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Abstract
In their recent paper [2], the authors provided a tool
for obtaining the explicit solution of constrained model
predictive control (MPC) problems by showing that the
control law is a continuous piecewise affine (PWA) func-
tion of the state vector. Therefore, the feedback inter-
connection between the MPC controller and a linear
system, or a PWA system (e.g., a PWA approxima-
tion of a nonlinear system), is a PWA system. For
discrete-time PWA and hybrid systems, we presented
an algorithm for verification/reachability analysis in
[5]. In this paper, we formulate the performance anal-
ysis problem of closed-loop PWA systems (including
MPC feedback loops where the prediction model and
the plant model could be different) as a reachability
analysis problem, and use our algorithm to obtain a
tool for characterizing (i) the set of states for which the
evolution is feasible, (ii) the domain of stability, (iii)
the performance of the closed-loop.

1 Introduction
Model Predictive Control (MPC) has become the ac-
cepted standard for complex constrained multivariable
control problems in the process industries. Here at each
sampling time, starting at the current state, an open-
loop optimal control problem is solved over a finite hori-
zon. At the next time step the computation is repeated
starting from the new state and over a shifted horizon,
leading to a moving horizon policy. The solution relies
on a linear dynamic model, respects all input and out-
put constraints, and optimizes a quadratic performance
index. The big drawback of MPC was the relatively
formidable on-line computational effort which limited
its applicability to relatively slow and/or small prob-
lems. For discrete time linear time invariant systems
with constraints on inputs and states, in [3] the authors
developed an algorithm to determine explicitly the state
feedback control law which minimizes a quadratic per-
formance criterion. The control law was shown to be
piecewise linear and continuous, thus reducing the on-
line computation to a simple linear function evaluation
instead of an expensive quadratic program.
Therefore, the feedback connection between a linear
model and an MPC controller is a piecewise affine
(PWA) system, of the form

x(t + 1) = Aix(t) + fi, for x(t) ∈ Ci (1)

where x ∈ X ⊆ R
n, Ci � {x : Hix ≤ Si}, i =

0, . . . , s−1 is a polyhedral partition of the set of states
X, and fi are constant vectors. Equation (1) can be
augmented with the term Bid(t), where d ∈ R

d is a

vector of unmeasured disturbances entering the closed-
loop. Because of continuity of the piecewise affine con-
trol law, the PWA system (1) is well-posed, in the sense
that the state-update function is always uniquely de-
fined, despite the fact that the sets Ci overlap on the
boundaries (these will be also referred to as guardlines).
PWA systems belong to the class of switched sys-
tems [7, 16], and constitute an important framework
for modeling hybrid systems, as an alternative to the
class of hybrid control systems [10, 2, 15], which consist
of the interaction between continuous dynamical sys-
tems and discrete/logic automata. PWA systems are
equivalent to interconnections of linear systems and fi-
nite automata, as pointed out by Sontag [17]. Based on
different arguments, a similar result was proved con-
structively in [1], where the authors show that PWA
systems are equivalent to the hybrid mixed logical dy-
namical (MLD) systems introduced in [2]. MLD sys-
tems are hybrid systems defined by the interaction of
logic, finite state machines, and linear discrete-time sys-
tems, defined by the equations

x(t + 1) = Ax(t) + B1d(t) + B2δ(t) + B3z(t) (2a)

E2δ(t) + E3z(t) ≤ E1d(t) + E4x(t) + E5 (2b)

where x ∈ R
nc × {0, 1}n� is a vector of continuous and

binary states, d ∈ R
dc ×{0, 1}d� are disturbance inputs,

and δ ∈ {0, 1}r� , z ∈ R
rc represent auxiliary binary and

continuous variables respectively, which are introduced
when transforming logic relations into mixed-integer
linear inequalities [2], and A, B1−3, E1−5 are matrices
of suitable dimensions.
MLD systems are capable of modeling a broad class of
systems arising in many applications: linear hybrid dy-
namical systems, hybrid automata, nonlinear dynamic
systems where the nonlinearity can be approximated
by a piecewise linear function, some classes of discrete
event systems, linear systems with constraints, etc. Ex-
amples of real-world applications that can be naturally
modeled within the MLD framework are reported in [2].
As pointed out in [14], one important reason to study
hybrid systems is to analyze stability, robust stabil-
ity, and tracking properties of high-performance con-
trollers, e.g., MPC controllers. In fact, most currently
available MPC techniques guarantee stability for the
nominal linear plant through the introduction of sta-
bility constraints, which are often removed in practi-
cal MPC schemes as they typically deteriorate perfor-
mance. Moreover, an important issue is to analyze
the behavior of the feedback loop when the nominal
model and the actual plant model differ, e.g. because
of the presence of nonlinearities. Robust MPC tech-



niques partially solve this issue, by taking into account
a class of linear uncertain models rather than one sin-
gle prediction model, although this typically requires
increased computation effort and, again, leads to dete-
rioration of performance.
Clearly, simulation provides an answer, but this is lim-
ited to a particular model, initial condition, and distur-
bance realization. In many situations it is important
to know if the specifications are met for a whole set
of conditions. An approximate answer can be given by
gridding the set of initial conditions and input signals,
and by running a large number of simulations, although
(i) some critical evolution might be overlooked, and (ii)
the less the desired coarseness of results, the more the
simulation effort.
Despite the fact that PWA systems are just a simple
extension of linear systems, they can exhibit very com-
plex behaviors as typical of nonlinear systems. Blondel
and Tsitsiklis [6] showed that even in the simple case
of two component subsystems, verifying the stability
of autonomous discrete-time PWA systems is either an
NP -hard problem (no polynomial-time algorithm), or
undecidable (the problem is not algorithmically solv-
able, in general). In view of these complexity results,
no hope remains of finding criteria for stability of PWA
systems as easy as for instance the Routh-Hurwitz rule
for linear systems. Stability of each linear subsystem is
not enough to guarantee stability of the overall system
(and vice versa) [7], as the switching rule between linear
dynamics is fundamental for the stability of the inter-
connection. Some criteria for stability of PWA systems
were recently proposed, which are based on multiple
Lyapunov functions methods [7]. However, LMI based
approaches have the drawback of being conservative,
the more conservative the larger the number of regions
in the polyhedral partition of the state-space.
Following earlier results in [5], in this paper we formu-
late as a verification problem the issue of characterizing
the stability of a feedback system composed of a linear
(or PWA) system and a constrained MPC controller,
whose explicit solution can be found in PWA form [3].
The problem of verification can be simply stated as fol-
lows: For a given set of initial conditions and distur-
bances, certify that all possible trajectories never enter
a set of unsafe states, or possibly provide a counterex-
ample. As for stability analysis, such a reachability
analysis issue is well known to be undecidable in the
context of formal verification of hybrid automata [10].
In spite of this complexity, several tools for formal ver-
ification of hybrid systems have been proposed in the
literature, mainly for linear hybrid automata [10, 13].
The basic idea of this paper is to check for reachabil-
ity from a bounded set X (0) of initial conditions to (i)
a set around the origin, and (ii) the set Xu of states
where the constraints are violated. More precisely, we
label as asymptotically stable in T steps the trajectories
that enter an invariant set around the origin within a
finite time T , or as infeasible in T steps the trajecto-
ries which enter Xu within that time. Subsets of X (0)
leading to neither of the two previous cases are called
non-classifiable in T steps. Such a finite-time verifica-

tion problem is decidable, as in the case for many other
undecidable problems that can be meaningfully approx-
imated by decidable ones (e.g., the decidable algorithm
shown in [1] for analysis of observability is another ex-
ample of such a philosophy).
The approach followed in this paper is related to the
idea of robust simulation [11], which consists of simu-
lating entire set evolutions rather than single trajecto-
ries for stability and performance analysis. In [11] the
author tests for finite time stability by computing an
outer approximation of the reach set via mathematical
programming. In particular, an outer approximation is
performed at each time step in order to keep the com-
plexity polynomial. In this paper, we present a robust
simulation algorithm that, at the expense of extra com-
putation, provides the exact simulation. Although the
worst case complexity is still exponential in the time
horizon and the number of guardlines, thanks to a set
of heuristics, which exploits the piecewise linear nature
of the hybrid system, the performance of the algorithm
is comparable to the one of [11], and does not suffer for
high state-space dimensions.

2 Model Predictive Control
Consider the problem of regulating to the origin the
discrete-time linear time invariant system{

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t)

(3)

while fulfilling the constraints
xmin ≤ x(t) ≤ xmax, umin ≤ u(t) ≤ umax (4)

at all time instants t ≥ 0. In (3)–(4), x(t) ∈ R
n, u(t) ∈

R
m, and y(t) ∈ R

p are the state, input, and output
vector respectively, xmin ≤ xmax (umin ≤ umax) are
finite n(m)-dimensional vectors, and the pair (A,B) is
stabilizable.
Model Predictive Control (MPC) solves such a con-
strained regulation problem in the following way. As-
sume that a full measurement of the state x(t) is avail-
able at the current time t. Then, the optimization prob-
lem

min
U

t+Nu−1
t

J(U, x(t)) = ||xt+Ny |t||2P+

Ny−1∑
k=0

||xt+k|t||2Q + ||ut+k||2R

subj. to xmin ≤ xt+k|t ≤ xmax, k = 0, . . . , Nc

umin ≤ ut+k ≤ umax, k = 0, 1, . . . , Nc

xt|t = x(t)
xt+k+1|t = Axt+k|t + But+k, k ≥ 0
ut+k = Kxt+k|t, Nu ≤ k ≤ Ny

(5)

is solved at each time t, where xt+k|t denotes the pre-
dicted state vector at time t + k, obtained by apply-
ing the input sequence U t+Nu−1

t � ut, . . . , ut+k−1 to
model (3) starting from the current state x(t) mea-
sured at time t. The state constraints in (5) are de-
fined also for k = 0. Although such a constraint is not
affected by U , it puts a limitation on the set of states
for which (5) has a solution, namely, states which are
infeasible for (4) are also infeasible for (5). In (5), we as-
sume that Q = Q′ � 0, R = R′ � 0, P � 0, (Q

1
2 , A) de-

tectable (for instance Q = C ′C with (C,A) detectable),



Ny ≥ Nu ≥ Nu, and K is a linear gain. Frequently, P
andK are obtained by solving the Riccati equation with
weights Q, R, which amounts to switching the control
to the unconstrained LQR after Nu time-steps.
Let U∗(t) = {u∗t , . . . , u∗t+Nu−1} be the optimal solution
of (5). Then at time t

u(t) = u∗
t (6)

is applied as input to system (3). The optimization (5)
is repeated at time t+1, based on the new state x(t+1),
yielding a moving or receding horizon control strategy.
The stability of MPC feedback loops was investigated
by numerous researchers. Stability is, in general, a com-
plex function of the various tuning parameters Nu, Ny,
Nc, Q, R, P , and K. For applications it is most use-
ful to impose some conditions on Ny, Nc, P , and K so
that stability is guaranteed for all Q � 0, R � 0. Then
Q and R can be freely chosen as tuning parameters to
affect performance. Sometimes the optimization prob-
lem (5) is augmented with a so called “stability con-
straint”. This additional constraint imposed over the
prediction horizon explicitly forces the state vector ei-
ther to shrink in some norm or to reach an invariant set
at the end of the prediction horizon.
Most approaches for proving stability follow in spirit
the arguments of Keerthi and Gilbert [12] who establish
the fact that under some conditions the value function
V (t) = J(U∗(t), t) attained at the minimizer U∗(t) is a
Lyapunov function of the system [3].

2.1 MPC Computation
By substituting

xt+k|t = Akx(t) +

k−1∑
j=0

AjBuk−1−j (7)

in (5), the performance index J(U, x(t)) can be rewrit-
ten in the form

min
U

1
2
U ′ΨU + x′(t)FU

subj. to GU ≤ W + Lx(t)

(8)

where the column vector U � [u′t, . . . , u
′
t+Nu−1]

′ ∈ R
s,

s � mNu, is the optimization vector, Ψ = Ψ′ � 0,
and Ψ, F , Y , G, W , L are easily obtained from Q, R,
and (5)–(7). As only the optimizer U is needed, the
term involving Y is usually removed from (8).
The optimization problem (8) is a quadratic program
(QP). Because the problem depends on the current
state x(t), the implementation of MPC requires the
on-line solution of a QP at each time step. Although
efficient QP solvers based on active-set methods or in-
terior point methods are available, computing the in-
put u(t) demands significant on-line computation ef-
fort. For this reason, the application of MPC has been
limited to “slow” and/or “small” processes.
In [3] the authors presented a new approach to imple-
ment MPC, where all the computation effort is moved
off-line. The idea is based on the observation that in (8)
the state x(t) ∈ R

n can be considered a vector of pa-
rameters, and (8) as a multi-parametric Quadratic Pro-
gram (mp-QP). An algorithm to solve mp-QP prob-
lems was presented in [3]. Once the multi-parametric
problem (8) has been solved off line, i.e., the solution

U∗
t = f(x(t)) of (8) has been found, the model predic-

tive controller (5) is available explicitly, as the optimal
input u(t) consists simply of the first m components
of U∗

t , u(t) = [I 0 . . . 0]f(x(t)). In [3] the authors
also show that the solution U∗ = f(x) of the mp-QP
problem is continuous and piecewise affine. Clearly, be-
cause of (9), the same properties are inherited by the
controller, i.e.,

u(t) = Fix(t) + gi, for

x(t) ∈ Ci � {x : Hix ≤ Si}, i = 1, . . . , s
(9)

where ∪s
i=1Ci is the set of states for which a feasible

solution to (5) exists. Therefore, the closed MPC loop
is of the form (1), where Ai = A + BFi, fi = Bgi,
Bi = 0 (A vector of polyhedrally-bounded additive dis-
turbances d(t) can be taken into account by consider-
ing nonzero matrices Bi). Note that the form of the
closed-loop MPC system remains PWA also when (i)
the matrices A, B of the plant model are different from
those used in the prediction model, and (ii) the plant
model has a PWA form. Typically, the MPC law (5)
is designed on a linear model obtained by linearizing
the nonlinear model of the plant around some operat-
ing condition. When the nonlinear model can be ap-
proximated by a PWA system (e.g., through multiple
linearizations at different operating points or by ap-
proximating nonlinear static mappings into piecewise
linear functions), the closed-loop formed by the non-
linear plant model and the MPC controller (5) can be
approximated by a PWA system as well.

3 Performance Characterization Problem
As mentioned in the introduction, determining the sta-
bility of PWA systems can be a complex task. Nev-
ertheless, we aim at estimating the domain of attrac-
tion of the origin, and the set of initial conditions from
which the state trajectory remains feasible for the con-
straints (4).
As mentioned in the previous section, the nominal MPC
closed-loop is an autonomous PWA system. The origin
belongs to the interior of one of the sets of the parti-
tion, namely the region where the LQ gain K is asymp-
totically stabilizing while fulfilling the constraints (4),
which by convention will be referred to as C0. Denote
by D∞(0) ⊆ R

n the (unknown) domain of attraction of
the origin. Given a bounded set X (0) of initial condi-
tions, we want to characterize D∞(0)

⋂X (0).
By construction, matrix A0, associated with the region
C0, is strictly Hurwitz and f0 = 0 (in fact, in C0 the
feedback gain is the unconstrained LQR gain F0 = K,
g0 = 0 [3]). Then we can compute an invariant set
in C0. In particular, we compute the maximum output
admissible set (MOAS) X∞ ⊆ C0. X∞ is the largest
invariant set contained in C0, which by construction of
C0 is compatible with the constraints umin ≤ Kx(t) ≤
umax, xmin ≤ x(t) ≤ xmax. By [9, Th.4.1], MOAS
is a polyhedron with a finite number of facets, and is
computed through a finite number of linear programs
(LP’s) [9]1.

1If the effect of perturbations d(t) ∈ U ⊆ R
m, where U is a

given bounded set of disturbances and B0 �= 0, has to be taken
into account X∞ is the largest invariant set under disturbance
excitation, and can be computed as proposed in [8].



In order to circumvent the undecidability of stability
mentioned above, we give the following
Definition 3.1 Consider the PWA system (1), and let
the origin 0 ∈ ◦C 0 � {x : H0x < S0}, and A0 be strictly
Hurwitz. Let X∞ be the maximum output admissible
set (MOAS) in C0, which is an invariant for the linear
system x(t+1) = A0x(t). Let T be a finite time horizon.
Then, the set X (0) ⊆ R

n of initial conditions is said to
belong to the domain of attraction in T steps DT (0) of
the origin if ∀x(0) ∈ X (0) the corresponding final state
x(T ) ∈ X∞.
Note that DT (0) ⊆ DT+1(0) ⊆ D∞(0), and DT (0) →
D∞(0) as T → ∞. The horizon T is a practical in-
formation about the speed of convergence of the PWA
system to the origin.
Definition 3.2 Consider the PWA system (1), and let
Xinfeas � R

n\ ∪s
i=1 Ci. The set X (0) ⊆ R

n of initial
conditions is said to belong to the domain of infeasibility
in T steps IT (0) if ∀x(0) ∈ X (0) there exists t, 0 ≤ t ≤
T such that x(t) ∈ Xinfeas.
Given a set of initial conditions X (0), we aim at finding
subsets of X (0) which are safely asymptotically stable
(X (0)

⋂DT (0)), and subsets which lead to infeasibil-
ity in T steps (X (0)

⋂ IT (0)). Subsets of X (0) leading
to none of the two previous cases are labeled as non-
classifiable in T steps As we will use linear optimiza-
tion tools, we assume that X (0) is a convex polyhedral
set (or the union of convex polyhedral sets). Typically,
non-classifiable subsets shrink and eventually disappear
for increasing T .

3.1 Switching Sequences
Consider the following simple case of evolution of the
PWA system (1), where u(t) = 0, fi = 0, ∀i =
0, . . . , s− 1,

x(t) = Ai(t−1)Ai(t−2) · · ·Ai(0)x(0) (10)

where in (10) i(k) ∈ {0, . . . , s − 1} is the index
such that Hi(k)x(k) ≤ Si(k), k = 0, . . . , t − 1, is
satisfied. The previous questions of practical sta-
bility can be answered once all switching sequences
I(t) � {i(0), . . . , i(t − 1)} leading to X∞ or Xinfeas

from X (0) are known. In fact, for safe stability in T
steps it is enough to check that the reach set at time
T , X (T,X (0)) � Ai(T−1)Ai(T−2) · · ·Ai(0)X (0), satisfies
the set inclusion X (T,X (0)) ⊆ X∞ for all admissible
switching sequences I(T ). However, the number of all
possible switching sequences I(T ) is combinatorial with
respect to T and s, and any enumeration method would
be impractical. In the next section we show that a ver-
ification algorithm can be used to avoid such an enu-
meration.

4 Reachability Analysis of Hybrid Systems
In this section, we recall the verification algorithm pre-
sented in [5]. In order to determine admissible switch-
ing sequences I(t), the algorithm exploits the special
structure of the PWA system (1). This structure al-
lows an easy computation of the reach set as long as
the evolution remains within a single region Ci. When-
ever the reach set crosses a guardline and enters a new
region Cj , a new reach set computation based on the j-
th linear dynamics is computed, as shown in Fig. 1(a).

C1

C2

Ph

X (3;X2(0))

X (2;X2(0))

X (1;X2(0))

X2(0)

(a) Reach set evolu-
tion, guardline cross-
ing, outer approxima-
tion of a new intersec-
tion

X1

X2

X3

Xinfeas

X1

1

2

1

3

1 3

2

4

2

4

(b) Graph of evolution G

Figure 1: Reachability Analisys

Let X (0) be a convex polyhedral set, and partition it
into subregions Xi(0) � X (0)

⋂ Ci, i = 0, . . . , s − 1.
For all nonempty sets Xi(0), computing the evolution
X (T,Xi(0)) requires: (i) the reach set X (t,Xi(0), Ci),
i.e., the set of evolutions at time t in Ci from
Xi(0); (ii) crossing detection of the guardlines, Ph �
X (t,Xi(0), Ci)

⋂ Ch �= ∅, ∀h = 0, . . . , i−1, i+1, . . . , s−
1; (iii) elimination of redundant constraints and ap-
proximation of the polyhedral representation of the new
regions Ph (approximation is desirable, as the number
of facets of Ph can grow linearly with time); (iv) detec-
tion (1) of emptiness of X (t,Ph, Ci) (emptiness happens
when all the evolutions have crossed the guardlines), (2)
of safe stability X (t,Ph, Ci) ⊆ X∞, (3) of full infeasibil-
ity X (t,Ph, Ci) ⊆ Xinfeas (these three will be referred to
as fathoming conditions).

4.1 Reach Set Computation
Let the set of initial conditions be defined by the poly-
hedral representation X (0) � {x : S0x ≤ T0}. The
subset Si(t,X (0)) of X (0) whose evolution lies in Ci for
t steps is given by

Si(t,X (0)) = {x ∈ R
n : S0x ≤ T0,

HiA
k
i x ≤ Si − Hi

∑k−1
j=0 Aj

ifi, k = 0, . . . , t
}

(11)

As Si(t,X (0)) is a polyhedral set, the reach set
X (t,Xi(0), Ci) is a polyhedral set as well. In the pres-
ence of input disturbances, Si(t,X (0)) = {x ∈ R

n :
S0x ≤ T0, Hi(Ak

i x+
∑k−1

j=0 A
j
i [Bid(k−1−j)+fi]) ≤ Si,

k = 0, . . . , t}, is a polyhedron in the augmented space
of tuples (x, d(0), . . . , d(t− 1)).

4.2 Guardline Crossing Detection
Switching detection amounts to finding all possible new
regions Ch’s entered by the reach set at the next time
step, i.e., nonempty sets Ph � X (t,Xi(0), Ci)

⋂ Ch, h �=
i. Rather than enumerating and checking nonempti-
ness for all h = 0, . . . , i− 1, i+1, . . . , s− 1, we can ex-
ploit the equivalence between PWA systems and MLD
models (2), and solve the switching detection problem
via mixed-integer linear programming. More in detail,
in the MLD form the condition x(t) ∈ Ch is associ-
ated with the condition δ(t) = δh ∈ {0, 1}r� , for in-
stance x(t) ∈ C5 ⇔ δ(t) = [1 0 1]′. Switching detection



amounts to finding all feasible vectors δ(t) ∈ {0, 1}r�

which are compatible with the constraints in (2) plus
the constraint x(t−1) ∈ X (t−1,Xi(0), Ci). Such a prob-
lem is a mixed-integer linear feasibility test (MILFT),
and can be efficiently solved through standard recur-
sive branch and bound procedures. Thus, on average
the MLD form (through the branch and bound algo-
rithm) requires only a very small number of feasibility
tests, while the PWA form would require enumerating
and solving a feasibility test for all the possible s re-
gions.

4.3 Approximation of Intersections
The computation of the reach set proceeds in each re-
gion Ch from each new intersection Ph. A new reach
set computation is started from Ph, unless Ph is con-
tained in some larger subset of Ch which has already
been explored. As the number of facets of Ph can grow
linearly with time, we need to approximate Ph so that
its complexity is bounded (and therefore the computa-
tion of the reach set from Ph has a limited complexity
with respect to the initial region), and checking for set
inclusion is a simple task. Hyper-rectangular approx-
imations are the best candidates, as set inclusion be-
tween hyper-rectangles reduces to a simple comparison
of the coordinates of the vertices. On the other hand, a
crude rectangular outer approximation of Ph can lead
to explore large regions which are not reachable from
the initial set X (0), as they are just introduced by the
approximation itself. In [4] the authors propose an iter-
ative method for inner and outer approximation which
is based on linear programming, and approximates with
arbitrary precision polytopes by a collection of hyper-
rectangles, as depicted in Fig. 1(a).

4.4 Fathoming
In Sect. 4.1 we showed how to compute the evolu-
tion of the reach set X (t,Ph, Ci) inside a region Ci.
The computation is stopped once one of the follow-
ing happens: (i) The set X (t,Ph, Ci) is empty. This
means that the whole evolution has left region Ci,(ii)
X (t,Ph, Ci) ⊆ X∞, i.e., all possible evolutions from Ph

are safely stable, (iii) X (t,Ph, Ci) ⊆ Xinfeas, i.e., all pos-
sible evolutions from Ph have violated the constraints
in (4). (iv) time t > T . These conditions can be checked
through linear programming.

4.5 Graph of Evolution
The result of the exploration algorithm detailed in the
previous sections can be conveniently represented on a
graph G (Fig. 1(b)). The nodes of G represent sets
from which a reach set evolution is computed, and an
oriented arc of G connects two nodes if a transition ex-
ists between the two correspoding sets. Each arc has
an associated weight which represents the time-steps
needed for the transition. The graph has initially no
arc, and nonempty initial sets Xi(0) and X∞, Xinfeas as
nodes. When a new intersection X (t,Xi(0), Ci)

⋂ Ch is
detected, it is approximated by a collection of hyper-
rectangles, as described in Sect. 4.3. Each hyper-
rectangle becomes a new node in G, and is connected
by a weighted arc from Xi(0).
After the verification algorithm terminates, the ori-
ented paths on G from initial nodes Xi(0) to terminal

(a) Closed-loop MPC
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(b) Explicit solution

Figure 2: Example (12)

nodes X∞ and Xinfeas determine a superset of feasible
switching sequences I(t) = {i(0), . . . , i(t− 1)}. In fact,
because of the outer approximation of new intersections
Ph, not all switching sequences are feasible. Neverthe-
less, feasibility can be simply tested via linear program-
ming. Once all feasible switching sequences I(t) have
been identified, the partition of the initial set into safely
stable regions and regions where infeasibility occurs is
determined by the sets Ai(t−1)Ai(t−2) . . . Ai(0)X (0) ⊕{
fi(t−1) +

∑t−1
j=1

(∏t−1
h=j Ai(h)

)
fi(j−1)

}
, t ≤ T .

5 An Example

Consider the system y(t) = s+1
s2+s+2u(t), and sample

the dynamics with T = 0.2 s. The task is to regulate
the system to the origin while fulfilling the constraints
−1 ≤ u(t) ≤ 1 and x(t) ≥ [−0.5

−0.5

]
. To this aim, we

design an MPC controller based on the optimization
problem

min
ut,ut+1

||xt+2|t||2P +
1∑

k=0

||xt+k|t||2 + .1||ut+k||2

subj. to −2 ≤ ut+k ≤ 2, k = 0, 1

xt+k|t ≥ xmin, xmin �
[ −0.5
−0.5

]
, k = 0, 1

(12)

where P is the solution to the Riccati equation (in this
example Q = [ 1 0

0 1 ], R = 0.1, Nu = Ny = Nc = 2).
Note that this choice of P corresponds to setting ut+k =
Kxt+k|t for k ≥ 2, where K is the LQR gain, and min-
imizes

∑∞
k=0 x

′
t+k|txt+k|t + .01u2

t+k with respect to ut,
ut+1. The closed loop response from the initial condi-
tion x(0) = [1 1]′ is shown in Fig. 2(a).
The mp-QP problem associated with the MPC law has
the form (8) with

ª = [ 0:7616 0:3059

0:3059 0:6075
] ; F = [ 2:2950 1:5010

1:0835 0:5171
]

G =

2
664

¡0:1789 0

¡0:0372 0

1:0000 0

¡1:0000 0

0 1:0000

0 ¡1:0000

0 0

0 0

3
775 ; W =

2
664

0:5

0:5

1

1

1

1

0:5

0:5

3
775 ; L =

2
664

0:7839 ¡0:1789

0:3577 0:9628

0 0

0 0

0 0

0 0

1:0000 0

0 1:0000

3
775

The solution was computed by using the mp-QP solver
in [3] in 0.66 s on a PC Pentium III 650 MHz running
Matlab 5.3, and the corresponding polyhedral partition
of the state-space is depicted in Fig. 2(b). The MPC
law is
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0

1
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3
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x2

x1

#5#5

Safely stable

Infeasible within T steps

#1
#2

#3

#4

Figure 3: Partition of initial states into safely stable, and
infeasible in T = 20 steps.

u =

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

¡ 1:0000 if

"
0:2425 0:0000
0:0000 0:2425
¡2:5336 ¡1:3548

¡2:4411 0:5570

0:0000 ¡2:0000

#
x ·

"
1:0000
1:0000
¡1:0000

1:0000
1:0000

#
(Region #1)

[¡4:3828 1:0000 ] x¡ 2:7954 if

"
0:0000 0:2425
¡2:0000 0:0000

0:6615 ¡0:8424

¡1:1548 0:2635

2:4411 ¡0:5570

#
x ·

"
1:0000
1:0000
¡1:0000

1:0000
¡1:0000

#
(Region #2)

[¡2:5336 ¡1:3548 ]x if

"
¡0:6615 0:8424

¡2:5336 ¡1:3548

2:5336 1:3548
¡2:0000 0:0000

0:0000 ¡2:0000

#
x ·

"
1:0000
1:0000
1:0000
1:0000
1:0000

#
(Region #3)

1:0000 if

·
0:0000 ¡2:0000

2:5336 1:3548
¡0:6659 ¡1:7922

¡2:0000 0:0000

¸
x ·

·
1:0000
¡1:0000

1:0000
1:0000

¸
(Region #4)

where region #3 corresponds to the unconstrained LQR
controller, #1 and #4 to saturation at −1 and +1,
respectively, and #2 is a transition region between LQR
control and the saturation.
Note that the union of the regions depicted in Fig. 2(b)
should not be confused with the region of attraction
of the MPC closed-loop. For instance, by starting at
x(0) = [3.5 0]′ (for which a feasible solution exists), the
MPC controller runs into infeasibility after t = 5 time
steps.
The reachability analysis algorithm described above
was applied to determine the set of safely stable initial
states and states which are infeasible in T = 20 steps
(Fig. 3). The algorithm computes the graph of evolu-
tions in 115 s on a Pentium II 400 running Matlab 5.3.

6 Conclusions and Acknowledgments
In this paper we proposed a technique for performance
assessment of MPC closed-loop systems which is based
on reachability analysis of hybrid systems. The ap-
proach can be immediately extended to set-point track-
ing problems and disturbance rejection, where para-
metric analysis with respect to set-point/disturbance
values can be performed in order to determine the set
of initial states which leads to safe evolutions for a
given set-point/disturbance, or vice versa all the set-
points/disturbance which can be safely commanded
from a given set of initial states. The approach also
allows the robust analysis of safe stability against norm-
bounded disturbances.
This research has been supported by the Swiss National
Science Foundation and Esprit Project 26270 VHS (ver-
ification of Hybrid Systems).
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