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Abstract 

In this paper, on-line optimization problems with a quadratic performance criteria and linear constraints are formulated as 
multi-parametric quadratic programs, where the input and state variables, corresponding to a plant, are treated as optimization 
variables and parameters, respectively. The solution of such problems is given by (i) a complete set of profiles of all the optimal 
inputs to the plant as a function of state variables, and (ii) the regions in the space of state variables where these functions remain 
optimal. It is shown that these profiles are linear and the corresponding regions are described by linear inequalities. An algorithm 
for obtaining these profiles and corresponding regions of optimality is also presented. The key feature of the proposed approach 
is that the on-line optimization problem is solved off-line via parametric programming techniques, hence, at each time interval (i) 
no optimization solver is called on-line, (ii) simple function evaluations are required for obtaining the optimal inputs to the plant 
for the current state of the plant. 0 2000 Elsevier Science Ltd. All rights reserved. 

1. Introduction 

The benefits of on-line optimization, from the point 

of view of costs and efficiency of operations, have long 
been recognized by process engineers. On-line optimiza- 

tion not only provides the maximum output from a 

given plant, but also takes into account various con- 
straint violations while simultaneously considering the 

current state and history of the plant to predict future 
corrective actions. While the benefits of on-line opti- 

mization are tremendous, its application is rather re- 
stricted, considering its profit potential, primarily due 

to its large ‘on-line’ computational requirements which 
involve a repetitive solution of an optimization problem 
at regular time intervals (see Fig. 1). This limitation is 

in spite of the significant advances in the computational 

power of the modern computers and in the area of 
on-line optimization over the past many years. Thus, it 
is fair to state that an efficient implementation of 
on-line optimization tools relies on a quick and repeti- 
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tive on-line computation of optimal control actions. In 
this work, we propose a parametric programming ap- 
proach, which avoids this repetitive solution. By using 
this approach the control variables are obtained as a 
function of the state variables, and therefore on-line 
optimization breaks down to simple function evalua- 

tions, at regular time intervals, for the given state of the 
plant - to compute the corresponding control actions. 
This results in a very small computational effort in 
comparison to repetitively solving an optimization 
problem. The rest of the paper is structured as follows. 
In the next section, the key concepts of on-line opti- 
mization are reviewed. Then on-line optimization prob- 
lem is formulated as a parametric programming 
problem and an algorithm for its solution is presented. 
The solution steps and the engineering significance of 
the proposed approach are reviewed and highlighted 
via an illustrative example. 

2. On-line optimization 

Model predictive control (MPC) (Morari & Lee, 
1999) has been widely adopted by industry to address 
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on-line optimization problems with input and output 
constraints. MPC is based on the so called receding 
horizon philosophy, a sequence of future control ac- 
tions is chosen according to a prediction of the future 
evolution of the system and applied to the plant until 
new measurements are available. Then, a new sequence 
is determined which replaces the previous one. Each 
sequence is evaluated by means of an optimization 
procedure which takes into account two objectives, 
optimize the tracking performance; and protect the 
system from possible constraint violations. In a mathe- 
matical framework, MPC problems can be formulated 
as follows. 

Consider the following state-space representation of 
a given process model: 

i 

x(t + 1) = Ax(t) + Bu(t) 

y(t) = Wt), 

subject to the following constraints: 

Ymin s Y(l) 5 Ymax 

Gin I u(t) 5 Umax, 

(1) 

(2) 

[ OPTIMIZER 1 

Fig. 1. On-line optimization. 
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Fig. 2. Parametric programming. 

where x(t)~‘W, u(c)E’W’, and y(t)~‘W are the state, 
input, and output vectors, respectively, subscripts min 
and max denote lower and upper bounds, respectively, 
and (A, B) is stabilizable. MPC problems for regulating 
to the origin can then be posed as the following opti- 
mization problems: 

rn$i J( U,x(t)) 

NJ - 1 

= x’ t+~,~rf’xr+~~lr+ c ~:+kltQx,+k~r+~;+kRu,+/i 
k=O 

s.t. Ymin 2 Yt + k(f 2 Ymax3 k= 1, . . . . N, 

U,jn I 2.4 f+k<~maxr k=O,l, . . . . N,. 

x,1, = x(t) 

X,+k+Ilr=Ax,+klt+Bu,+k, k20 

y,+klr = cx,+klr? k 2 0 

11 t+k=K&+klc N,sklN, (3) 

where Ug{ut, . . . . u,+N -,I, Q=Q’>O, R=R’>O, 
P 2 0, NY 2 N,, and K Ps some feedback gain. The 
problem (Eq. (3)) is solved repetitively at each time t 
for the current measurement x(t) and the vector of 
predicted state variables, x, + , It, . . ., x, + klr at time t + 1, 
. ..) t + k, respectively, and corresponding control ac- 
tions u,, . . . . utfk_, is obtained. In the next section, we 
present a parametric programming approach where the 
repetitive solution of Eq. (3) at each time interval is 
avoided and instead an optimization problem is solved 
only once. For a similar treatment for constrained 
linear quadratic regulation problems (Sznaier & 
Damborg, 1987; Chmielewski & Manousiouthakis, 
1996; Scokaert & Rawlings, 1998; Chisci & Zappa, 
1999) see Bemporad, Morari, Dua and Pistikopoulos 
(1999). 

3. Multi-parametric quadratic programming 

In an optimization framework, where the objective is 
to minimize or maximize a performance criterion sub- 
ject to a given set of constraints and where some of the 
parameters in the optimization problem are uncertain, 
parametric programming is a technique for obtaining 
(i) the objective function and the optimization variables 
as a function of these parameters, and (ii) the regions in 
the space of the parameters where these functions are 
valid (Fiacco, 1983; Gal, 1995; Acevedo & Pistikopou- 
los, 1997; Papalexandri & Dimkou, 1998; Pertsinidis, 
Grossmann & McRae, 1998; Dua & Pistikopoulos, 
1999) (see Fig. 2). The main advantage of using the 
parametric programming techniques to address such 
problems is that for problems pertaining to plant oper- 
ations, such as for process planning (Pistikopoulos & 
Dua, 1998) and scheduling, one obtains a complete 



map of all the optimal solutions and as the operating 

conditions fluctuate, one does not have to re-optimize 
for the new set of conditions since the optimal solution 

as a function of parameters (or the new set of condi- 
tions) is already available. 

In the following paragraphs, we present a parametric 
programming approach, which avoids a repetitive solu- 
tion of Eq. (3). First, we do some algebraic manipula- 
tions to recast (Eq. (3)) in a form suitable for using and 
developing some new parametric programming con- 
cepts. By making the following substitution in Eq. (3): 

x-1 
x ,+A,,=AXu(t)+ c A’Bu,+~-, -, (4) 

, = 0 

the objective J(U, .r(r)) can be formulated as the fol- 
lowing quadratic programming (QP) problem: 

min A U/‘HU+ v’(i)FL/+~i’(i)~~~(1) 
I’ 2 

s.t. GUI W+ ,5(r) (5) 

where i/g [u;, . . . . u;+,~ ._ ,]‘E‘W, s &nzN,,. is the vec- 
tor of optimization variables, H = H’ > 0, and H, F, Y, 

G, W, E are obtained from e, R and Eqs. (3) and (4). 
The QP problem (Eq. (5)) can now be formulated as the 
following multi-parametric quadratic program (mp- 

Qp): 

p(.x) = mm k:‘Hz 

s.t. Gr < Wt XX(~), (6) 

where : 2 U + He- ‘F’s(t), rg%‘ represents the vector 

of optimization variables, S 2 E + GH- ‘F’ and s rep- 
resents the vector of parameters. The main advantage 
of writing Eq. (3) in the form given in Eq. (6) is that z 
(and therefore U) can be obtained as an affine function 
of x for the complete feasible space of x. To derive 
these results, we first state the following theorem (see 
also Zafiriou (1990)). 

Theorem 1. For the problem in Eq. (6) let xc, be a vector 
of’ parameter values and (z(,, &) a KKT pair, kchere 

2, = 2(.~,) is a vector of non-negative Lagrange multipli- 

ers. 2, and z. = :(x0) is feasible in Eq. (6). Also assume 

that (i ) linear independence constraint qualtjication and 

(ii ) strict complementaty slackness c,onditions hold. 

Then, 

= - (IV,,) ~ ’ N,,(r - x0) + 

ruhere, 

&I = 

H G: . G;: 

-i,G, - V, 
. 

- r,, G, - v, 

(7) 

N,, = (Y,i,,S,, ., i,‘s,‘)= 

where G, denotes the ith roll’ of’ G, S, denotes the ith ro\l‘ 

of’s, V, = G,ro - W, - S,.q,. W, denotes the ith roll‘ of’ W 

and Y is a null matri.y of dimension (s x 11). 

The set of .Y where this solution, (Eq. (7)), remains 
optimal is defined as the critical region (CR”) and can 
be obtained as follows. Let CRR represent the set of 
inequalities obtained (i) by substituting :(.\-) into the 
inequalities in Eq. (6), and (ii) from the positivity of the 
Lagrange multipliers. as follows: 

CR’= {Gz(.\-) I W+ Ss(t),i.(.y) 2 0). (8) 

then CR0 is obtained by removing the redundant con- 

straints from CRR as follows: 

CR” = A(CR”l, (9) 

where A is an operator which removes the redundant 

constraints - for a procedure to identify the redun- 
dant constraints, see Gal (1995). Since for a given space 
of state variables, X. so far we have characterized only 
a subset of X i.e. CR” g X, in the next step the rest of 
the region CR”““, is obtained as follows (Dua & Pis- 
tikopoulos, 1999): 

CR”“’ = X _ CR”. (IO) 

The above steps, (Eqs. (7)-( 10)) are repeated and a 
set of z(x). j.(.v) and corresponding CR? are obtained. 
The solution procedure terminates when no more re- 
gions can be obtained, i.e. when CR”“’ = @. For the 
regions, which have the same solution and can be 
unified to give a convex region, such unification is 
performed and a compact representation is obtained. 
The continuity and convexity properties of the optimal 
solution are summarized in the next theorem. 

Theorem 2. For the mp-QP problem, Eq. (6). the set of’ 
feasible parameters X, s X i.s conves. the optimal solu- 
tion, z(x): X,H%’ is continuous LIIZ(llliec’r,~.i.se @me. and 

the optimal objective junction /I (.I-): X,u!N is continuous. 
c0m~e.Y and piecell+.se quadratic. 

Based upon the above theoretical developments, an 
algorithm for the solution of a mp-QP of the form 
given in Eq. (6) to calculate C; as an affine function of 
x and characterize X by a set of polyhedral regions. 
CRs, has been developed which is summarized in Table 
1. 

This approach provides a significant advancement in 
the solution and on-line implementation of MPC prob- 
lems. Since its application results in a complete set of 
control actions as a function of state variables (from 
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Table 1 

Solution steps of the algorithm 

Step I 

Step 2 

Step 3 

Step 4 

Step 5 

Step 6 

Step 7 

Step 8 

For a given space of x’ solve Eq. (6) by treating .u as a 

free variable and obtain [.Y,J 

In Eq. (6) fix x = s0 and solve Eq. (6) to obtain [zO, L,,] 

Obtain [Z(X), i(x)]from Eq. (7) 

Define CR8 as given in Eq. (8) 

From CRR remove redundant inequalities and define 

the region of optimality CR” as given in Eq. (9) 

Define the rest of the region, CR”“‘, as given in Eq. 

(10) 
If no more regions to explore, go to the next step, 

otherwise go to step 1 

Collect all the solutions and unify a convex 

combination of the regions having the same solution to 

obtain a compact representation 

Fig 

PARAMETRIC PROFILE 
control variables 

I PLANT I 

3. On-line optimization via parametric programming. 
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Fig. 4. Closed-loop response 

Eq. (7)) and the corresponding regions of validity (from 
Eq. (9)), which are computed off-line. Therefore, during 
on-line optimization, no optimizer needs to be called 
and instead for the current state of the plant, the 
region, CR’, where the value of the state variables is 
valid, can be identified by substituting the value of 
these state variables into the inequalities, which define 

the regions. Then, the corresponding control actions 
can be computed by using a function evaluation of the 
corresponding affine function (see Fig. 3). In the next 
section, we present an example to illustrate these 

concepts. 

4. Numerical example 

Consider the 
representation: 

following state-space model 

0.7326 

0.1722 0.9909 

l’(t) = [0 1.41421,x(t) 

(11) 

together with the following constraints: 

- 2 I u(r) I2 (12) 

The corresponding optimization problem of the form 
(Eq. (3)) for regulating to the origin is given as follows: 

I 
min x;+@x,+~~,+ 1 x~+~J~x,~~~,+O.O~U;'+~ (13) 

Ui.li, + I k = 0 

s.t. - 2 I u,+x 52, k = 0,l 

x,1, = x(t) 

where P solves the Lyapunov equation P = A’PA + Q, 

e=; y, 
L I 

R = 0.01, N,, = NY = N,. = 2. The closed- 

loop response from the initial condition x(O) = [l 11’ is 
shown in Fig. 4. The same problem is now solved by 
using the parametric programming approach. The cor- 
responding mp-QP problem of the form (Eq. (6)) has 
the following constant vectors and matrices. 

1 0 

G= 
-1 0 

0 1 

0 -1 

0.0063 1 0.0199 ’ 0.0679 

- 0.0924 1 ’ 

The solution of the mp-QP problem as computed by 
using the algorithm given in Table 1 is provided in 
Table 2 and is depicted in Fig. 5. Note that the CRs 2, 
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4 and 7, 8 in Table 2 are combined together and a 
compact convex representation is obtained. To illus- 
trate how on-line optimization reduces to a function 
evaluation problem, consider the starting point .x(O) = 
[l 11’. This point is substituted into the constraints 
defining the CRs in Table 2 and it satisfies only the 

Table 2 5. Concluding remarks 
Parametric solution of the numerical example 

In this work, we have presented a parametric pro- 
gramming approach for the solution of on-line opti- 
mization problems. Parametric programming provides 
a complete map of the optimal solution as a function of 
the parameters, by partitioning the space of parameters 
into characteristic regions. In the context of on-line 
optimization, optimal control actions are computed 
off-line as a function of state variables, and the space of 
state variables is sub-divided into characteristic regions. 
On-line optimization is then carried-out by taking mea- 
surements from the plant, identifying the characteristic 
region corresponding to these measurements, and then 
calculating the control actions by simply substituting 
the values of the measurements into the expression for 
the control profile corresponding to the identified char- 
acteristic region. The on-line optimization problem thus 
reduces to a simple map-reading and function evalua- 
tion problem. The computational effort required by this 
kind of implementation is very small, as no optimizer is 
ever called on-line. Current research efforts focus on 
addressing hybrid control problems (Bemporad & 
Morari, 1999) via multi-parametric mixed-integer pro- 
gramming techniques (Dua & Pistikopoulos, 1999). 

Region # Parametric solutions 

2, 4 

6 

7, 8 

9 

21’ = [-5.9220 6.8883]x 

-3.4155 4.6452 

CR”, ‘: I 0.1044 0.1215 

0.1259 0.0922 

nz. ‘l= -2.0000 

CR’: 
0.0679 

0.1259 0.0922 

u3 = -2.0000 

CR=: 
-0.1259 - 0.0922 

-0.0679 0.0924 
I < 

us = - 2.0000 

CR? [i;;;‘: :;;!;I u< [;;;I71 

uh = [-6.4159 -4.6953].~+0.6423 

i 

3.4155 -4.6452 2.6341 

CR’, ? -0.1044 -0.1215 X< -0.0353 

-0.1259 -0.0922 I! I - 0.0267 

u’. 8 = -2.0000 

4.6953 1.3577 

-0.1220 .u< -0.0357 

-4.6953 II 1 2.6423 

uy = [-6.4159 -4,69531x-0.6423 

Fig. 5. Polyhedral partition of the state-space 

constraints of CR’, a (see also Fig. 5). The control 
action corresponding to CR ‘, * from Table 2 is ~‘3 
8 = - 2, which is obtained without any further opti- 
mization calculations and it is same as the one obtained 
from the closed-loop response depicted in Fig. 4. 
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