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Abstract

The problem of satisfying input and state-dependent
inequality constraints in feedback control systems
is addressed. The proposed solution is based on
predicting the evolution of the constrained vector
and, accordingly, selecting on line the future reference
based on both the current state and the desired set-
point changes. The achievable performance is first
investigated via simulations, and compared with the
one obtained via a receding horizon controller which
uses on line a mathematical programming solver.
Finally, an analysis is carried out so as to estabilish
stability and offset-free properties of the method.

1. Introduction ' )

The problem of determining a feedback control
law capable of stabilizing a given plant in the presence
of input and state-related inequality constraints, is
one of the fundamental issues in control applications.
In this context even the conceptually simple case of a
linear plant with saturated inputs gives rise to chal-
lenging stability problems [5]. For the discrete-time
regulation problem, [6] showed that, under feasibility
conditions, zero terminal state receding horizon con-
trol [8] with input and state-related constraints yields
a stable feedback system. Under quite general condi-
tions, [6] proved in fact this to hold true even if the
plant to be regulated is nonlinear and time-varying.
Extensions of similar results to the continuous-time
regulation problem are tackled in [9] and discussed in
[10]. Specific feedback regulation systems for linear
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plants with input saturations are treated in [7] and
[3]. For a different approach see [4].

For 2-DOF (two degrees of freedom) control prob-
lems with hard constraints, in recent years a great
deal of interest has been focussed on applying predic-
tive control techniques [16], [14], via the on-line use
of a mathematical programming solver [15].

The present paper tackles the control problem
with constraints along the lines of predictive control
but, unlike the previous contributions, sidesteps the
need of using a mathematical programming solver by
adopting a suitable on-line management of the ref-
erence to be tracked. It can be shown that, un-
der some conditions, the proposed on-line predictive
reference management (PRM) suffices for solving the
constrained control problem, and that the associated
computational load turns out to be much smaller than
that of a mathematical programming solver. This is
a very important feature in industrial control appli-
cations where the sampling time cannot be too large,
and the computing power must be as small as possi-
ble.

The paper is organized as follows. Sect. 2 de-
scribes the on-line PRM for a given feedback control
system. Via simulation experiments we show that
the proposed on-line reference management fulfils in-
put and state-dependent inequality constraints with
results that can be made indistinguishable from those
obtained by a mathematical programming solver. Sect.
4 analyses the feedback control system governed by
the proposed on-line PRM. Some conclusive remarks
are finally presented in Sect. 5.

2. On-line Predictive Reference Management

Consider the control system depicted in Fig.
1 where y(t), u(t), éu(t) and z(t) are respectively
output, input, input increments and state of the
controlied plant. Further, ¢(t) = c(z(t),éu(t)) is
the constrained vector. The underlying controller
can implement any stabilizing control law dependent
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Fig. 1. Control system with PRM

on the reference sequence r(-). We assume also
that there is an integral action in the feedback loop,
and zero-offset for a constant reference results. We
distinguish between the set-point trajectory w(-) to
be tracked and the actual reference sequence r(-)
applied to the controller. The latter is in fact selccted
on-line by the reference governor as explained in detail
below. The set-point conditioner is needed to threshold
the desired trajectory W(t) in such a way that the
output w(t) of the conditioner is an admissible set-
point. This means that when in steady state the
plant output y reaches the level w(t), c fulfils the
constraints. See (22).

The procedure implemented by the reference gov-
ernor aims at smoothing out transitions from the cur-
rent value of the plant output to the desired set-point.
Accordingly, the reference pattern selected by the ref-
erence governor at each step ¢ is given as follows

r(t+ilt) = X (Oy) + (1 = X Ow(@) (1)

where t, i € Z, and A(t) € [0,1). Let c(t) =
{c(t + i]t)}2o be the hypothetical evolution of the
constrained vector corresponding to the use of the
reference pattern r(-Jt) = {r(t + ilt)}2,. c(-t) will
be called the prediction of the constrained variable
for given r(-|t) and z(t). Then, when a set-point
change occurs, one can smooth out the dynamic range
of ¢(-]t) by choosing the “time constant” A(t) so as
to possibly keep c(-|t) admissible. In fact the closer
A(t) to 1, the smoother c(-|t) will be and the larger
the resulting settling-time. The idea is to choose
at each t the time constant A(f) which gives the
shortest settling time while keeping c(-|t) admissible.
At each time step ¢ the reference governor executes
the following algorithm:

1. Construct the reference pattern r(t +ijt) = w(t),
Vie Zy (ie. Xt) =0);

2. Make a prediction cpr(-}t) := {c(t+ijt)} M5! over
an M-step horizon by iterating the plant model
and the underlying controller fed by the selected
reference pattern;
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3. Does cpr(-|t) fulfil the constraints?

(a) Yes: Use the current reference pattern as
the actual reference, compute u(t) to be
given to the actuator, and go to 5;

(b) No: Goto 4

4. Can other reference patterns corresponding to a
larger value of A(f) < 1 be constructed?

(a) Yes: Construct the reference pattern by
increasing the parameter A(t), and go to 2;

(b) No: Set r(t +iJt) = r(t + i|t — 1). Goto 5;
5. Stop

In the deterministic case, step (3a) ensures that
the constraints will be fulfilled at least for M steps.
Ideally M should be infinite. In practice the predic-
tion horizon M must be finite. In fact, the shorter
it is, the lighter the computational burden. How-
ever, too small values of M can lead the system into
a “blind alley”, where no choice of future reference
patterns will avoid violation of the constraints. A
rule of thumb is to set MT, (T,=sampling period)
equal to the settling time of c(-) in the presence of
the prescribed constraints, given that, because of set-
point conditioning, the constraints can be violated
only during transients.

Another issue is how many sequences the gover-
nor can try before giving up and execute step (4b).
Our solution is to set up a grid G made up of ng val-
ues 0 = Ao < A1 < ... < Ang—1 suitably distributed
on [0,1): the higher ng the better the performance,
but the heavier the computational burden.

Although the strategy described so far can be ap-
plied to nonlinear MIMO plants and any underlying
stabilizing control law, we investigate how to use it
in order to control a discrete-time SISO linear time-
invariant plant

{ z(t+1) = @z(t) +Gou(t) @)
y(t) = Hz()
or, being d the unit delay operator,
{ (1 - d)A(d)y(t) = B(d)éu(t) 3)
(1 — d)A(d) and B(d) are coprime
and
u(t) = u(t — 1) + éu(t) (4)
o(t) = Cz(t) + Déu(t) € R™ (5)
The underlying control law we consider
R(d)bu(t) = —S(d)y(t) + D_wir(t+4)  (6)

i=1




1s the one minimizing the quadratic performance in-
dex

T =3 {l(t + 1) = r(t + )P + plout + )PP} (7)

i=0

p > 0, assuming that {r(i + 7)}$2, is bounded and
known. The resulting control law will be referred to
as LQ control with preview. It consists of the 2-DOF
control law (6) where R(d), S(d) are polynomials
satisfying the Diophantine equation

(1-d)A(d)R(d) + B(d)S(d) = E(d)/E(0), (8)

with S(d) of minimum degree, and E(d) is a strictly
Hurwitz polynomial which solves the spectral factor-
ization problem

E(d)E(d™Y) = B(d)B(d-)+
+p(1 — d)A(d) A(d~1)(1 — d~1)
9)
The solution of the LQ control problem with preview
in the form (6) is given in [12] and [11]. Since the
transfer function from r(t) to y(t) for the system (3),

(6), is given by %gg%%;%, we see that zero-offset

results. With r(-) as in (1), (6) becomes
R(d)éu(t) = -[S(d)-'V('\(i))]y(t)+[V(1)—V('\(i)()llg)(i)

where
V(d) = E vid = OE@ (11)

i=1

Instead of LQ control with preview, any stabiliz-
ing control law with zero-offset could be chosen. E.g.
the 2-DOF stabilizing input/output receding horizon
control law (SIORHC) [13], or classical 1-DOF con-
trollers like PID or lead-lag.

An advantage with LQ control with preview
unlike other predictive controllers such as SIORHC
is that its control law can be given in a compact
explicit polynomial form as in (6)-(11). This makes
the overall operation of the control system under
consideration better understandable. We finally point
out that, even if the plant and underlying control
law are linear, the resulting controller is a nonlinear
function of the current closed-loop state and the
desired trajectory.

3. Simulation results
Ezample 1. Consider the linear discrete-time plant

(1-1.9517d+0.9517d%)y(t) = (—0.0488d+0.04884%)u(t)
(12)
obtained by sampling every T, = 0.005s and zero-
order holding the input of continuous-time unstable
plant
_ 1+ 10s
Yr) = T¥o1s)0 =105 %7 (13)
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Fig. 2. 2-DOF LQ, no constraint (dashed line), and with
PRM and constraint ju(t)] < 3.
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Fig. 3. A(t) for the example of Fig. 2.

for which a square-wave is chosen as desired trajec-
tory W(-). Fig. 2 shows the behaviour of the 2-DOF
LQ regulated system without constraints (r(-) =
w(-) = W(-), dashed line) and how the control system
with PRM behaves in the presence of the constraint

lu(®)l<3 (14)

(solid line). Because of open-loop instability the
transfer function from w(?) to u(t) is non-minimum
phase. This explains the large overshoots in the
input. As reported in Fig. 3, the reference governor
chooses a non-zero A(t), i.e. transforms w(-) into
r(-|t), only during transients, when constraints would
be violated. Moreover, in order to yield the shortest
settling-time, it always selects the smallest value for
A(¢) compatible with the prescribed constraints.

Ezample 2. We show how the proposed reference gov-
ernor generates controls practically indistinguishable
from those obtained by a receding horizon technique
which uses on-line mathematical programming. Con-
sider the linear discrete-time plant

(1-1.7535d+0.8353d?)y(t) = (0.5830d—0.5013d2)u(t)
(15)
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Fig. 4. Receding horizon controller (RHC) with con-

straint |6u(t)] < 0.4.
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Fig. 5. Solid line: ypam(t) ~ yruc(t). Dashed line:

Suprm(t) — Surmc(t).

obtained by sampling every T, = 0.03s and zero-order
holding the input of the second-order under-dumped
continuous-time plant

_ 14032s ¢ = 03
y(f)_1+2£s+.1_732u(7)’ wn = 10rad/s

(16)
with a constraint on |6u(t)]. Fig. 4 shows the unit
step-response of (15) regulated by a receding horizon
control law. At each step ¢ this chooses du(t) = 64(t),
where the finite sequence 64y ;4 vy minimizes

N
J =3 {ly(t+i) —r(t + )P + plsu(®)?}  (17)

=0

with the constraint {§u(t +1)] < 04Vi=0,1,N -1
(p = 0.1, N = 8). Fig. 5 depicts the difference
between the sequences Su(-), y(-) generated by the
PRM strategy (same p, M = 2) and the one shown
in Fig. 3. Fig. 6 also shows the values of A(t) chosen
by the reference governor.  For the PRM strategy a
grid G={0,1—p,-, 1 -y}, p=.99, ng = 646
was chosen. Trying with u = .7, ng = 10 we got
qualitatively the same y(-) and du(-), as depicted in
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Fig. 7. PRM with a coarser grid G.

Fig. 7. A coarser grid lightens calculations but gives
trajectories more distant from the optimal ones.

4. Analysis

The aim hereafter is to analyze the 2-DOF con-
trol system equipped with the reference governor, and
described in the previous sections. To this end, it is
convenient to represent the control law (6) in state-
space form as follows

Su(t) = Fz(t) + v(t) (18)
with v(t) the command input. System (2), (5) and
(18) can be rewritten as

{ z(t+1) = @pz(t)+ Gu(t) (19)
c(t) = Crz(t)+Du(t)ecC
o(t) = Y wir(t +il) (20)
i=1

where ®r := ® + GF is a stability matrix, Cr =
C+DF, and c(t) € R"* the vector to be constrained
in the set C C R™<. If C = R"¢, (19)-(20) enjoyes the
zero-offset property

Yo = Hzy=w
2w = (I—%p) " Gu @1)
v = V(0w

for every w € R [V(d) is defined in (11)]. This

means that if r(-|t) = w, Vt € Z, the plant output
coincides in steady-state with the constant set-point
w. We define the set W of admissible set-points

W :={w € Rlcy, := Crzy + Dvy, € C} (22)




Given a bounded reference sequence r(-{t) = r(-|0) =:
r(:), Vt € Z, we denote by c¢(k,0,z,r(-)), k € Z,
the vector (k) produced by the application of r(-) to
the system (19)-(20) from the state z at time zero.
Then, we define the r(-)-admissible state set X(r(-))

X(T()) = {I € R** |c(k1 0,2:,7'(-)) €C,\Vke Z+}
(23)
Because the maps w — ¢y, and z — {c(k,0, z,r(-))}&,
are continuous, we have

C open = W and X(r(-)) open (24)

Further,
C convex = W and X(r(-)) convex (25)
C symmetric => W symmetric (26)

We introduce without proof the following fundamen-
tal lemma.

Lemma 1. Let C and W be bounded, with C open
and convex. Then, given two admissible set-points w
and w, W, w € W, there exist A € [0,1) such that the
plant can be transferred from the equilibrium state
zy at time O to the equilibrium state z,; by driving
the system (19)-(20) by the reference trajectory

ra(d) =2 o4+ (1 -2y, i€ Z, (27)

or, equivalently, for some A € [0,1) and Y&,w € W
zp = (I - ®p)"'GH(1)@ € X(ra(")) (28)

Lemma 2. Under the same assumptions as in Lemma
1, whenever @, € W, there exist A € [0,1) and ¢ > 0
such that

zg +Z € X(r\(), VZ€ R, ||z]|< ¢ (29)
where 7, (-) is as in (27).

Proof. By Lemma 1, z4 € X(r,(-)) for some A €
{0,1). Since C open 1mphes that X(ra(-)) open, the
conclusion follows as once.

It remains to specify how the “reference to go” r('lt)
is generated by the reference governor. While in
this respect we refer the reader to the specific point
discussed in Sect. 2, hereafter we shall adopt the
following simplified criterion for selecting A(t). Let
w(t) € W be the desired (conditioned) set-point at
time t. For t,: € Z4, set

Al) =2 €0, Dl=(t) € X(ra())}  (30)

where
ra(t+idlt) = A et i)t — 1) 4 (1= A+ w(t) (31)
Then, take

1 JifA@E) =0
At) = 0 ,if0 € A(2) (32)
any A € A(t) , otherwise
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and set
f‘(l + i't) = r,\(t)(i -+ llt) (33)

While this criterion for choosing A(t) must be further
elaborated so as to improve the performance of the
control system, nonetheless it suffices to prove next
Theorem 1. Before proceding any further, notice that
if

z(0)=zy, we W, and r(-|- 1) =w (34)
it follows that, Vt > 1,
z(0) € X(r1(+|0)) and z(t) € X(r(-[t))  (35)

Theorem 1 ( Conditional stability and offset-free behaviour).
Assume that:

(i) w(t) € W, Yt € Z; (set point conditioning)

(ii) z(0) € X(r(-10)) _

(ii1)3f > 0 such that w(t) = w Vt > {.

Then, under the same assumptions as in Lemma 1,
and provxded that the reference governor action be
defined as in (32), there exists a finite time £, { > {,
such that A(t) = 0 or r(:|t) = w, ¥Vt > i, and

consequently
tlirg y(t)=w

Proof. Let t > f. Consider that lim;_oor(t — 1 +
ift—-1) = w € {w(0),w(l),...,w(t — 1)} C W.
Further, V7 > ¢, (7 + i|7) = X+ (D)r(r +ijr = 1) +
[1 = Ai+1(7)]w. Assume now that A(r) = 1Vr > ¢.
Consequently, lim,_.o r(r + i|r) = w. In turn this
implies lim;_.co (7) = zy. Therefore, there exists
a finite 7 such that z(¥) = zy + Z with [|z]| < ¢,
for any ¢ > 0. By Lemma 2, this contradicts the
assumption that A(7) = 1, V7 > t. Therefore, there
is a finite # > t such that A(T) € [0,1). Then,
rr +ilF) = X H(F)R(F +i]F = 1) + [1 = AH (D),
74+ 1+idF + 1) = MHAOMHIMF + DI rF +
1447 = 1) + {1 = AANHMF + )+ }w and so
on. Hence, irrespective of A(F + 1), A(T + 2),...,
limy_ o r(t + i|t) = w. This implies that, as t — oo,
r(t +ijt) = w+ ®(,i) and z(t) = zo + Z(t).
Consequently c(t + 1,1, z,, + Z(t),w + w(t, 7)) = c(t +
i,t, Ty + (1), w) + c(t +1,t,0-,wW(t, 7)), where, being
C open, the first term for a finite t belongs to C
and the second goes to zero exponentially fast. The
conclusion is therefore that there exists a finite time
i, 4> t, such that A(k) = 0, Vk > £. o

In practice, instead of the selection rule (30)-
(33), another possibility is, as indicated in Sect. 2,
to construct the “reference to go” as follows. For
t,i € Z+, set

A(t) = {r € [0,)|z(t) € X(ra(It))}  (36)

where

rat+ 1) ;= X+ y) + (1= A+ () (37)




Then, take

. r(t -+ i'l - 1) , if A(t) =0
r(t+ift) == { Ta(t + i), otherwise

where A(t) € A(t). Also under this choice, provided
that

(38)

z(0) € X(r(|0)),

z(t) € X(r(-|t)). The analysis of the feedback system
under the rule (36)-(38) turns out to be less direct
and harder than the one in Theorem 1. For the sake
of brevity we shall refrain from embarking ourselves
into such an analysis. See [1] and [2] for details.

5. Conclusions.

Set-point conditioning.and on-line reference man-
aging schemes can be effective tools for solving feed-
back control problems in the presence of input and
state-dependent constraints. These schemes can be
embodied in any feedback control system, provided
that model based predictions of the constrained vec-
tor can be carried out within two subsequent sam-
pling times. The specific underlying control law con-
sidered in this paper consists of an optimal LQ con-
troller with preview where constraints can be in-
put saturations, input increment saturations, out-
put over/undershoot limitations, etc.. Simulation ex-
periments show that the reference governor can op-
erate with no appreciable performance degradation,
but substancial saving in computational load, w.r.t.
a similar control system embodying a mathematical
programming solver. Stability and offset-free prop-
erties are estabilished. For the 1-DOF control case,
on-line PRM tecniques should be compared with the
existing techniques [3] and {7].
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