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Abstract

In this paper, model predictive control (MPC) based optimization problems with a quadratic performance criterion and linear
constraints are formulated as multi-parametric quadratic programs (mp-QP), where the input and state variables, corresponding
to a plant model, are treated as optimization variables and parameters, respectively. The solution of such problems is given by
(i) a complete set of profiles of all the optimal inputs to the plant as a function of state variables, and (ii) the regions in the space
of state variables where these functions remain optimal. It is shown that these profiles are linear and the corresponding regions
are described by linear inequalities. An algorithm for obtaining these profiles and corresponding regions of optimality is also
presented. The key feature of the proposed approach is that the on-line optimization problem is solved off-line via parametric
programming techniques. Hence (i) no optimization solver is called on-line, and (ii) only simple function evaluations are required,
to obtain the optimal inputs to the plant for the current state of the plant. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In an optimization framework, where the objective is
to minimize or maximize a performance criterion sub-
ject to a given set of constraints and where some of the
parameters in the optimization problem vary between
specified lower and upper bounds, parametric program-
ming is a technique for obtaining (i) the objective
function and the optimization variables as a function of
these parameters and (ii) the regions in the space of the
parameters where these functions are valid (Fiacco,
1983; Gal, 1995; Acevedo & Pistikopoulos, 1996,
1997b; Pertsinidis, Grossmann & McRae, 1998; Pa-
palexandri and Dimkou, 1998; Acevedo & Pistikopou-
los, 1999; Dua & Pistikopoulos, 1999). Some recent
applications of this technique are,
� hybrid parametric/stochastic programming (Acevedo

& Pistikopoulos, 1997a; Hené, Dua & Pistikopoulos,
2001);

� process planning under uncertainty (Pistikopoulos &
Dua, 1998);

� material design under uncertainty (Dua & Pistiko-
poulos, 1998);

� multi-objective optimization (Pistikopoulos & Gross-
mann, 1988; Pertsinidis, 1992; Papalexandri &
Dimkou, 1998);

� flexibility analysis (Bansal, Perkins & Pistikopoulos,
2000a); and

� computation of singular multi-variate normal proba-
bilities (Bansal, Perkins & Pistikopoulos, 2000b).
The main advantage of using the parametric pro-

gramming techniques to address such problems is that
for problems pertaining to plant operations, such as for
process planning (Pistikopoulos & Dua, 1998) and
scheduling, one can obtain a complete map of all the
optimal solutions. Moreover, as the operating condi-
tions fluctuate, one does not have to re-optimize for the
new set of conditions since the optimal solution as a
function of parameters (or the new set of conditions) is
already available. Mathematically, such problems can
be posed as multi-parametric mixed-integer nonlinear
programming problems of the following form:
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Fig. 1. Crude oil refinery.

Table 2
Refinery model

Profit =max
x

8.1x1+10.8x2

0.80x1+0.44x2�24 000+�1s.t.
0.05x1+0.10x2�2000+�2

0.10x1+0.36x2�6000
x1�0, x2�0
0��1�6000
0��2�500z(�)=min

y,x
dTy+ f(x)

s.t. Ey+g(x)�b+F�

�min����max

x�X�Rn

y�Y={0, 1}m

����Rs, (1)

where y is vector of 0–1 binary variables, x a vector of
continuous variables, f a scalar, continuously differen-
tiable and convex function of x, g a vector of continu-
ously differentiable and convex functions of x, b and d
are constant vectors, E and F are constant matrices, �

is a vector of parameters, �min and �max are the vectors
of lower and upper bounds on �, and X and � are
compact and convex polyhedral sets of dimensions n
and s, respectively.

While the detailed theory and algorithms for solving
Eq. (1) are presented in Dua and Pistikopoulos (1999,
2000), the engineering significance of solving Eq. (1) by
using parametric programming techniques is high-
lighted in the next motivating example.

1.1. Example 1

Consider the refinery blending and production prob-
lem depicted in Fig. 1 (Edgar & Himmelblau, 1989).
The objective is to maximize the profit for the operating
conditions given in Table 1, where �1 and �2 are the
parameters representing the additional maximum allow-
able production of gasoline and kerosene production,
respectively. This results in a multi-parametric linear
programming problem given in Table 2, where x1 and
x2 are the flowrates of the crude oils, 1 and 2, respec-
tively, in bbl/day and the units of profit are $/day. This

Table 3
Solution of the refinery example

i Optimal solutionCRi

Profit (�)=4.66�1+87.52�2+286758.61 −0.14�1+4.21�2

�896.55
0��1�6000 x1=1.72�1−7.59�2+26206.90
0��2 x2=−0.86�1+13.79�2+6896.55

2 Profit (�)=7.53�1+305409.84−0.14�1+4.21�2

�896.55
x1=1.48�1+24590.160��1�6000
x2=−0.41�1+9836.07�2�500

Fig. 2. Solution of refinery example.

problem corresponds to a special case of (Eq. (1))
where no binary variables, y, are present and f(x) and
g(x) are linear in x. The solution of this problem by
using the algorithm of Gal and Nedoma (1972) is given
in Table 3 and Fig. 2. The engineering significance of
obtaining this solution is as follows.

Table 1
Refinery data

Volume yield (%) Maximum allowable production (bbl/day)

Crude c1 Crude c 2

Gasoline 80 44 24 000+�1

Kerosene 5 10 2000+�2

10Fuel oil 36 6000
5Residual 10 –

Processing cost ($/bbl) –1.000.50
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1. A complete map of all the optimal solutions, profit
and crude oil flowrates as a function of �1 and �2, is
available.

2. The space of �1 and �2 has been divided into two
regions, CR1 and CR2, where the profiles of profit
and flowrates of crude oils remain optimal and
hence (a) one does not have to exhaustively enumer-
ate the complete space of �1 and �2 and (b) the
optimal solution can be obtained by simply substi-
tuting the value of �1 and �2 into the parametric
profiles without any further optimization
calculations.

3. The sensitivity of the profit to the parameters can be
identified. In CR1 the profit is more sensitive to �2,
whereas in CR2 it is not sensitive to �2 at all. Thus,
for any value of � that lies in CR2, any expansion in
kerosene production will not affect the profit.

This type of information is quite useful for solving
reactive or on-line optimization problems. Such prob-
lems usually require a repetitive solution of optimiza-
tion problems so as to compute the actions that must
be taken at regular time intervals. This requirement
comes from variations, such as demand fluctuations,
during plant operation and to optimally control the
plant under such dynamic behavior. In this work, we
show that model predictive control (MPC) based on-
line optimization problems can be reformulated as
multi-parametric quadratic programming (mp-QP)
problems, the solution of which is given by optimal
plant input profiles as a function of variations. The
on-line optimization problem thus reduces to a function
evaluation problem where optimal inputs are computed
by substituting the current level of variations into these
profiles.

The rest of the paper is organized as follows. Section
2 shows how on-line optimization problems can be
reformulated as mp-QP. An algorithm for the solution
of mp-QP is also presented and is illustrated with an
example in Section 3. A summary of work presented in
this paper and some directions for future work are
provided in Section 4.

2. On-line optimization

2.1. Introduction

The benefits of on-line optimization, from the point
of view of costs and efficiency of operations, have long
been recognized by process engineers. On-line optimiza-
tion not only provides the maximum output from a
given plant, but also takes into account various con-
straint violations while simultaneously considering the
current state and history of the plant to predict future
corrective actions. The benefits of on-line optimization
are tremendous. Nevertheless, its application is rather

restricted, considering its profit potential, primarily due
to its large ‘on-line’ computational requirements, which
involve a repetitive solution of an optimization problem
at regular time intervals. This limitation is in spite of
the significant advances in the computational power of
the modern computers and in the area of on-line opti-
mization over the past many years (Wright, 1997; Mar-
lin & Hrymak, 1997; Engell, Kowalewski & Krogh,
1997). Thus, it is fair to state that an efficient imple-
mentation of on-line optimization tools relies on a
quick and repetitive on-line computation of optimal
control actions. In this work, we propose a parametric
programming approach which avoids this repetitive
solution. By using this approach the control variables
are obtained as an explicit function of the state vari-
ables, and therefore on-line optimization breaks down
to simple function evaluations, at regular time intervals,
for the given state of the plant-to compute the corre-
sponding control actions. This results in a very small
computational effort in comparison to repetitively solv-
ing an optimization problem.

2.2. Model predicti�e control

MPC (Morari & Lee, 1999) has been widely adopted
by industry to address on-line optimization problems
with input and output constraints. MPC is based on the
so called receding horizon philosophy—a sequence of
future control actions is chosen according to a predic-
tion of the future evolution of the system and applied
to the plant until new measurements are available.
Then, a new sequence is determined which replaces the
previous one. Each sequence is evaluated by means of
an optimization procedure which takes into account
two objectives, optimize the tracking performance; and
protect the system from possible constraint violations.
In a mathematical framework, MPC problems can be
formulated as follows.

Considering the state-space representation of a given
process model:

�x(t+1)=Ax(t)+Bu(t)
y(t)=Cx(t),

(2)

subject to the following constraints:

ymin�y(t)�ymax

umin�u(t)�umax, (3)

where x(t)�Rn, u(t)�Rm, and y(t)�Rp are the state,
input, and output vectors, respectively, subscripts min
and max denote lower and upper bounds, respectively,
and (A, B) is stabilizable. MPC problems for regulating
to the origin can then be posed as the following opti-
mization problem:
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min
U

J(U, x(t))

=x �t+Ny�tPxt+Ny�t+ �
Ny−1

k=0

[x �t+k�tQxt+k�t+u �t+kRut+k ]

s.t. ymin�yt+k�t�ymax, k=1, …, Nc

umin�ut+k�umax, k=0, 1, …, Nc

xt�t=x(t)

xt+k+1�t=Axt+k�t+But+k, k�0

yt+k�t=Cxt+k�t, k�0

ut+k=Kxt+k�t, Nu�k�Ny (4)

where U�{ut, …, ut+Nu−1} Q=Q ��0, R=R ��0,
P�0, Ny�Nu, and K is some feedback gain. Problem
(Eq. (4)) is solved repetitively at each time t for the
current measurement x(t) and the vector of predicted
state variables, xt+1�t, …, xt+k�t at time t+1, …, t+k,
respectively, and corresponding control actions ut, …,
ut+k−1 is obtained. In the next section, we present a
parametric programming approach where the repetitive
solution of Eq. (4) at each time interval is avoided and
instead an optimization problem is solved only once. For
a similar treatment for constrained linear quadratic
regulation problems (Chisci & Zappa, 1999; Chmielewski
& Manousiouthakis, 1996; Scokaert & Rawlings, 1998;
Sznaier & Damborg, 1987) see Bemporad, Morari, Dua
and Pistikopoulos (1999).

2.3. Multi-parametric quadratic programming

In the following paragraphs, we present a parametric
programming approach which avoids the repetitive solu-
tion of Eq. (4). By making the following substitution in
Eq. (4):

xt+k�t=Akx(t)+�j=0
k−1 A jBut+k−1− j (5)

results in the following QP problem:

min
U

1
2

U �HU+x �(t)FU+
1
2

x �(t)Yx(t)

s.t. GU�W+Ex(t) (6)

where U� [u �t, …, u �t+Nu−1]��Rs, s�mNu, is the vector
of optimization variables, H=H ��0, and H, F, Y, G,
W, E are obtained from Q, R and Eqs. (4) and (5). The
QP problem in Eq. (6) can now be formulated as the
following mp-QP:

Vz(x)=min
z

1
2

z �Hz

s.t Gz�W+Sx(t), (7)

where z�U+H−1F �x(t), z�Rs, represents the vector of
optimization variables, S�E+GH−1F � and x repre-
sents the vector of parameters. Note that x in Eq. (6) is

present in the objective function and on the right hand
side (RHS) of the constraints, whereas it is present only
on the RHS in Eq. (7). The main advantage of writing
Eq. (4) in the form given in Eq. (7) is that z (and therefore
U) can be obtained as an affine function of x for the
complete feasible space of x. To derive these results, we
first state the following theorem (see also Zafiriou, 1990).

Theorem 1. For the problem in Eq. (7) let x0 be a �ector
of parameter �alues and (z0, �0) a KKT pair, where
�0=�(x0) is a �ector of nonnegati�e Lagrange multipliers,
�, and z0=z(x0) is feasible in Eq. (7). Also assume that
(i ) linear independence constraint qualification (LICQ)
and (ii ) strict complementary slackness conditions hold.
Then,

�z(x)
�(x)

n
= − (M0)−1N0(x−x0)+

�z0

�0

n
(8)

where,

M0=

�
�
�
�
�

H G1
T ··· Gq

T

−�1G1 −V1

� · · ·
−�pGq −Vq

�
�
�
�
�

N0= (Y, �1S1, …, �pSp)T

where Gi denotes the ith row of G, Si denotes the ith row
of S, Vi=Gi z0−Wi−Six0, Wi denotes the ith row of W
and Y is a null matrix of dimension (s×n).

Proof 1. See Appendix A.

The set of x where this solution, Eq. (8), remains
optimal is defined as the critical region (CR0) and can be
obtained as follows. Let CRR represent the set of
inequalities obtained (i) by substituting z(x) into the
inactive constraints in Eq. (7) and (ii) from the positivity
of the Lagrange multipliers corresponding to the active
constraints, as follows:

CRR={G� z(x)�W� +S� x(t), �� (x)�0}, (9)

where � and 	 correspond to inactive and active
constraints respectively as discussed in Appendix A and
then CR0 is obtained by removing the redundant con-
straints from CRR as follows:

CR0=�{CRR}, (10)

where � is an operator which removes the redundant
constraints—for a procedure to identify the redundant
constraints, see Gal (1995). Note that for simplicity in
presentation, we use the notation CR to denote the set
of points in X that lie in CR as well as to denote the set
of inequalities which define CR�. Since for a given space
of state-variables, X, so far we have characterized only
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a subset of X i.e. CR0�X, in the next step the rest of
the region CRrest, is obtained as follows:

CRrest=X−CR0, (11)

by using the procedure described by Dua and Pistiko-
poulos (2000) (see Appendix B for details). The above
steps, (Eqs. (8)–(11)) are repeated and a set of z(x),
�(x) and corresponding CR0s is obtained. The solution
procedure terminates when no more regions can be
obtained, i.e. when CRrest=�. For the regions which
have the same solution and can be unified to give a
convex region, such a unification is performed and a
compact representation is obtained. The continuity and
convexity properties of the optimal solution are sum-
marized in the next theorem.

Theorem 2. For the mp-QP problem, (Eq. (7)), the set of
feasible parameters Xf�X is con�ex, the optimal solu-
tion, z(x): Xf
Rs is continuous and piecewise affine, and
the optimal objecti�e function Vz(x): Xf
R is continu-
ous, con�ex and piecewise quadratic.

Proof 2. See Appendix C.

Based upon the above theoretical developments, an
algorithm for the solution of an mp-QP of the form
given in Eq. (7) to calculate U as an affine function of
x and characterize X by a set of polyhedral regions,
CRs, has been developed which is summarized in Table
4.

This approach provides a significant advancement in
the solution and on-line implementation of MPC prob-
lems, since its application results in a complete set of
control actions as a function of state-variables (from
Eq. (8)) and the corresponding regions of validity (from
Eq. (10)), which are computed off-line, i.e. the explicit
control law. Therefore during on-line optimization, no
optimizer call is required and instead for the current
state of the plant, the region, CR0, where the value of
the state variables is valid, can be identified by substi-
tuting the value of these state variables into the inequal-
ities which define the regions. Then, the corresponding
control actions can be computed by using a function
evaluation of the corresponding affine function. In the
next section, we present an example, to illustrate these
concepts, and the worst case computational complexity
of the mp-QP algorithm.

3. Numerical example and computational complexity

3.1. Example

Consider the following state-space representation:

�
�
	
�
�

x(t+1)=
�0.7326 −0.0861

0.1722 0.9909
n

x(t)+
�0.0609

0.0064
n

u(t)

y(t)= [0 1.4142]x(t)
.

(12)

The constraints on input are as follows:

−2�u(t)�2 (13)

The corresponding optimization problem of the form
Eq. (4) for regulating to the origin is given as follows:

min
ut,ut+1

x �t+2�tPxt+2�t+ �
1

k=0

[x �t+k�txt+k�t+ .01ut+k
2 ]

s.t. −2�ut+k�2, k=0, 1

xt�t=x(t) (14)

where P solves the Lyapunov equation P=A �PA+Q,

Q=
�1 0

0 1
n

, R=0.01, Nu=Ny=Nc=2.

The closed-loop response from the initial condition
x(0)= [1 1�] is shown in Fig. 3. The same problem is

Table 4
mp-QP algorithm

Step 1 For a given space of x solve Eq. (7) by treating x as a
free variable and obtain [x0]

Step 2 In Eq. (7) fix x=x0 and solve Eq. (7) to obtain [z0, �0]
Step 3 Obtain [z(x), �(x)] from Eq. (8)
Step 4 Define CRR as given in Eq. (9)

From CRR remove redundant inequalities and defineStep 5
the region of optimality CR0 as given in Eq. (10)
Define the rest of the region, CRrest, as given in Eq.Step 6
(11)

Step 7 If no more regions to explore, go to the next step,
otherwise go to Step 1
Collect all the solutions and unify a convexStep 8
combination of the regions having the same solution to
obtain a compact representation

Fig. 3. Closed loop response.



E.N. Pistikopoulos et al. / Computers and Chemical Engineering 26 (2002) 175–185180

Table 5
Parametric solution of the numerical example

URegionRegionc

1 

�
�
�
�

−5.9220 −6.8883

5.9220 6.8883

−1.5379 6.8291

1.5379 −6.8291

�
�
�
�



x�



�
�
�
�

2.0000

2.0000

2.0000

2.0000

�
�
�
�



[−5.9220 −6.8883]x

2, 4 

�
�
�
�

−3.4155 4.6452

0.1044 0.1215

0.1259 0.0922

�
�
�
�



x�



�
�
�
�

2.6341

−0.0353

−0.0267

�
�
�
�



2.0000

3
2.0000

�0.0679 −0.0924

0.1259 0.0922

n
x�

�−0.0524

−0.0519

n
5

2.0000
�−0.1259 −0.0922

−0.0679 0.0924

n
x�

�−0.0519

−0.0524

n
6 


�
�
�
�

−6.4159 −4.6953

−0.0275 0.1220

6.4159 4.6953

�
�
�
�



x�



�
�
�
�

1.3577

−0.0357

2.6423

�
�
�
�



[−6.4159 −4.6953]x+0.6423

7, 8

−2.0000



�
�
�
�

3.4155 −4.6452

−0.1044 −0.1215

−0.1259 −0.0922

�
�
�
�



x�



�
�
�
�

2.6341

−0.0353

−0.0267

�
�
�
�



9

[−6.4159 −4.6953]x−0.6423



�
�
�
�

6.4159 4.6953

0.0275 −0.1220

−6.4159 −4.6953

�
�
�
�



x�



�
�
�
�

1.3577

−0.0357

2.6423

�
�
�
�



now solved by using the parametric programming ap-
proach. The corresponding mp-QP problem of the form
Eq. (7) has the following constant vectors and matrices.

H=
�0.0196 0.0063

0.0063 0.0199
n

, F=
�0.1259 0.0679

0.0922 −0.0924
n

,

G=



�
�
�
�

1 0
−1 0

0 1
0 −1

�
�
�
�



, W=



�
�
�
�

2
2
2
2

�
�
�
�



, E=



�
�
�
�

0 0
0 0
0 0
0 0

�
�
�
�



The solution of the mp-QP problem as computed by
using the algorithm given in Table 4 is provided in
Table 5 and is depicted in Fig. 4. Note that the CRs 2,
4 and 7, 8 in Table 5 are combined together and a
compact convex representation is obtained. To illus-
trate how on-line optimization reduces to a function
evaluation problem, consider the starting point x(0)=
[1 1�]. This point is substituted into the constraints
defining the CRs in Table 5 and it satisfies only the
constraints of CR7,8 (see also Fig. 4). The control action
corresponding to CR7,8 from Table 5 is u7,8= −2,
which is obtained without any further optimization
calculations and it is same as the one obtained from the
closed loop response depicted in Fig. 3.

The same example is repeated with the additional
constraint on the state

xt+k�t�xmin, xmin�
�−0.5

−0.5
n

, k=1.

The closed-loop behavior from the initial condition
x(0)= [1 1�] is depicted in Fig. 5a. The MPC controller
is given in Table 6. The polyhedral partition of the

Fig. 4. Polyhedral partition of the state-space.
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Fig. 5. Example with the additional constraint xt+k�t� −0.5. (a) Closed loop MPC. (b) Polyhedral partition of the state-space and closed-loop
MPC trajectories.

state-space corresponding to the modified MPC con-
troller is depicted in Fig. 5b. The partition consists now
of 11 regions. Note that there are feasible states smaller
than xmin, and vice versa, infeasible states x�xmin. This
is not surprising. For instance, the initial state x(0)=
[−0.6, 0]� is feasible for the MPC controller (which
checks state constraints at time t+k, k=1), because
there exists a feasible input such that x(1) is within the
limits. On the contrary, for x(0)= [−0.47, −0.47] no
feasible input is able to produce a feasible x(1). More-
over, the union of the regions depicted in Fig. 5b
should not be confused with the region of attraction of
the MPC closed-loop. For instance, by starting at
x(0)= [46.0829, −7.0175]� (for which a feasible solu-
tion exists), the MPC controller runs into infeasibility
after t=9 time steps.

3.2. Computational complexity

The algorithm given in Table 4 solves an mp-QP by
partitioning X in Nr convex polyhedral regions. This
number Nr depends on the dimension n of the state, the
product s=mNu of the number Nu of control moves
and the dimension m of the input vector, and the
number of constraints q in the optimization problem
(Eq. (7)).

In an LP the optimum is reached at a vertex, and
therefore s constraints must be active. In a QP the
optimizer can lie everywhere in the admissible set. As
the number of combinations of l constraints out of a
set of q is

�q
l

�
=q !/(q−l)!l!,

the number of possible combinations of active con-
straints at the solution of a QP is at most

�
q

l=0

�q
l

�
=2q. (15)

This number represents an upper-bound on the num-
ber of different linear feedback gains which describe the
controller. In practice, far fewer combinations are usu-
ally generated as x spans X. Furthermore, the gains for
the future input moves ut+1, …, ut+Nu−1 are not rele-
vant for the control law. Thus, several different combi-
nations of active constraints may lead to the same first
m components ut*(x) of the solution. On the other
hand, the number Nr of regions of the piecewise affine
solution is in general larger than the number of feed-
back gains, because the regions have to be convex sets.

A worst case estimate of Nr can be computed from
the way the algorithm in Table 4 generates critical
regions CR to explore the set of parameters X. The
following analysis does not take into account (i) the
reduction of redundant constraints, and (ii) possible
empty sets are not further partitioned. The first critical
region CR0 is defined by the constraints �(x)�0 (q
constraints) and Gz(x)�W+Sx (q constraints). If the
strict complementary slackness condition holds, only q
constraints can be active, and hence CR is defined by q
constraints. From Appendix B, CRrest consists of q
convex polyhedra CRi, defined by at most q inequali-
ties. For each CRi, a new CR is determined which
consists of 2q inequalities (the additional q inequalities
come from the condition CR�CRi), and therefore the
corresponding CRrest partition includes 2q sets defined
by 2q inequalities. As mentioned above, this way of
generating regions can be associated with a search tree.
By induction, it is easy to prove that at the tree level
k+1 there are k !mk regions defined by (k+1)q con-
straints. As observed earlier, each CR is the largest set
corresponding to a certain combination of active con-
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Table 6
Parametric solution of the numerical example for xt+k/t�−0.5

Regionc uRegion

1, 2

−2.0000



�
�
�
�

3.4155 −4.6452

−0.1044 −0.1215

−0.7326 0.0861

−0.1259 −0.0922

�
�
�
�



x�



�
�
�
�

2.6341

−0.0353

0.3782

−0.0267

�
�
�
�



3, 9


�
�
�
�
�
�

−3.4155 4.6452

−0.7326 0.0861

0.1044 0.1215

0.1259 0.0922

−0.1722 −0.9909

�
�
�
�
�
�



x�



�
�
�
�
�
�

2.6341

0.6218

−0.0353

−0.0267

0.5128

�
�
�
�
�
�



2.0000

4 

�
�
�
�

−0.7326 0.0861

0.1259 0.0922

0.0679 −0.0924

�
�
�
�



x�



�
�
�
�

0.6218

−0.0519

−0.0524

�
�
�
�



2.0000

5 

�
�
�
�

−12.0326 1.4142

12.0326 −1.4142

1.8109 −1.9698

�
�
�
�



x�



�
�
�
�

10.2120

−6.2120

−2.4406

�
�
�
�



[−12.0326 1.4142] x−8.2120

6

[−6.4159 −4.6953]x−0.6423



�
�
�
�

−6.4159 −4.6953

−0.3420 0.3720

6.4159 4.6953

0.0275 −0.1220

�
�
�
�



x�



�
�
�
�

2.6423

0.4609

1.3577

−0.0357

�
�
�
�



7

[−5.9220 −6.8883]x



�
�
�
�

−1.5379 6.8291

−5.9220 −6.8883

1.5379 −6.8291

5.9220 6.8883

�
�
�
�



x�



�
�
�
�

2.0000

2.0000

2.0000

2.0000

�
�
�
�



8 

�
�
�
�

−0.1722 −0.9909

−0.1259 −0.0922

−0.0679 0.0924

�
�
�
�



x�



�
�
�
�

0.4872

−0.0519

−0.0524

�
�
�
�



−2.0000

10 

�
�
�
�

−0.1311 −0.9609

6.4159 4.6953

−0.0275 0.1220

−6.4159 −4.6953

�
�
�
�



x�



�
�
�
�

0.5041

2.6423

−0.0357

1.3577

�
�
�
�



[−6.4159 −4.6953]x+0.6423

11 

�
�
�
�

−26.8936 −154.7504

26.8936 154.7504

62.7762 460.0064

�
�
�
�



x�



�
�
�
�

80.0823

−76.0823

−241.3367

�
�
�
�



[−26.8936 −154.7504]x−78.0823

straints. Therefore, the search tree has a maximum
depth of 2q, as at each level there is one admissible
combination less. In conclusion, the number of regions
is Nr��k=0

2q−1 k !qk, each one defined by at most q2q

linear inequalities.

3.3. Computational time

In Tables 7 and 8, we report the computational time
and the number of regions obtained by solving a few
test MPC problems. In the comparison, we vary the

Table 7
Computational time to solve the mp-QP problem (seconds)

Free moves States

5432

4.12 5.052 3.02 5.33
31.7 70.193 10.44 26.75

60.20 53.934 58.6125.27
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Table 8
Number of regions Nr in the MPC solution

StatesFree moves

2 3 4 5

72 77 7
3 17 47 29 43

99 121 1274 29

Appendix A

A.1. Proof of Theorem 1

Theorem 3. (Fiacco, 1976) for the problem in Eq. (7) and
under the assumptions of Theorem 1, in neighborhood of
x0, there exists a unique, once continuously differentiable
function [z(x), �(x)] where z(x) is a unique isolated
minimizer for (Eq. (7)), and

�dz(x0)/dx
d�(x0)/dx

�
= − (M0)−1N0, (A.1)

where,

M0=

�
�
�
�
�

H G1
T ··· Gq

T

−�1G1 −V1

� · · ·
−�qGq −Vq

�
�
�
�
�

N0= (Y, �1S1, …, �qSq)T

where Gi denotes the ith row of G, Si denotes the ith row
of S, Vi=Giz0−Wi−Six0, Wi denotes the ith row of W
and Y is a null matrix of dimension (s×n).

Theorem 4. For the problem in Eq. (7) and under the
assumptions of Theorem 1, z and � are affine functions of
x.
Proof . The first-order KKT conditions for the mp-QP
are given by

Hz+G ��=0, (A.2)

�i(Gi z−Wi−Si x)=0, i=1,…,q (A.3)

��0. (A.4)

From Eq. (A.2)

z= −H−1G ��. (A.5)

Let �� and �� denote the Lagrange multipliers corre-
sponding to inactive and active constraints, respec-
tively. For inactive constraints, �� =0. For active
constraints,

G� z−W� −S� x=0, (A.6)

where G� , W� , S� correspond to the set of active con-
straints. From Eqs. (A.5) and (A.6),

�� = − (G� H−1G� �)−1(W� +S� x) (A.7)

Note that (G� H−1G� �)−1 exists because of the LICQ
assumption. Thus � is an affine function of x. We can
substitute �� from Eq. (A.7) into Eq. (A.5) to obtain

z=H−1G� �(G� H−1G� �)−1(W� +S� x) (A.8)

number of free moves Nu and the number of poles of
the open-loop system (and consequently the number of
states x). Computational times have been evaluated by
running the algorithm in Table 4 in Matlab 5.3 on a
Pentium II-300 MHz machine. No attempts were made
to optimize the efficiency of the algorithm and its
implementation.

The theory and algorithm presented in this work are
quite general and seem to have great potential for large
scale, industrial applications. While the framework pre-
sented in this work may still require significant compu-
tational effort, most computations are executed off-line,
while on-line implementation basically reduces to sim-
ple function evaluations. The suitability and applicabil-
ity of the proposed parametric optimization based
approach to large scale applications is a topic of cur-
rent investigation.

4. Concluding remarks

In this work, we have presented a parametric pro-
gramming approach for the solution of MPC based
optimization problems. Parametric programming pro-
vides a complete map of the optimal solution as a
function of the parameters, by partitioning the space of
parameters into characteristic regions. In the context of
on-line optimization, optimal control actions are com-
puted off-line as a function of state variables, and the
space of state variables is sub-divided into characteristic
regions. On-line optimization is then carried-out by
taking measurements from the plant, identifying the
characteristic region corresponding to these measure-
ments, and then calculating the control actions by
simply substituting the values of the measurements into
the expression for the control profile corresponding to
the identified characteristic region. The on-line opti-
mization problem thus reduces to a simple map-reading
and function evaluation problem. The corresponding
computational effort required by this kind of imple-
mentation is very small, as no optimizer is ever called
on-line. Current research efforts focus on addressing
hybrid control problems (Bemporad & Morari, 1999a)
and robust MPC problems (Bemporad & Morari,
1999b) via multi-parametric mixed-integer program-
ming techniques (Dua & Pistikopoulos, 1999, 2000).
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and note that z is also an affine function of x.

Corollary 1. From Theorem 3 and Theorem 4�z(x)
�(x)

n
= − (M0)−1N0(x−x0)+

�z0

�0

n
. (A.9)

Appendix B

B.1. Definition of CRrest

Given an initial region, X and a region of optimality,
CR0 such that CR0�X, a procedure is described in this
section to define the rest of the region, CRrest=X−
CR0. For the sake of simplifying the explanation of the
procedure, consider the case when only two state-vari-
ables x1 and x2, are present (see Fig. 6), where X is
defined by the inequalities: {x1

L�x1�x1
U, x2

L�x2�
x2

U} and CR0 is defined by the inequalities: {C1�0,
C2�0, C3�0} where C1, C2 and C3 are linear in x.
The procedure consists of considering one-by-one the
inequalities which define CR0. Considering, for exam-
ple, the inequality C1�0, the rest of the region is given
by, CR1

rest: {C1�0, x1
L�x1, x2�x2

U}, which is ob-
tained by reversing the sign of inequality C1�0 and
removing redundant constraints in X (see Fig. 7). Thus,
by considering the rest of the inequalities, the complete
rest of the region is given by: CRrest=
{CR1

rest�CR2
rest�CR3

rest}, where CR1
rest, CR2

rest and
CR3

rest are given in Table B.1 and are graphically de-
picted in Fig. 8. Note that for the case when X is
unbounded, simply suppress the inequalities involving
X in Table B.1.

Table B.1. Definition of rest of the regions

Region Inequalities

CR1
rest C1�0, x1

L�x1, x2�x2
U

C1�0, C2�0, x1�x1
U, x2�x2

UCR2
rest

CR3
rest C1�0, C2�0, C3�0, x1

L�x1�x1
U, x2

L�x2

Appendix C

C.1. Proof of Theorem 2

We first prove convexity of Xf and Vz(x). Take
generic x1, x2�Xf, and let Vz(x1), Vz(x2) and z1, z2 the
corresponding optimal values and minimizers. Let �� [0,
1], and define z���z1+ (1−�)z2, x���x1+ (1−�)x2.
By feasibility, z1, z2 satisfy the constraints Gz1�W+
Sx1, Gz2�W+Sx2. These inequalities can be linearly
combined to obtain Gz��W+Sx�, and therefore z� is
feasible for the optimization problem (Eq. (7)) where
x(t)=x�. Since a feasible solution, z(x�), exists at x�,
an optimal solution exists at x� and hence Xf is convex.
The optimal solution at x� will be less than or equal to
the feasible solution, i.e. Vz(x�)�1/2 z ��Hz�, and hence

Fig. 6. Critical regions, X and CR0.

Fig. 7. Step 1.

Fig. 8. Rest of the regions.
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Vz(x�)−
1
2

[�z �1Hz1+ (1−�)z �2Hz2]

�
1
2

z ��Hz�−
1
2

[�z �1Hz1+ (1−�)z �2Hz2]

=
1
2
[�2z �1Hz1+ (1−�)2z �2Hz2+2�(1−�)z �2Hz1

−�z �1Hz1− (1−�)z �2Hz2]

= −
1
2

�(1−�)(z1−z2)�H(z1−z2)�0, (C.1)

i.e. Vz(�x1+ (1−�)x2)��Vz(x1)+ (1−�)Vz(x2), �x1,
x2�X, ��� [0, 1], which proves the convexity of Vz(x)
on Xf. Within the closed polyhedral regions CR0 in Xf

the solution z(x) is affine (Eq. (A.8)). The boundary
between two regions belongs to both closed regions.
Because the optimum is unique the solution must be
continuous across the boundary. The fact that Vz(x) is
continuous and piecewise quadratic follows trivially.
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