
This can be achieved by introducing the constraints
w(k) ≤ Mwδ(k), v(k) ≤ Mv(e − δ(k)), w(k) ≥ 0,
v(k) ≥ 0, where Mw and Mv are diagonal matrices
containing upper bounds on w(k), and v(k) (provided
by Lemma 1), respectively, and e denotes the vec-
tor for which all entries are equal to one. By setting
z(k) = w(k) and replacing v(k) as in (15) it easy to
rewrite the MPC closed-loop system in the MLD form
�
� χ(k + 1)

x(k + 1)
xu(k + 1)

�
� =

�
� A BI1T B(Im + I1V )

KeC A − KeC + BI1T B(Im + I1V )
0 I1T (Im + I1V )

�
� ·

�
� χ(k)

x(k)
xu(k)

�
�+

�
�BI1Z H

BI1Z KeD
I1Z 0

�
�
�
r(k)
d(k)

�
+

�
�BI1Λ

BI1Λ
Λ

�
� z(k)

y(k) = Cχ(k) + Dd(k) (16a)

�
	�
0 0 0
0 M − GT N − GV
0 0 0
0 −M + GT −N + GV

�

�
�
�χ(k)

x(k)
xu(k)

�
�+

�
	�

0 0
L − GZ 0

0 0
−L + GZ 0

�

�

�
r(k)
d(k)

�
+

�
	�
−Mw

Mv

0
0

�

�δ(k) +

�
	�

I
−GΛ
−I
GΛ

�

�w(k) ≤

�
	�

0
Mve − W

0
W

�

�

(16b)

Note that the number q of integer variables equals the
number of constraints of the MPC optimization prob-
lem (9). Hence, if the MLD system were translated into
PWA form as in [6], the resulting PWA system would
have at most 2q regions. This confirms the result of
Theorem 2 and [13], where the explicit PWA form of
the MPC controller (obtained by using multiparametric
programming) is defined over a polyhedral partition of
the state space composed by at most 2q regions (note
that 2q equals the number of all possible combinations
of active constraints). Since many of such combinations
are infeasible, in general the resulting number of regions
is much lower than 2q.

3.1 Extensions
More generally, model (11) can be replaced by a hybrid
model of the form (1). The results shown above can be
all repeated also for this more general setup.

Corollary 1 The cl-MPC system formed by an LC
(MLD, PWA, ELC, MMPS) system in feedback with
a linear MPC controller is an LC (MLD, PWA, ELC,
MMPS) system.

Such a result is important for studying well-posedness,
stability, and constraint fulfillment properties of MPC
closed-loop systems constituted by an MPC controller
based on a linear model of the process (a common
choice for obtain an easily implementable controller)



and a plant modeled as a hybrid system. This can
be for instance a PWA system obtained by lineariz-
ing a nonlinear process model at different operating
points, an LC system obtained by a mechanical model,
or an MLD system obtained by using the description
language HYSDEL [11].

4 Conclusions

In this paper we showed that closed-loop MPC sys-
tems can be treated and analyzed as hybrid systems,
in particular as linear complementarity (LC) systems,
mixed logical dynamical (MLD) systems, piecewise
affine (PWA) systems, and indirectly, by exploiting the
equivalences of [12], also as extended linear complemen-
tarity (ELC) systems, max-min-plus-scaling (MMPS)
systems. For an example of application of the results
of this paper, not reported here for the lack of space,
the reader is referred to [24].

The result is of paramount importance for applying the
tools developed for hybrid systems, such as stability
and robust stability analysis, and safety/reachability
analysis, to study closed-loop properties of model pre-
dictive controllers. MPC schemes are typically designed
so that they are stable and fulfill operating constraints
when the nominal model of the plant and the prediction
model coincide. The results of this paper, instead, al-
low to investigate stability and safety properties of any
combination of a linear MPC controller, a linear ob-
server, and a linear plant, and can be easily extended to
arbitrary combinations of linear MPC controllers and
hybrid plants, such as hybrid approximations of com-
plex nonlinear dynamic models of the process under
closed-loop control.
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