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Abstract

In this paper we propose a procedure for synthesiz-
ing piecewise linear optimal controllers for hybrid sys-
tems and investigate conditions for closed-loop stabil-
ity. Hybrid systems are modeled in discrete-time within
the mixed logical dynamical (MLD) framework [8], or,
equivalently [7], as piecewise affine (PWA) systems. A
stabilizing controller is obtained by designing a model
predictive controller (MPC), which is based on the min-
imization of a weighted 1/∞-norm of the tracking er-
ror and the input trajectories over a finite horizon. The
control law is obtained by solving a mixed-integer linear
program (MILP) which depends on the current state.
Although efficient branch and bound algorithms exist
to solve MILPs, these are known to be NP-hard prob-
lems, which may prevent their on-line solution if the
sampling-time is too small for the available computa-
tion power. Rather than solving the MILP on line, in
this paper we propose a different approach where all
the computation is moved off line, by solving a mul-
tiparametric MILP (mp-MILP). As the resulting con-
trol law is piecewise affine, on-line computation is dras-
tically reduced to a simple linear function evaluation.
An example of piecewise linear optimal control of the
heat exchange system [16] shows the potential of the
method.

Keywords: Hybrid systems, model predictive con-
trol, mixed-integer programming, multi-parametric
programming

1 Introduction

Hybrid systems provide a unified framework for describ-
ing processes evolving according to continuous dynam-
ics, discrete dynamics, and logic rules [2, 3, 20]. The
interest in hybrid systems is mainly motivated by the
large variety of practical situations, for instance real-
time systems, where physical processes interact with
digital controllers. Several modeling formalisms have
been developed to describe hybrid systems, and among
others Bemporad and Morari [8] introduced a new
class of hybrid systems called mixed logical dynamical
(MLD) systems. The MLD framework allows specify-
ing the evolution of continuous variables through lin-

ear dynamic discrete-time equations, of discrete vari-
ables through propositional logic statements and au-
tomata, and the mutual interaction between the two.
The key idea of the approach consists of embedding
the logic part in the state equations by transforming
Boolean variables into 0-1 integers, and by express-
ing the relations as mixed-integer linear inequalities.
Therefore MLD systems are capable to model a broad
class of systems arising in many applications: linear
hybrid dynamical systems, hybrid automata, nonlinear
dynamic systems where the nonlinearity can be approx-
imated by a piecewise linear function, some classes of
discrete event systems. Examples of real-world appli-
cations that can be naturally modeled within the MLD
framework are reported in [8, 9, 11].

Recently, in [7] the authors proved in a constructive way
that MLD systems are equivalent to piecewise affine
(PWA) systems, confirming the result of equivalence
between hybrid and PWA systems shown in [24]. PWA
systems are defined by partitioning the state space into
polyhedral regions, and associating with each region a
different linear dynamic equation. Besides the fact that
PWA systems are an important system class, the equiv-
alence allows one to extend all the techniques developed
for PWA models to the general MLD description of hy-
brid systems, and vice versa. This renders the PWA
framework a useful companion both for investigating
system theoretical properties and for designing algo-
rithms.

MLD systems are formulated in discrete time. Despite
the fact that the effects of sampling can be neglected
in most applications, subtle phenomena such as Zeno
behaviors cannot be captured in discrete time. On
the other hand, although reformulating MLD systems
in continuous time would be quite easy from a the-
oretical point of view, a discrete-time formulation al-
lows developing numerically tractable schemes for solv-
ing complex analysis and synthesis problems. Several
questions of interest for MLD systems can indeed be
suitably formulated as mixed-integer linear/quadratic
optimization problems. For feedback control, Bempo-
rad and Morari [8] propose Model Predictive Control
(MPC) as a general approach to control hybrid sys-
tems. MPC has been widely adopted in industry to
solve control problems of systems subject to input and



output constraints. MPC is based on the so called re-
ceding horizon philosophy: a sequence of future control
actions is chosen according to a prediction of the fu-
ture evolution of the system and applied to the plant
until new measurements are available. Then, a new se-
quence is established which replaces the previous one.
Each sequence is determined by means of an optimiza-
tion procedure which takes into account two objec-
tives: optimize the tracking performance and protect
the system from possible constraint violations. When
the model of the system is a hybrid MLD model and
the performance index is quadratic, the optimization
problem is a Mixed-Integer Quadratic Programming
(MIQP) problem. Similarly, 1− and ∞-norm perfor-
mance indices lead to Mixed-Integer Linear Program-
ming (MILP) problems. The main drawback of such a
control approach are its intensive on-line computation
requirements. Although efficient branch and bound al-
gorithms exist to solve MIQP/MILP [15, 17, 23], these
are known to be NP-hard problems.

In this paper we propose a different approach where all
the computation is moved off line, by extending the re-
sult of [10] for linear systems to the hybrid case. By
formulating the MPC problem as the minimization of
a weighted 1-norm of the tracking error and command
input, and by treating the current state as a vector of
parameters, the optimization problem can in fact be re-
cast as a multiparametric MILP (mp-MILP), for which
efficient solvers are available [1, 14]. After the solu-
tion of the mp-MILP has been determined, the result-
ing feedback control law is piecewise affine with respect
to the state. Therefore on-line computation reduces to
a simple linear function evaluation, instead of an ex-
pensive mixed-integer linear program. Needless to say,
this makes the approach attractive for fast processes
and/or low cost control hardware.

Preliminary ideas along this approach appeared in [5],
where the authors included a terminal state constraint
to ensure stability. In this paper, we remove such a con-
straint and provide conditions to choose the weights in
the performance index so that the resulting MPC law is
stabilizing under hard input and soft state constraints.
An example illustrates the basic ideas of the synthesis
technique.

2 Model Predictive Control of Hybrid Systems

Consider the mixed logical dynamical (MLD) system de-
scribed by the relations

x(t + 1) = Φx(t) + G1u(t) + G2δ(t) + G3z(t) (1a)

y(t) = Hx(t) + D1u(t) + D2δ(t) + D3z(t) (1b)

E2δ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5 (1c)

where x ∈ R
nc × {0, 1}n� is a vector of continuous

and binary states, u ∈ R
mc × {0, 1}m� are the inputs,

y ∈ R
pc×{0, 1}p� the outputs, δ ∈ {0, 1}r� , z ∈ R

rc rep-

resent auxiliary binary and continuous variables respec-
tively, which are introduced when transforming logic re-
lations into mixed-integer linear inequalities [8], and Φ,
G1, G2, G3, H, D1, D2, D3, E1,. . . ,E5 are matrices of
suitable dimensions. As mentioned in the introduction,
the authors show in [7] that MLD systems are equiva-
lent to the class of piecewise affine (PWA) discrete-time
systems described by the equations

x(t+ 1) = Aix(t) +Biu(t) + fi

y(t) = Cix(t) + gi
, for

[
x(t)
u(t)

]
∈ Xi

(2)
where {Xi}s

i=1 is a partition of the state+input set1,
and fi, gi are suitable constant vectors.

It is interesting from both a theoretical and practical
point of view to ask whether or not an MLD/PWA sys-
tem can be stabilized to an equilibrium state or can
track a desired reference trajectory, possibly via feed-
back control. Despite the fact that the system is nei-
ther linear nor even smooth, we show in this section
how model predictive control (MPC) provides success-
ful tools to perform this task. As recalled above, the
main idea of MPC is to use the model of the plant to
predict the future evolution of the system, and based on
this prediction to optimize a certain performance index
under operating constraints to generate the control ac-
tion. Only the first sample of the optimal sequence is
actually applied to the plant at time t. At time t+1, a
new sequence is evaluated to replace the previous one.
This on-line “re-planning”provides the desired feedback
control feature.

Suppose for simplicity of notation that we want to reg-
ulate the state of system (2) to the origin, and that the
origin is an equilibrium state for u = 02. Then,

∀i = 1, . . . , s : 0 ∈ Xi ⇒ fi = 0 (3)

Let t be the current time, and x(t) the current state.
Consider the following optimal control problem

min
{U, σ}

J(U , σ, x(t)) �
T−1∑
k=0

‖Rv(k|t)‖∞ + ‖Qx(k|t)‖∞

+‖Px(T |t)‖∞ + ρσ (4)

subj. to




x(k + 1|t) = Aix(k|t) + Biv(k) + fi

y(k|t) = Cix(k|t) + gi, for
[

x(k|t)
v(k)

]
∈ Xi

umin ≤ v(t + k) ≤ umax, k = 0, . . . , T − 1
xmin − σ ≤ x(t + k|t) ≤ xmax + σ, k = 1, . . . , Nc

0 ≤ σ ≤ σ(t − 1)

(5)

where U = {v(0), . . . , v(T − 1)} is the sequence of fu-
ture control moves (i.e., the optimization vector), T and
Nc ≤ T are the prediction and state constraint hori-
zons, respectively, P , Q, and R are full rank (not nec-
essarily square) matrices, x(k|t) is the state predicted

1In general, when the PWA system (2) is obtained by trans-
lating an MLD system, the sets Xi are a partition of a bounded
polyhedral set. Here we assume that the partition covers the
whole set R

n+m, in order to avoid problems of non-wellposedness
of (2).

2The results of this paper do not change if the equilibrium
state and/or its corresponding equilibrium input are nonzero.



at time t+k by applying the input u(t+k) = v(k) to (2)
from x(0|t) = x(t), umin, umax and xmin, xmax are hard
bounds on the inputs and soft bounds on the states, re-
spectively (more in general, we can deal with hard/soft
constraints of the form Sv(t + k) + Tx(t + k|t) ≤ W ).
The variable σ was introduced to soften the constraints
on the state, as typically these bounds are not as crit-
ical as actuator limitations. The decreasing condition
σ ≤ σ(t−1), where σ(t−1) is the optimal slack variable
computed at time t− 1, is necessary for the stability of
the control law, as we will detail later. Such a condition,
which in the linear case can be easily avoided by using
an infinite prediction horizon [25], may be restrictive in
certain situations, for instance in case of disturbance re-
jection, where one should reset the bound on σ to some
nonzero value whenever the arrival of a disturbance step
is detected.

From an optimization point of view, soft state con-
straints enlarge the set of feasible input sequences for
the MPC optimization (5). The weight ρ is the trade-off
between performance and constraint violation.

According to the receding horizon philosophy men-
tioned above, we set

u(t) = v∗t (0), (6)

disregard the subsequent optimal inputs
v∗t (1), . . . , v

∗
t (T − 1), and repeat the whole opti-

mization procedure at time t + 1. In the next section
we will show how to formulate the problem (5) as a
mixed integer linear program (MILP).

2.1 Stability
We remark that an infinite horizon formulation [19, 22,
6] would be inappropriate in the present hybrid con-
text for both practical and theoretical reasons. In fact,
approximating the infinite horizon with a large T is
computationally prohibitive, as the number of possible
switches (i.e., the combinations of 0-1 variables involved
in the MILP, as will be shown later) depends exponen-
tially on T . Moreover, from a theoretical point of view,
for a PWA system it is not clear in general how to
reformulate an infinite dimensional optimization prob-
lem into a finite dimensional one, which instead can be
always done for linear systems through Lyapunov or
Riccati algebraic equations.

In order to synthesize MPC controllers with stability
guarantees, in [5] we adopted the standard stability con-
straint on the final state x(T |t) = 0. On the other hand,
such a constraint typically deteriorates the overall per-
formance, especially for short prediction horizons. In
order to avoid such a constraint, we can either compute
an invariant set for the hybrid system (2) and force the
final state x(T |t) to belong to such a set, or use the for-
mulation (4)-(5). While the computation of invariant
sets for hybrid systems is still an open problem, the fol-
lowing theorem shows that, by appropriately choosing
the terminal weight P , the control law (4)–(6) stabilizes
system (2) asymptotically

Theorem 1 Let the origin be an equilibrium for sys-
tem (2), and assume that condition (3) is satisfied. If
there exist vectors un, umin ≤ un ≤ umax, such that

−‖Px‖∞+‖P (Aix+Biui)‖∞+‖Qx‖∞+‖Run‖∞ ≤ 0
(7)

is satisfied for all (x, ui) ∈ Xi, ∀i = 1, . . . , s, the MPC
law (4)–(6) stabilizes system (2), in that limt→∞ x(t) =
0, limt→∞ u(t) = 0, while fulfilling the input constraints
umin ≤ u(t) ≤ umax.

Proof: The proof follows from standard Lyapunov
arguments. Let U∗

t be the optimal control sequence
{v∗t (0), . . . , v∗t (T − 1)}, let

V (t) � J(U∗
t , x(t))

be the corresponding value attained by the perfor-
mance index, i such that (x∗(T |t), ui) ∈ Xi, and let
U1 � {v∗t (1), . . . , v∗t (T − 2), v∗t (T − 1), ui}. Then, U1

is feasible at time t + 1, and hence V (t + 1) − V (t) =
−‖Qx(t)‖∞ − ‖Ru(t)‖∞ − ‖Px∗(T |t)‖∞ + ‖Px∗(T +
1|t)‖∞ + ‖Qx∗(T |t)‖∞ + ‖Ru(T |t)‖∞ + ρ(σ(t + 1) −
σ(t)) ≤ −‖Qx(t)‖∞ − ‖Ru(t)‖∞ − ‖Px∗(T |t)‖∞ +
‖Px∗(T + 1|t)‖∞ + ‖Qx∗(T |t)‖∞ + ‖Ru(T |t)‖∞ As
the condition (7) is satisfied for x = x∗(T |t), V (t) is
a decreasing sequence. Since V (t) is lower-bounded
by 0, there exists V∞ = limt→∞ V (t), which implies
V (t+ 1)− V (t) → 0. Therefore, each term of the sum

‖Qx(t)‖∞ + ‖Ru(t)‖∞ (8)

converges to zero as well, which proves the theorem as
Q and R are nonsingular. ✷

Remark 1 Condition (7) amounts to finding a com-
mon polyhedral Lyapunov function for the hybrid sys-
tem (2). Of course, the existence of such a function is
not guaranteed in general. An alternative is to replace
the final weight ‖Px(T |t)‖∞ by a more general piece-
wise linear function of x(T |t), which would require one
to find a piecewise linear Lyapunov function [18, 21] for
the hybrid system (2). Note that, although the piece-
wise linear weight can still be tackled by mixed-integer
linear programming, the complexity of the optimization
problem increases.

Remark 2 Given matrices P , Q, R, and vectors
{un} checking if condition (7) is satisfied can be per-
formed through mixed-integer linear programming. On
the other hand, it is not clear how to formulate an al-
gorithm for synthesizing P and {un} given Q and R
(which provides the solution to a sort of “equivalent”
∞-/norm-based Lyapunov equation for PWA systems),
although such an algorithm is reported in [4] for linear
systems.



Example 2.1

We slightly modify the example in [5] so that we can
exploit the result of [4] for computing matrix P satis-
fying (7). Consider the system




x(t + 1) = 0.7

[
cosα(t) − sinα(t)
sinα(t) cosα(t)

]
x(t)+[

0
1

]
u(t)

y(t) = [1 0]x(t)

α(t) =

{
π
3

if [1 0]x(t) ≥ 0
−π

3
if [1 0]x(t) < 0

x(t) ∈ [−5, 5]× [−5, 5]
u(t) ∈ [−1, 1]

(9)

It is easy to verify that the matrix

P =
[ −15.6 27.02

27.02 15.6

]
(10)

satisfies condition (7). Matrix P has been determined
by applying the result of [4] to each of the two linear
subsystems. Unfortunately, this procedure for deter-
mining P cannot be generalized. ✷

3 Piecewise Linear Solution of MPC

In the previous section we have defined an optimal re-
ceding horizon control law for PWA systems. By ex-
ploiting the equivalence between MLD and PWA sys-
tems, we will use the MLD form from now on, as it is
more attractive from a computational point of view.

By considering again the MLD system (1), problem (4)
can be rewritten as

min
{vT−1

0 , σ}
J(vT−1

0 , σ, x(t)) �
T−1∑
k=0

‖Rv(k|t)‖∞ + ‖Qx(k|t)‖∞+

+‖Px(T |t)‖∞ + ρσ (11)

subj. to




x(k + 1|t) = Φx(k|t) + G1v(k) + G2δ(k|t) + G3z(k|t)
y(k|t) = Hx(k|t) + D1v(k) + D2δ(k|t) + D3z(k|t)

E2δ(k|t) + E3z(k|t) ≤ E1v(k) + E4x(k|t) + E5

umin ≤ v(t + k) ≤ umax, k = 0, 1, . . . , T − 1
xmin − σ ≤ x(t + k|t) ≤ xmax + σ, k = 1, . . . , Nc

0 ≤ σ ≤ σ(t − 1)

(12)

The MPC formulation (11)-(12) can be rewritten as
a mixed-integer linear program by using the following
standard approach. The sum of the components of any
vector {εu

0 , . . . , ε
u
T−1, ε

x
0 , . . . , ε

x
T−1, ε

x
T , ρσ} that satisfies

−1mεu
k ≤ Ru(k|t) k = 0, 1, . . . , T − 1

−1mεu
k ≤ −Ru(k|t) k = 0, 1, . . . , T − 1

−1nεx
k ≤ Qx(k|t) k = 0, 1, . . . , T − 1

−1nεx
k ≤ −Qx(k|t) k = 0, 1, . . . , T − 1

−1nεx
k ≤ Px(T |t)

−1nεx
k ≤ −Px(T |t)

(13)

represents an upper bound on J(vT−1
0 , σ, x(t)),

where −1k is a column vector of ones of length

k, and x(k|t) = Akx(t) +
∑k−1

j=0 A
j(B1uk−1−j +

B2δk−1−j + B3zk−1−j). Similarly to what was shown
in [13], it is easy to prove that the vector p �
{εu

0 , . . . , ε
u
T−1, ε

x
0 , . . . , ε

x
T−1, ε

x
T , ut, . . . , ut+T−1, δt, . . . ,

δt+T−1, zt . . . , zt+T−1, σ} that satisfies equations (13)
and simultaneously minimizes

J(p) = εu
0 + . . .+ εu

T−1 + εx
o + . . .+ εx

T−1 + εx
T (14)

also solves the original problem, i.e. the same optimum
J∗(vT−1

0 , x(t)) is achieved. Therefore, problem (11)-
(12) can be reformulated as the following MILP prob-
lem

min
p

J(p) = εu
0 + . . . + εu

T−1 + εx
o + . . . + εx

T−1 + εx
T

subj. to −1mεu
k ≤ ±R(u(k|t)) k = 0, 1, . . . , T

−1nεx
k ≤ ±Q(Akx(0|t)+∑k−1

j=0 Aj(B1uk−1−j|t + B2δk−1−j|t
+B3uk−1−j|t)) k = 1, . . . , T

xmin ≤ Akx(t) +
∑k−1

j=0 Aj(B1uk−1−j|t+
+B2δk−1−j|t + B3uk−1−j|t))+
D1u(k) + D2δ(k|t) + D3z(k|t) ≤ xmax,
k = 1, . . . , T

umin ≤ uk|t ≤ umax, k = 0, 1, . . . , T
E2δ(k|t) + E3z(k|t) ≤ E1v(k)+

E4
∑k−1

j=0 Aj(B1uk−1−j|t + B2δk−1−j|t
+B3uk−1−j|t) + E5, k ≥ 0

(15)
or, in the more compact form,

min
p

l(pc, pd, ξ(t)) = fT
c pc + fT

d pd

subj. to Gcpc +Gcpd ≤ S + Fξ(t)
(16)

where ξ(t) = [x′(t) σ(t− 1)]′, the matrices G, S, F can
be defined from (15), and pc, pd represent continuous
and discrete variables, respectively.

The MILP problem (16) depends on the current value
of ξ(t), and needs to be solved in order to compute the
command input. Rather than solving the MILP on line,
we follow the ideas of [10, 4], and propose an approach
where all the computation is moved off line. In fact,
by treating ξ(t) as a vector of parameters, the MILP
becomes a multiparametric MILP (mp-MILP), and its
solution for all admissible initial states ξ(t) will be the
explicit MPC controller law for PWA systems. We will
also show that such a control law is piecewise affine with
respect to the state vector.

As we will describe in the next section, we use the
algorithm developed in [14] for solving the mp-MILP
formulated above. Once the multi-parametric prob-
lem (15) has been solved off line, i.e. the solution
p∗t = f(ξ(t)) of (16) has been found, the model pre-
dictive controller (4)-(5) is available explicitly, as the
optimal input u(t) consists simply of m components of
p∗t

u(t) = [0 . . . 0 I 0 . . . 0]f(ξ(t)). (17)

As the solution p∗ of the mp-MILP problem is piecewise
affine with respect to the state x(t), the same property
is inherited by the controller because of (17).



4 Multiparametric-MILP Solvers

Two main approaches have been proposed for solving
mp-MILP problems. In [1], the authors develop an al-
gorithm based on branch and bound (B&B) methods.
At each node of the B&B tree an mp-LP is solved. The
solution at the root node represent a valid lower bound,
while the solution at a node where all the integer vari-
ables have been fixed represents a valid upper bound.
As in standard B&B methods, the complete enumera-
tion of combinations of 0-1 integer variables is avoided
by comparing the multiparametric solutions, and by
fathoming the nodes where there is no improvement
of the value function. In [14] an alternative algorithm
was proposed, which instead of solving mp-LP problems
with integer variables relaxed in the interval [0, 1], only
solves mp-LPs where the integer variables are fixed at
the optimal value determined by an MILP. More in de-
tail, problem (16) is alternatively decomposed into an
mp-LP and an MILP subproblem. When the values of
the binary variable are fixed, an mp-LP is solved, and
its solution provides a parametric upper bound. On the
other hand, when the parameters in ξ(t) are treated
as free variables, an MILP is solved, which provides a
new integer vector (see [14] for more details). The al-
gorithmic implementation of the mp-MILP algorithm
adopted in this paper relies on [12] for solving mp-LP
problems, and on [17] for solving MILP’s.

5 An Example

Consider the following hybrid control problem for
the heat exchange example proposed by Hedlund and
Ranzter [16]. The temperature of two furnaces should
be controlled to a given set-point by alternate heating.
Only three modes of operation are allowed: heat only
the first furnace, heat only the second one, do not heat.
The amount of power u0 to be fed to the furnaces at
each time instant is fixed. The system is described by
the following equations:




Ṫ =

[ −1 0
0 −2

]
T + Biu0

Bi =




[
1
0

]
if heating the first furnace[

0
1

]
if heating the second furnace[

0
0

]
if no heating

(18)

System (18) is discretized with a sampling time Ts =
0.08s, and its equivalent MLD form (1) is computed
as described in [8] by introducing an auxiliary vector
z(t) ∈ R

9.

In order to optimally control the two temperatures to
the desired values T 1

e = 1/4 and T 2
e = 1/8, the following
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Figure 1: Polyhedral partition of the state-space associ-
ated with the optimal control law
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Figure 2: Closed-loop MPC control of system (9)

performance index is minimized:

min
{v2

0}
J(v2

0 , x(t)) �
2∑

k=0

‖R(v(k+1)−v(k))‖∞+‖Q(T (k|t)−Te)‖∞
(19)

subject to the MLD system dynamics, along with the
weights Q = 1, R = 700. The cost function weights
the tracking error and trades it off with the number
of input switches occurring along the prediction hori-
zon. By solving the mp-MILP associated with the MPC
problem we obtain the explicit controller for the range
T ∈ [−1, 1] × [−1, 1], u0 ∈ [0, 1]. In Fig. 1 two slices
of the three-dimensional state-space partition for dif-
ferent constant power levels u0 are depicted. Around
the equilibrium, the solution appears more finely par-
titioned, in order to perform an optimal control action.
The resulting optimal trajectories are shown in Fig. 2.
For a low power u0 = 0.4 the set-point is never reached.

6 Conclusions

We have proposed a procedure for synthesizing piece-
wise linear stabilizing controllers for hybrid systems
modeled in discrete-time. The controllers are optimal
with respect to a weighted 1/∞-norm of the tracking
error and the input trajectories.



7 Acknowledgments

This research has been supported by the Swiss National
Science Foundation.

References

[1] J. Acevedo and E. N. Pistikopoulos. A multipara-
metric programming approach for linear process engi-
neering problems under uncertainty. Ind. Eng. Chem.
Res., 36:717–728, 1997.

[2] R. Alur, C. Courcoubetis, T.A. Henzinger, and
P.-H. Ho. Hybrid automata: An algorithmic approach
to the specification and verification of hybrid systems.
In A.P. Ravn R.L. Grossman, A. Nerode and H. Rischel,
editors, Hybrid Systems, volume 736 of Lecture Notes
in Computer Science, pages 209–229. Springer Verlag,
1993.

[3] A. Asarin, O. Maler, and A. Pnueli. On the anal-
ysis of dynamical systems having piecewise-constant
derivatives. Theoretical Computer Science, 138:35–65,
1995.

[4] A. Bemporad, F. Borrelli, and M. Morari. Ex-
plicit solution of LP-based model predictive control. In
CDC00, 2000.

[5] A. Bemporad, F. Borrelli, and M. Morari. Piece-
wise linear optimal controllers for hybrid systems. In
Proc. American Contr. Conf., 2000.

[6] A. Bemporad, L. Chisci, and E. Mosca. On the
stabilizing property of the zero terminal state reced-
ing horizon regulation. Automatica, 30(12):2013–2015,
1994.

[7] A. Bemporad, G. Ferrari-Trecate, and M. Morari.
Observability and controllability of piecewise affine and
hybrid systems. IEEE Trans. Automatic Control, to
appear.

[8] A. Bemporad and M. Morari. Control of systems
integrating logic, dynamics, and constraints. Automat-
ica, 35(3):407–427, March 1999.

[9] A. Bemporad and M. Morari. Verification of
hybrid systems via mathematical programming. In
F.W. Vaandrager and J.H. van Schuppen, editors, Hy-
brid Systems: Computation and Control, volume 1569
of Lecture Notes in Computer Science, pages 31–45.
Springer Verlag, 1999.

[10] A. Bemporad, M. Morari, V. Dua, and E. N. Pis-
tikopoulos. The explicit linear quadratic regulator for
constrained systems. In Proc. American Contr. Conf.,
2000.

[11] A. Bemporad, F.D. Torrisi, and M. Morari.
Verification of mixed logical dynamical models —
the batch evaporator process benchmark. Tech-
nical Report AUT00-04, Automatic Control Labo-
ratory, ETH Zurich, Switzerland, February 2000.
http://control.ethz.ch/.

[12] F. Borrelli, A. Bemporad, and M. Morari. A geo-
metric algorithm for multi-parametric linear program-
ming. Technical Report AUT00-06, Automatic Control
Laboratory, ETH Zurich, Switzerland, February 2000.

[13] P.J. Campo and M. Morari. Robust model predic-
tive control. In Proc. American Contr. Conf., volume 2,
pages 1021–1026, 1987.

[14] V. Dua and E. N. Pistikopoulos. An algorithm
for the solution of multiparametric mixed integer lin-
ear programming problems. Annals of Operations Re-
search, to appear 1999.

[15] R. Fletcher and S. Leyffer. Numerical experience
with lower bounds for MIQP branch-and-bound. SIAM
J. Optim., 8(2):604–616, May 1998.

[16] S. Hedlund and A. Rantzer. Optimal control of
hybrid systems. In Proc. 38th IEEE Conf. on Decision
and Control, pages 3972–3976, Phoenix, AZ, December
1999.

[17] ILOG, Inc., Gentilly Cedex, France. CPLEX 6.5
Reference Manual, 1999.

[18] P. Julian, J. Guivant, and A. Desages. A
parametrization of piecewise linear Lyapunov functions
via linear programming. Int. J. Control, 72(7-8):702–
715, May 1999.

[19] S.S. Keerthi and E.G. Gilbert. Optimal infinite-
horizon feedback control laws for a general class of con-
strained discrete-time systems: stability and moving-
horizon approximations. J. Opt. Theory and Applica-
tions, 57:265–293, 1988.

[20] J. Lygeros, C. Tomlin, and S. Sastry. Controllers
for reachability specifications for hybrid systems. Au-
tomatica, 35(3):349–370, 1999.

[21] Y. Ohta, H. Imanishi, L. Gong, and H. Haneda.
Computer generated Lyapunov functions for a class
of nonlinear systems. IEEE Trans. Circ. Syst. -I,
40(5):343–354, May 1993.

[22] J.B. Rawlings and K.R. Muske. The stability of
constrained receding-horizon control. IEEE Trans. Au-
tomatic Control, 38:1512–1516, 1993.

[23] N. V. Sahinidis. BARON — Branch And Reduce
Optimization Navigator. Technical report, University
of Illinois at Urbana-Champaign, Dept. of Chemical
Engineering, Urbana, IL, USA, 2000.

[24] E.D. Sontag. Interconnected automata and lin-
ear systems: A theoretical framework in discrete-time.
In R. Alur, T.A. Henzinger, and E.D. Sontag, editors,
Hybrid Systems III - Verification and Control, number
1066 in Lecture Notes in Computer Science, pages 436–
448. Springer-Verlag, 1996.

[25] A. Zheng and M. Morari. Stability of model pre-
dictive control with mixed constraints. IEEE Trans.
Automatic Control, 40:1818–1823, 1995.


