
Performance Driven Reachability Analysis for Optimal Scheduling and
Control of Hybrid Systems

A. Bemporad†∗, L. Giovanardi‡, F.D. Torrisi†
†Automatic Control Laboratory, Swiss Federal Institute of Technology - bemporad,torrisi@aut.ee.ethz.ch

‡Dipartimento di Sistemi e Informatica, Università di Firenze - giovanardi@dsi.unifi.it
∗Dipartimento di Ingegneria dell’Informazione, Università di Siena, Italy

Abstract

In this paper we tackle the optimal control problem for
piecewise linear and hybrid systems by using a compu-
tational approach based on performance-driven reach-
ability analysis. The idea consists of coupling a reach-
set exploration algorithm, essentially based on repeti-
tive use of linear programming, to a quadratic program-
ming solver which selectively drives the exploration. In
particular, an upper bound on the optimal cost is con-
tinually updated during the procedure, and used as a
criterion to discern non-optimal evolutions and to pre-
vent their exploration. The result is an efficient strategy
of branch-and-bound nature, which is especially attrac-
tive for solving long-horizon hybrid optimal control and
scheduling problems.

1 Introduction

Hybrid models describe processes whose evolution is
guided by both dynamics and logic rules. Apart
from being theoretically challenging, hybrid systems are
ubiquitous in real-world and industrial applications. A
unified framework for their study is now undergoing
a fast development, thanks to the interaction between
the computer science area and the systems and control
engineering community. The main interest has been
initially in the field of verification and safety analysis,
for which many results and techniques are now avail-
able [1]. In contrast, comparatively few contributions
propose control synthesis methods.
In the context of continuous-time dynamical models,
a general optimal control problem for a broad class of
hybrid systems is formulated in [2]. Optimal quadratic
control of piecewise linear and hybrid systems is also ad-
dressed in [3, 4], where the authors derive bounds on the
solution to the associated Hamilton-Jacobi-Bellmann
inequalities, which are computable by solving convex
optimization problems (linear matrix inequalities [3] or
finite-dimensional linear programming [4]).
The inherently hybrid nature of many optimization
problems encountered in industrial applications is also
revealed by the complementary point of view of discrete
event systems [5]. In the area of intelligent manufactur-
ing and queuing systems, for example, one frequently
faces scheduling problems. The goal of scheduling is
to accomplish a given set of tasks (also identified as
jobs) so as to optimize a meaningful performance cri-
terion. Since the jobs to be scheduled usually involve
some dynamics, the problem is hybrid. The dynamics
taken into account in scheduling problems is generally

very simple (often just of integral type, corresponding
to timed events [6, 7]). Optimization of hybrid pro-
cesses through dynamic simulation is also proposed in
[8]. Here, the authors use mixed-integer linear pro-
gramming (MILP) to obtain a candidate switching se-
quence. A standard scheduling problem is then solved
for the fixed sequence. Other approaches based on
mixed-integer linear programming (MILP) have been
proposed in the chemical process control literature [9],
for a survey the reader is referred to [10].
Model predictive control (MPC) of hybrid systems is
proposed in [11], where the standard MPC optimiza-
tion problem is modified to include also discrete compo-
nents in the state-update and output equations as well
as in the constraints. The problem is then solved on-line
via mixed-integer quadratic programming (MIQP), and
only the first sample of the optimal input sequence is
applied to the plant, a new optimization being repeated
at each time step. The fundamental limitations of this
approach reside in the on-line computational burden,
that requires the sampling time Ts to be sufficiently
large, and in the related complexity determined by the
number of involved 0-1 variables which grows linearly
with the time horizon T , and thus practically limits T
to small values.
The present paper tackles the optimal control prob-
lem for hybrid systems by using reachability analysis,
for which an algorithm was proposed in [12]. This al-
gorithm abstracts all possible controlled behaviors of
the system into a high-level structure. We show here
how the procedure can be suitably adapted for opti-
mization purposes. Notably, if an optimization stage
is performed in parallel with reach-set computation,
the latter can be selectively carried out according to a
convenient strategy that discards evolutions which are
recognized not to be optimal, and finally determines
the desired optimal input sequence. The procedure ex-
ploits linear programming for reach-set computation,
and quadratic programming for the optimization stage.
Compared with the approach of [11], where complex-
ity of the involved MIQP exponentially depends on the
prediction horizon T , the method proposed in this pa-
per appears particularly attractive for solving hybrid
optimal/receding horizon control problems where the
prediction horizon T is large and switching is not fre-
quent. In fact, complexity here is mainly related to the
number of switches. Therefore, the larger the number
of sampling steps between switches (e.g., because of a
small sampling time Ts), the more efficient the algo-
rithm is with respect to the use of MIQP solvers as in

[11]. An additional feature of this solution is that it
embeds a practical reachability test for the system to
be controlled, which is generally a prerequisite.
The paper is organized as follows. In Sect. 2 we intro-
duce the considered class of hybrid systems and formu-
late the associated optimal control problem, discussing
its applications and inherent complexity. Sect. 3 de-
scribes the performance-driven reachability analysis
strategy, for which a complete algorithm is detailed.
Sect. 4 is devoted to an application example. Some
concluding comments end the paper in Sect. 5.

2 Problem Formulation

Consider the piecewise affine (PWA) discrete-time sys-
tem described by the equations

x(t + 1) = Aix(t) + Biu(t) + fi, for
[

x(t)
u(t)

]
∈ Xi (1)

where {Xi}s−1
i=0 is a partition of the state+input set,

Xi �
{[

x(t)
u(t)

]
: Kix + Liu ≤ Mi

}
and fi are suitable constant vectors. Each subsystem
defined by (Ai,Bi,fi), i ∈ {0, 1, . . . , s−1} is termed a
component of the PWA system (1). If the vectors fi

are null, system (1) is referred to as piecewise linear.
In [13] PWA systems are shown to be equivalent to
the class of mixed logical dynamical (MLD) systems de-
scribed by the relations

x(t + 1) = Fx(t) + G1u(t) + G2δ(t) + G3z(t) (2a)

E2δ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5 (2b)

where in general x ∈ R
nc × {0, 1}n� is a vector of con-

tinuous and binary states, u ∈ R
mc × {0, 1}m� are the

inputs, δ ∈ {0, 1}r� , z ∈ R
rc represent auxiliary binary

and continuous variables respectively, which are intro-
duced when transforming logic relations into mixed-
integer linear inequalities [11], and Φ, G1...3, E1...5 are
matrices of suitable dimensions. For the moment we
suppose n� = 0, m� = 0. As discussed later, both hy-
potheses can be removed. In particular, the former is
merely introduced to simplify the exposition, while the
issue of removing the latter will be discussed in Re-
mark 5.
MLD systems are capable to model a broad class of
systems arising in many applications: linear hybrid dy-
namical systems, hybrid automata, nonlinear dynamic
systems where the nonlinearity can be approximated
by a piecewise linear function, some classes of dis-
crete event systems, linear systems with constraints,
etc. Examples of real-world applications that can be
naturally modeled within the MLD framework are re-
ported in [11], and a language called HYSDEL (HYbrid
Systems DEscription Language) to translate high-level
hybrid descriptions into MLD models has been devel-
oped at ETH. Clearly, in view of the equivalence be-
tween PWA and MLD models, all the expressiveness of
the MLD modeling framework is inherited by the PWA
paradigm.
In this paper we are interested in considering the fol-
lowing optimal control problem

Jopt=min
UT−1

0

{
‖x(T)−xf‖2

P+

T−1∑
t=0

‖u(t)‖2
R+‖x(t)−xf‖2

Q

}
(3a)

subj. to


x(t + 1) = Ai(t)x(t)+Bi(t)u(t)+fi(t) for
[

x(t)
u(t)

]
∈ Xi(t)

umin ≤ u(t) ≤ umax, t = 0, 1, . . . , T−1
xmin ≤ x(t) ≤ xmax, t = 1, . . . , T
x(0) = x0

i(t) ∈ {0, . . . , s−1}
x(T) ∈ Xfin

(3b)

where T is the prediction horizon, P , Q and R are
positive definite weighting matrices, x(t) is the state
evolved at time t by applying the input sequence
U t−1

0 � {u(0), . . . , u(t−1)} to (1) from the initial
state x(0) = x0, i(t) ∈ {0, . . . , s−1} is the index such
that Ki(t)x(t) + Li(t)u(t) ≤ Mi(t) is satisfied, xf and
Xfin are a reference state and a polyhedral final target
set, respectively (for instance, Xfin can be a satisfac-
tory range around the equilibrium xf), umin, umax and
xmin, xmax are hard bounds on inputs and states, re-
spectively1. The sets U � {u : umin ≤ u ≤ umax} and
Xsafe � {x : xmin ≤ x ≤ xmax} will be used in the
sequel for compactness of notation.
Remark 1 For ease of notation, we have sup-
posed that the weighting matrices are constant with
respect to i (=space) and t (=time). Nonetheless,
the proposed framework can easily handle the case of
region-dependent and/or time-varying weights Ri(t)(t),
Qi(t)(t). This feature is helpful for instance when the
index i reflects different plant operation modes. The
same extension can be done for input and state limits
umin, umax, xmin, xmax.
Remark 2 Existing heuristic information about
the expected optimal schedule can be easily embed-
ded into (3). In fact, when heuristics are given as
space/time “landmarks” to be hit, such requirements
can be expressed in (3) as additional constraints of
the form x(t̄) ∈ Xheur(t̄), where Xheur(t̄) represents the
landmark area in the state-space to be reached at time
t̄.
By taking into account the equivalence between PWA
and MLD systems (2) mentioned above, the optimiza-
tion problem (3) can be reformulated as the mixed-
integer quadratic programming (MIQP) problem

Jopt=min
UT−1

0

{
‖x(T)−xf‖2

P+

T−1∑
t=0

‖u(t)‖2
R+‖x(t)−xf‖2

Q

}
(4a)

subj. to


x(t + 1) = Fx(t) + G1u(t) + G2δ(t) + G3z(t)
E2δ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5

umin ≤ u(t) ≤ umax, t = 0, 1, . . . , T−1
xmin ≤ x(t) ≤ xmax, t = 1, . . . , T
x(0) = x0

δ(t) ∈ {0, 1}r�

x(T) ∈ Xfin

(4b)

1More in general, we can allow only some components of the
inputs or states to be constrained (e.g. ui

min = −∞). In (3b),
constraints relating to unconstrained input and state components
are simply removed.

This is indeed the approach pursued in [11]. We stress
once again that in the MLD+MIQP formulation (4) the
binary variables δ(t) play the role of the index variables
i(t) in (3).
Practical applications of the above optimal control
problems can be developed according to two different
philosophies. In some cases, an open-loop solution to
(3) is sought. This situation resembles a typical sce-
nario for discrete event systems [5], in which optimal in-
put sequences have to be planned. Sometimes a closed-
loop implementation is required instead. In this case
the proposed optimization strategy can be pursued on-
line, combined with a receding horizon philosophy. The
result is an optimal control law in feedback form enjoy-
ing nice stability properties, provided that suitable ter-
minal state conditions are chosen. In particular, when
(3)/(4) are solved on-line within an MPC scheme, un-
der feasibility assumptions the choice of the terminal
state constraint Xfin = {xf} guarantees stability of the
controlled system, which is proven by using standard
Lyapunov analysis techniques [11].

2.1 Complexity Issues
Problem (3) is NP -hard, because of the presence of
integer variables i(t) associated with the different re-
gions of the PWA representation, or, equivalently, of
binary variables δ(t) representing logic literals in the
MLD formulation (4). Solving the optimal control
problem amounts to finding the switching sequence
IT−1
0 � {i(0), . . . , i(T−1)} and the control profile UT−1

0
that lead x(0) to Xfin and minimize (3a), while fulfilling
the constraints (3b). Even in the absence of discrete
inputs (m� = 0), the number of all possible switch-
ing sequences IT−1

0 is combinatorial with respect to T ,
namely sT , and any enumeration method would be im-
practical.
A similar complexity issue arises in reachability analysis
of hybrid systems. Determining if the target set Xfin can
be reached from the initial state x(0) is, in general, an
undecidable problem. For discrete-time hybrid systems,
the problem becomes decidable when practical reacha-
bility, or reachability over a finite horizon of T steps,
is considered. This problem is investigated in [12] for
PWA and MLD systems, where the authors propose an
algorithm that, given a set of initial conditions X (0),
a collection of disjoint target sets Z1, Z2, . . ., ZL, a
bounded set of inputs U , and a time horizon T , deter-
mines if Zj is reachable from X (0) within T steps, and
computes the input sequence driving any x1 ∈ X (0) to
x2 ∈ Zj . The algorithm avoids brute force enumera-
tion, relying heavily on the PWA description for com-
puting set evolutions within the regions Xi, while mak-
ing a substantial use of MLD descriptions and of the
associated branch-and-bound computational tools [14]
for detection of guard-line crossing, that is, of switching
between different regions.

3 Optimization via Reachability Analysis

In view of the relationship between the reachability
analysis problem and the optimal control problem (3a)–
(3b), in this section we exploit the ideas of the ver-
ification algorithm proposed in [12] in order to solve

Figure 1: Reach set evolution, guard-line crossing, outer
approximation of a new intersection

the optimal control problem stated in Sect. 2. We use
reachability analysis to determine admissible switching
profiles IT−1

0 . On the other hand, during the reachabil-
ity analysis, set evolutions are selectively propagated
in accordance with the value function J . More pre-
cisely, set evolutions having an intermediate cost which
is greater than a current upper-bound on Jopt are not
propagated. Here below, we detail the basic ingredients
of the algorithm: computation of the reach sets, detec-
tion of guard-line crossing, construction of a tree which
abstracts the evolution of the system, fathoming crite-
ria for set evolutions. The idea leads to a solver to the
optimal control problem which is of branch-and-bound
nature, namely a branch occurs whenever a switching
is detected, and a bound on the optimal cost allows in-
stantaneous fathoming of entire non-optimal subtrees.

3.1 Reach Set Computation and Switching De-
tection
Let P be a generic set of initial conditions at time t0 de-
fined by the polyhedral representation P � {x : S0x ≤
T0}, and consider the reach set X (t,P,Xi), defined as
the set of states x which are reachable from P at time
t > t0 by following a path contained in Xi. The subset
Si(t0, t,P) of P whose evolution lies in Xi for k ∈ [t0, t]
is a polyhedral set in the augmented space of tuples
(x, u(t0), . . . , u(t)). Therefore, the reach set X (t,P,Xi)
is a polyhedral set as well.
Switching detection amounts to finding all possible new
regions Xh entered by the reach set at the next time
step, i.e., all nonempty sets Ph � X (t,P,Xi)

⋂Xh,
h
= i, as exemplified in Fig. 1. Rather than enu-
merating and checking for nonemptiness for all h =
0, . . . , s−1, h
= i, we can here exploit the equivalence
between PWA systems and MLD models (2), and solve
the switching detection problem via branch-and-bound
and linear programming. The reader is referred to [12]
for details. In the average case, the MLD form requires
a number of feasibility tests which is much smaller than
enumerating and solving a feasibility test for all the pos-
sible regions of the PWA model.

3.2 Tree of Evolution
By exploiting reach-set computation and guard-line
crossing detection, we are able to build up a tree (Fig. 2)
which abstracts the system behavior over a T -step hori-

Figure 2: Tree of evolution

zon, for all possible inputs satisfying input saturation
and state constraints. The nodes of the tree represent
sets from which a reach set evolution is computed, and
a branch connects two nodes if a transition exists be-
tween the two corresponding sets. Each branch b has
an associated weight Tb which represents the time steps
needed for the transition. The root node of the tree is
the initial set2 G0 = {x(0)}, from which the reach set
evolution is computed according to Sect. 3.1. When a
new set Ph crossing a guard-line is detected, it becomes
a new node. The new node is connected by a weighted
branch from G0, and inserted in a list of sets to be sub-
sequently explored. Then, computation of the reach set
proceeds in each region Xh from each new intersection
Ph. Each evolution is stopped, or fathomed, once one
of the following conditions happens:

F1. t ≥ T , the time horizon limit has been reached.

F2. X (t,Ph,Xi)
⋂Xi = ∅. This means that the whole

evolution has left region Xi.

F3. X (t,Ph,Xi)
⋂Xsafe = ∅, i.e., all the possible evo-

lutions from Ph have become unsafe.

As in principle the number of facets of Ph grows linearly
with time (due to both switching and additional de-
grees of freedom introduced by new input samples), for
a practical implementation we need to approximate Ph

so that its complexity is bounded, and therefore reach
set computation from Ph has a limited complexity with
respect to the initial region. Hyper-rectangular outer
approximations, denoted in Fig. 1 by the symbol �Ph�,
are the simplest candidates. Note that, because of the
outer approximation of new intersections Ph, not all
switching sequences present in the tree are feasible. In
[12] a refinement procedure based on simple linear pro-
gramming feasibility tests is used to identify all feasible
switching sequences IT−1

0 . In the proposed approach,
no additional linear program is needed to accomplish
the above mentioned task since feasibility checking is
embedded in an intermediate cost computation stage,
as will be clarified in the next subsection.

3.3 Partial Cost Computation
We note that each node Gk of the tree corresponds
to a unique switching path from G0 to Gk itself. The

2With a slight abuse of notation, Gk will be referred to as both
a node of the tree and the associated set in the state space.

switching path is associated with a switching sequence
ITk−1
0 = {ik(0), . . . , ik(Tk−1)} of length Tk =

∑
b Tb,

where Tb are the time intervals associated with the
arcs along the switching path. If we were to build up
the whole tree as described before, the leaves at dis-
tance T from the initial set (those which were fath-
omed by condition F1 in Sect. 3.2) and possessing a
nonempty intersection with Xfin would certainly be the
candidates for the solution to the optimal control prob-
lem. We could then enumerate all possible winning T -
step switching sequences and then compute for each of
them the solution J∗ to problem (3) with IT−1

0 fixed,
through standard quadratic programming. This can
be merely considered as an extension of the needed re-
finement step discussed above (as already mentioned,
refinement is explicitly embedded since infeasibility of
the quadratic program means infeasibility of the corre-
sponding switching sequence).
On the other hand, we are not interested in the full
reachability analysis, so we do not need to build up
the whole tree. The idea is to associate a cost Jk to
each node Gk by computing the intermediate minimum
cost from G0 to the corresponding region, given by the
solution of the following standard quadratic program

Jk = min
U

Tk−1
0

J(U
Tk−1
0 , 0, Tk) (5a)

subj. to


x(t+1) = Aik(t)x(t)+Bik(t)u(t)+fik(t) for
[

x(t)
u(t)

]
∈ Xik(t)

umin ≤ u(t) ≤ umax, t = 0, 1, . . . , Tk−1
xmin ≤ x(t) ≤ xmax, t = 1, . . . , Tk

x(Tk) ∈ Gk

x(0) = x0

(5b)

where ITk−1
0 = {ik(0), . . . , ik(Tk−1)} is the corre-

sponding switching sequence, and

J(U
Tf−1

Ti
, Ti, Tf) �


Tf−1∑

t=Ti

‖u(t)‖2
R + ‖x(t)− xf‖2

Q


 .

When no feasible solution to (5) exists, we convention-
ally set Jk = +∞. The advantage provided by these
additional calculations is that — once the target region
is eventually reached in T steps and we can compute an
upper bound J∗ on the overall cost — we have an ad-
ditional fathoming condition. More precisely, as soon
as an evolution intersects Xfin at t = T , we compute
J∗ as described before and enforce the following new
fathoming condition

F4. Jk ≥ J∗, the intermediate cost exceeds or is equal
to the current upper bound.

Whenever a new exploration reaches Xfin in T steps
with a lower cost, the upper bound J∗ is updated, along
with the the correspoding minimizer U∗ = arg min J∗.
Note again that we are able to rule out possible in-
feasible switches introduced by the hyper-rectangular
approximation �Ph� as soon as they are detected. In
fact, in this case at least one of the intermediate opti-
mal control problems associated to the child nodes will
be infeasible.

3.4 Node Selection Criterion
The last point to be addressed is the choice of an effec-
tive exploration strategy, that is, the ordering criterion
according to which new nodes are taken from the list
and explored. In order to reduce fruitless explorations,
an adequate strategy should recognize the more promis-
ing paths to be searched. To this purpose, we suggest
the following node selection criterion

NS. Select the node having the smallest associated
normalized cost Ĵk � Jk/Tk

where, for convenience, we set J0 = Ĵ0 = 0. The nor-
malization factor 1/Tk is instrumental to the proposed
performance-driving mechanism. In fact, it penalizes,
among sequences characterized by identical intermedi-
ate cost Jk, those sequences with a smaller minimum
cumulated time Tk, which therefore have a larger time-
to-go, and are more likely to give rise to a higher overall
cost J∗. As a result, the exploration is guided by perfor-
mance in the sense that the procedure aims at reaching
the target set Xfin through the most promising evolu-
tions. This strategy leads to tighter upper bounds J∗,
and thus to a more effective fathoming condition F4.

3.5 The Optimal Control Algorithm
The following is a complete algorithmic representation
of the optimization procedure described in the previous
section.

Algorithm 1

1 initialize TREE with root node G0 = {x(0)}
2 initialize LIST with {G0, J0 = 0, T0 = 0}
3 J∗ ← +∞, U∗ ← ∅
4 while LIST nonempty do

5 extract node Gk with minimum normalized cost Ĵk

from LIST

6 if the associated cost Jk ≥ J∗ then go to 26

7 let i ∈ {0, . . . , s−1} such that Gk ⊆ Xi

8 t ← Tk

9 if Xfin

⋂X (t,Gk,Xi) �= ∅ and t = T then

10 let Jfin ← minimum cost along the path

G0 � Gk � Xfin

11 if Jfin<J∗ then let J∗←Jfin, U∗←argminJfin

12 endif ;

13 if X (t,Gk,Xi)
⋂Xsafe = ∅ then go to 26

14 if t ≥ T then go to 26

15 t ← t + 1

16 X (t,Gk,Gi) = AiX (t−1,Gk,Xi)⊕ BiU ⊕ {fi}
17 for all h �= i s.t. Ph � Xh

⋂X (t,Gk,Xi) �= ∅ do

18 let Jh ← minimum cost along the path G0 � Ph

19 if Jh < J∗ then

20 insert �Ph� in TREE and connect Gk to �Ph�
with weight (t−Tk)

21 insert {�Ph�, Jh, t} in LIST

22 endif

23 endfor

24 X (t,Gk,Xi) ← X (t,Gk,Xi)
⋂Xi

⋂Xs

25 if X (t,Gk) �= ∅ then go to 9

26 endwhile

27 if J∗ = +∞ then problem infeasible else let Uopt ← U∗

28 end

When a feasible input sequence U∗ is already known, in
step 3 J∗ can be initialized accordingly, in order to im-
prove the fathoming condition F4 already in the early
stages of the algorithms. Reach set evolution is per-
formed in step 16 (symbol ⊕ donotes convex sum of
sets), while switching detection is performed in step 17

by exploiting the MLD formulation (2). As discussed
before, in steps 20 -21 the hyper-rectangular outer ap-
proximation �Ph� is used, rather than Ph. In step 10,
it is conventionally understood that when no feasible
solution exists Jfin � +∞. The fathoming conditions
F1–F4 are invoked in step 14, 25, 13, 6 -19, respectively.
Remark 3 Algorithm 1 is basically a branch and
bound algorithm, where branching is associated with
the switching of the system, and bounding is given by
the fathoming conditions. In particular, conditions F1–
F3) provide a bound for infeasibility, while F4 a bound
related to the cost function. Compared to a branch
and bound MIQP solver [14], Algorithm 1 is neither
a depth-first nor a breadth-first algorithm, but rather
a best-first algorithm which exploits the structure of
the control problem. The adjective “best-first” stems
from the node selection criterion, that aims at exploring
first the most promising nodes. Note that the structure
of the control problem also determines the way Algo-
rithm 1 computes the lower bounds. In fact, while a
standard MIQP solver would obtain lower bounds by
relaxing the integrality constraints, Algorithm 1 com-
pute lower bounds by optimizing over reachable sub-
paths.
Remark 4 Many variations and enhancements to the
algorithm are possible, especially with respect to the
partial cost computation strategy and the node selec-
tion criterion. They are discussed in detail in [15].
Remark 5 When binary inputs uj(t) ∈ {0, 1} are
present (m�
= 0), they can be handled in a convenient
way by relaxing them during the reachability analysis
(0 ≤ uj ≤ 1), and adding back the integrality con-
straints only later in the computation of the partial
cost (which then becomes an MIQP rather than a QP).
Remark 6 In the particular case where the dynamics
of the system is simply linear (s = 1), the algorithm
executes just one single QP (as only one reach-set com-
putation is performed), in accordance with non-hybrid,
conventional finite-horizon linear quadratic solvers.

4 An Example

Even though the worst-case performance of Algorithm
1 is lower with respect to plain enumeration (as typical
of branch-and-bound algorithms), the proposed method
is considerably faster in the average, as shown by the
following example. Consider the unstable system

x(t+1) =




[
0.93 0.38
−0.12 0.96

]
x(t) +

[
0.19
0.98

]
if x1x2≥0,

[
0.97 0.09
−0.24 0.94

]
x(t) +

[
0.05
0.97

]
if x1x2<0

(6)

whose open-loop evolution from the initial condition
x0 = [1 1]′ is depicted in Fig. 3(a). System (6) is a
PWA system defined over the four quadrants, and be-
longs to the class of unstable PWA systems obtained

x
1

x
2

-4 -3 -2 -1-1 0 1 2 3 4
-4-4

-3-3

-2-2

-1-1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1.5

-1

-0.5

0

0.5

1

1.5

x
1

x
2

(a) (b)
Figure 3: Open-loop and closed-loop trajectories

0 2 4 6 8

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8

-1

-0.5

0

0.5

1

x
1
(),t x

2
()t u()t

Figure 4: Closed loop state and input evolution

by interconnecting stable linear systems. The goal con-
sists of transferring the state from the initial condition
x0 = [1 1]′ to Xfin = [−0.2, 0.2] × [−0.2, 0.2] in accor-
dance with the following performance objective

Jopt = min
U7

0

{
0.1‖x(8)‖2 +

7∑
t=0

|u(t)|2 + 10‖x(t)‖2

}
{ −1 ≤ u(t) ≤ 1 t = 0, . . . , 7

−1.2 ≤ xi(t) ≤ 1.2 t = 1, . . . , 7 i = 1, 2
−0.2 ≤ xi(8) ≤ 0.2 i = 1, 2.

If the optimal input sequence Uopt = {u(0), . . . , u(7)}
were computed by enumerating all possible region
switchings, this would require the solution of 48 =
65536 QPs. By applying Algorithm 1, the optimal so-
lution is found after solving 304 QPs. Fig. 3(b) shows
the trajectories obtained by feeding the plant with the
optimal input sequence Uopt (see Fig. 4). Algorithm 1
is executed in 39.21 s on a Pentium II 300 Mhz running
Matlab 5.3.
The same optimal trajectories can be obtained by using
the MIQP approach of [11], which is based on the equiv-
alent MLD model of (6) and uses the formulation (4).
The MIQP requires 767 QPs in order to determine the
optimal solution, which is roughly twice the number of
QPs needed by the method proposed in this paper.

5 Conclusions and Acknowledgements

We have presented a branch-and-bound strategy based
on reachability analysis for dealing with an NP-hard
hybrid optimal control problem. The spirit of the
approach can be summarized as follows: “Optimize
what is reachable, reach what is optimizing”. Main
advantages are expected for seldom switching systems
(e.g. because of over-sampling). An application exam-
ple has shown the potentials of the proposed method.

The authors thank the partners of the Esprit Project
26270 for stimulating discussions. This research has
been supported by Swiss NSF and Italian MURST.

References

[1] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic
symbolic verification of embedded systems. IEEE Trans. on
Software Engineering, 22:181–201, 1996.

[2] M.S. Branicky, V.S. Borkar, and S.K. Mitter. A uni-
fied framework for hybrid control: model and optimal con-
trol theory. IEEE Trans. Automatic Control, 43(1):31–45,
1998.

[3] A. Rantzer and M. Johansson. Piecewise linear
quadratic optimal control. In Proc. American Contr. Conf.,
Albuquerque, 1997.

[4] S. Hedlund and A. Rantzer. Optimal control of hybrid
systems. In Proc. 38th IEEE Conf. on Decision and Control,
pages 3972–3976, Phoenix, AZ, December 1999.

[5] C. G. Cassandras and S. Lafortune. Introduction to
Discrete Event Systems. Kluwer Academic Publishers, 1999.

[6] C. G. Cassandras, Q. Liu, and K. Gokbayrak. Op-
timal control of a two-stage hybrid manufacturing system
model. In Proc. 38th IEEE Conf. on Decision and Control,
pages 450–455, Phoenix, AZ, December 1999.

[7] F. Martinelli. A scheduling problem for n compet-
ing queues with finite capacity. In Proc. 38th IEEE Conf.
on Decision and Control, pages 2276–2281, Phoenix, AZ,
December 1999.

[8] C.C. Pantelides, M.P. Avraam, and N. Shah. Opti-
mization of hybrid dynamic processes. In Proc. American
Contr. Conf., 2000. Available upon request from the au-
thors.

[9] J.M. Pinto and I.E. Grossmann. A logic-based ap-
proach to scheduling problems with resource constraints.
Computers & Chemical Engineering, 21(8):801–818, 1997.

[10] J.M. Pinto and I.E. Grossmann. Assignment and se-
quencing models for the scheduling of process systems. An-
nals of Operations Research, 81:433–466, 1998.

[11] A. Bemporad and M. Morari. Control of systems
integrating logic, dynamics, and constraints. Automatica,
35(3):407–427, March 1999.

[12] A. Bemporad, F.D. Torrisi, and M. Morari.
Optimization-based verification and stability characteriza-
tion of piecewise affine and hybrid systems. In B. Krogh
and N. Lynch, editors, Hybrid Systems: Computation and
Control, Lecture Notes in Computer Science. Springer Ver-
lag, 2000.

[13] A. Bemporad, G. Ferrari-Trecate, and M. Morari.
Observability and controllability of piecewise affine and hy-
brid systems. IEEE Trans. Automatic Control, to appear.
http://control.ethz.ch/.

[14] C. A. Floudas. Nonlinear and Mixed-Integer Opti-
mization. Oxford University Press, 1995.

[15] A. Bemporad, L. Giovanardi, and F.D. Torrisi. Per-
formance driven reachability analysis for optimal scheduling
and control of hybrid systems. Technical Report AUT00-15,
Automatic Control Laboratory, ETH Zurich, Switzerland,
September 2000.

