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Abstract— An algorithm for solving feedback min-max model
predictive control for discrete time uncertain linear systems
with constraints is presented in the paper. The algorithm solves
the corresponding multi-stage min-max linear optimization
problem. It is based on applying recursively a decomposition
technique to solve the min-max problem via a sequence of low
complexity linear programs. It is proved that the algorithm
converges to the optimal solution in finite time. Simulation
results are provided to compare the proposed algorithm with
other approaches.
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I. INTRODUCTION

Most control design methods need a model of the process
to be controlled. These models are always subject to uncer-
tainties and only describe the dynamics of the process in
an approximate way. Model predictive control is one of the
control strategies that is able to deal with the uncertainty
in an explicit way. One approach used to design robust
control laws is to minimize the cost function for worst case
uncertainty realization. This is known as min-max as was first
introduced by Witsenhausen in [1]. Early model predictive
control approaches can be found in see [2], [3]. These
works deal with open loop predictions and optimize a single
sequence of control inputs for the worst possible uncertainty
trajectory. Further results address the feedback min-max
problem, where the optimization is done over a sequence
of control laws in order to take into account that the control
law is applied in a receding horizon manner. See [4], [5]
and the references therein. In both formulations, the resulting
min-max optimization problems can be computationally very
demanding. Different strategies have been proposed in the
literature to overcome this problem, see for example [6], [7],
[8], [9], [10].

This paper deals with feedback min-max MPC based on
a linear performance index, i.e. that can be cast on a linear
program (LP). It is well known that this min-max problem
can be solved using multi-parametric programming with a
dynamic programming approach [11] or that it can be cast
as a large scale linear program [12].
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In this paper an algorithm to solve in a more efficient
way the min-max problem is proposed. The algorithm is
based on the structure and the convexity properties of the
cost function. It applies a nested decomposition procedure
to solve the min-max problems via a sequence of low order
linear programs. The paper also proves that the algorithm
converges to the optimal solution in finite time.

The paper is organized as follows: In Section II the feed-
back min-max problem is reviewed. In Section III is defined
the multi-stage min-max linear programs, a general class of
optimization problems. In Section IV the main contribution
of the paper is presented. Some simulation results are given
in Section V. The paper ends with a section of conclusions.

II. PROBLEM FORMULATION

Consider the discrete time linear system

x(t + 1) = A(w(t))x(t) + B(w(t))u(t) + D(w(t)), (1)

subject to constraints

Gxx(t) + Guu(t) ≤ g, (2)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the
input vector and w(t) ∈ Rnw is the uncertainty vector that
is supposed to be bounded, namely w(t) ∈ W here W is a
closed polyhedron. The system matrices are defined by the
uncertainty as

A(w(t)) = A0 +
nw∑
k=1

eT
k w(t)Ak,

B(w(t)) = B0 +
nw∑
k=1

eT
k w(t)Bk,

D(w(t)) = D0 +
nw∑
k=1

eT
k w(t)Dk,

(3)

where ek is the k-th column of the identity matrix of
size nw. This is a general description of uncertainty for
linear systems and includes both parametric and additive
uncertainties (see [11], [6]).

Feedback min-max MPC obtains a sequence of feedback
control laws that minimizes the worst case cost, while
assuring robust constraint handling. The feedback min-max
optimal control problem is defined as

J∗
j (x(j)) = min

u(j)
Jj(x(j), u(j)) (4)

subject to

Gxx(j) + Guu(j) ≤ g,

A(w(j))x(j) + B(w(j))u(j) + D(w(j)) ∈ χj+1,

∀w(j) ∈ W,

(5)
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where

Jj(x(j), u(j)) = ‖Qx(j)‖p + ‖Ru(j)‖p

+ max
w(j)∈W

J∗
j+1(A(w(j))x(j) + B(w(j))u(j) + D(w(j))).

(6)
The set χj is the set of states x(j) such that (4) is feasible.

The optimization problem is defined for j = 0, . . . , N −1
where N is the prediction horizon. The boundary conditions
are:

J∗
N (x(N)) = ‖Px(N)‖p,

χN = χf .
(7)

In (4)-(7), p = 1 or p = ∞, where ‖x‖1 and ‖x‖∞ are
the one and infinity norm respectively. The cost function is
defined by nonsingular matrices Q, R and P . Region χf is
the terminal region and is supposed to be a polyhedron. This
constraint is used to assure stability, see [5], [12].

The control law is applied in a receding horizon scheme.
At each sampling time the problem is solved for the current
state x and J∗

0 (x) is obtained. The controller applies the
optimal control input for the first time step which is de-
noted u(0)∗. Note that this optimization problem is of very
high complexity. In the following sections an algorithm for
solving this problem in an efficient way is presented.

A. Worst Case Scenario Tree

Due to the convex nature of the prediction and cost
function, the min-max problem can be solved taking into
account not all possible values of the uncertainty (which
leads to an infinite dimension problem), but only the extreme
realizations (i.e. the vertices of W).

The enumeration of all the possible extreme realizations
of the uncertainty along the prediction horizon gives rise
to what is called a scenario tree as in [5]. This tree is
used to solve the min-max problem as a finite dimensional
deterministic problem. The root node of the tree represents
the initial time step j = 0. Each new level of the tree
stands for a new time step and contains all possible extreme
uncertainty trajectories, i.e. all the possible combinations
of vertices of the uncertainty set W along the prediction
horizon. Each node has q children, one for each vertex
of W . Each node is then defined by an uncertainty vector
wi which characterizes the uncertainty realization from the
parent node. By definition, wi is one of the vertices of W .

A possible uncertainty trajectory defining an scenario is
then a path from the root node of the tree, down to a leaf.
All the nodes of the tree are numbered, starting from the
root node (node 0) to the leaf nodes, stage by stage (so the
enumeration of the nodes of a given stage is lower than their
children nodes). M is the total number of nodes. The time
step of the node is denoted by n(i). Each node i has a set of
children I(i) and a parent node p(i). The set of children is
empty for the leafs nodes and the root node has no parent.

The scenario tree is used to define an optimization problem
that is equivalent to the min-max problem proposed in the
previous section. To each node of the tree is assigned a set
of variables and a cost function V̂i(xp(i), up(i)) defined by

the following optimization problem

V̂i(xp(i), up(i)) = min
xi,ui

‖Qxi‖p + ‖Rui‖p + max
j∈I(i)

V̂j(xi, ui)

(8)
subject to

xi = A(wi)xp(i) + B(wi)up(i) + D(wi),
Gxxi + Guui ≤ g,

A(wj)xi + B(wj)ui + D(wj) ∈ χn(i)+1, ∀j ∈ I(i).
(9)

The index of the variables denotes node enumeration. The
set χn(i)+1 corresponds to the feasible set of the next step
problem and is a polyhedron. The cost function V̂i depends
on the previous decision variables, i.e. the variables of the
father node xp(i), up(i). Note that the optimization variable
xi of each node is fixed by (9).

To obtain the control input, the cost function of the root
node is minimized for a given initial state x, i.e. the following
optimization problem is solved

V̂0(x) = min
x0,u0

‖Qx0‖p + ‖Ru0‖p + max
j∈I(0)

V̂j(x0, u0)

subject to

x0 = x,

Gxx0 + Guu0 ≤ g,

A(wj)x0 + B(wj)u0 + D(wj) ∈ χ1, ∀j ∈ I(0).

The definition of V̂0(x) takes into account that state of the
root node is given by the measured state of the system. The
boundary conditions are:

V̂i(xp(i), up(i)) = min
xi

‖Pxi‖p

subject to

xi = A(wi)xp(i) + B(wi)up(i) + D(wi),

for all leaf nodes (nodes such that I(i) is empty). The value
of the cost function at the leaf nodes do not depend on any
other node. Also, χN = χf as in the previous section.

Problems (4) and (8) are equivalent and that the following
equality holds

J∗
0 (x) = V̂0(x).

Note that in problem (4) the index of the cost functions
denote time step (i.e. J∗

i is the cost function at time step i).
On the other hand, in problem (8) the index of the cost
function denote node (i.e. V̂i is the cost function at node
i).

The most important difference between problems (4)
and (8) is that in (8) all the parameters are deterministic.
That is, each node has a corresponding known realization
of the uncertainty and the maximization is done over the
corresponding cost functions of the children nodes (which is
a finite set). It is a multi-stage min-max linear program. In the
following section this kind of problems are introduced and
an efficient algorithm for solving the problem is presented.
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III. MULTI STAGE MIN-MAX LINEAR PROGRAMMING

In this section the multi-stage min-max linear program in
standard form is presented. The main result of the paper
is an algorithm that solves this kind of problems in an
efficient way. The standard form is introduced to simplify
the notation. Problem (8) belongs to this kind of optimization
problems so the algorithm presented in the following sections
can be applied to obtain the optimal control input of the
feedback min-max MPC controller.

The multi-stage min-max linear problem in standard form
is defined as

V ∗
i (zp(i)) = min

zi

cT
i zi + max

j∈I(i)
V ∗

j (zi) (10a)

s.t. Wizi = hi − Aizp(i), (10b)

zi ≥ 0. (10c)

This kind of problems are defined by a scenario tree as
the one introduced in the previous section. Each node i has a
set of children I(i) and a parent node p(i) and is defined by
matrices and vectors ci,Wi, hi and Ai. All these parameters
are deterministic and can be different for each node. The
objective is to minimize V ∗

0 , the cost function in the root
node.

V ∗
0 = min

z0

cT
0 z0 + max

j∈I(0)
V ∗

j (z0)

s.t. Wiz0 = h0,

z0 ≥ 0.

The boundary conditions are given by the problem solved at
each leaf node.

V ∗
i (zp(i)) = min

zi

cT
i zi

s.t. Wizi = hi − Aizp(i),

zi ≥ 0.

The multi-stage min-max linear program is related to the
multi-stage stochastic linear program [13].

Problem (8) can be formulated as a multi-stage min-max
linear program because the one and the infinity norm can
be evaluated using a linear program as done for the first
time in [14]. To pose it in standard form, some auxiliary
and slack variables have to be introduced. The matrices and
vectors ci,Wi, hi and Ai depend on the system, the cost
function, the constraints and on the value of the uncertainty
from the parent node to the node i (what in the previous
section was defined as wi). The initial state of the system
defines the constraints in the root node which does not
depends on any previous decision, namely h0 depends on x.

The set of variables zi corresponding to each node includes
the state, the input, the auxiliary variables introduced to
evaluate the cost function and the slack variables needed to
represent the feedback min-max problem in standard form.

The constraints represent both the system constraints and
the cost definition constraints. The value V ∗

i (zp(i)) represents
the cost function at node i depending on the previous
decision variable zp(i) (Recall p(i) is the index of the parent
node of i).

IV. NESTED DECOMPOSITION ALGORITHM

In this section the algorithm for solving multi-stage min-
max linear programs based on Benders decomposition is
presented. This algorithm exploits the specific structure of
the problem and the convexity properties of the objective
function. The general idea of Benders decomposition is to
project a problem in two vector variables, into a problem in
one of these variables and then use a cutting plane method
to handle the projected objective function. This idea was
first introduced by Benders in [15] for solving mixed integer
problems and has been successfully applied to stochastic
programming [13], [16]. To the best knowledge of the authors
this approach has not been applied to min-max problems and
in particular, to evaluate feedback MPC control laws.

The method consists on solving a sequence of LP problems
that approximate the value of the original problem. In (10)
the value of the function V ∗

j (zi) has to be evaluated. These
functions are complex nonlinear functions. In the proposed
algorithm, these functions are substituted by an outer lin-
earization, i.e. a lower bound that can be evaluated using
a linear problem. This lower bound is improved at each
iteration and converges to the real value of V ∗

j (zi).
In this paper is addressed a particular case of multi-stage

min-max linear programs to simplify the algorithm. It is
assumed that V ∗

i (z) is finite and greater than zero for all
nodes. This assumption holds in the case of feedback min-
max problems, where the objective function satisfies this
condition by definition. It is not difficult no generalize the
algorithm. In what follows the algorithm is presented. Also,
optimality and finite termination of the same is proved.

At each step m of the algorithm, subproblems Pm
i are

solved, one for each node i of the scenario tree, to obtain
the lower bound of the cost function V ∗

i (z). As each of the
functions of the children nodes are also approximated by
an outer linearization, the resulting subproblem is a linear
program. The lower bound V m

i (zp(i)) is obtained solving
the following optimization problem (Pm

i )

min
zi,θi,θi,j

cT
i zi + θi (11a)

s.t. Wizi = hi − Aizp(i), (11b)

Dk
i,jzi + θi,j ≥ dk

i,j , ∀j ∈ I(i), k ≤ rm
i,j , (11c)

θi ≥ θi,j , ∀j ∈ I(i), (11d)

zi, θi ≥ 0, θi,j ≥ 0, ∀j ∈ I(i). (11e)

These problems are modified at each iteration. The number
of constraints in (11c) at step m is rm

i,j . These constraints
are optimality cuts added in order to give a lower bound on
the value of V m

j (zi)(See Theorem 1, namely

V m
j (zi) ≥ θi,j , ∀j ∈ I(i).

At the first iteration r1
ij = 0 for all nodes and j ∈ I(i).

This means that for the first iteration, the value of θi,j of
the children of each node i is considered to be zero (recall
that θi,j ≥ 0). Each time a new optimality cut is added (rm

i,j

increases), the approximation of V m
j (zi) is tighter.

5128



Each θi.j is a lower bound on the value of V m
j (zi). To

evaluate the maximization over the set of childrens, the
auxiliary variable θi is included. Constraints (11d) evaluate
the maximization over all the children of node i using an
epigraph approach.

In this section is proved, that V m
i (z) is a lower bound

on V ∗
i (z) and that when the algorithm stops, both values are

equal.
As in the previous section, when solving the root node,

constraints (11b) are replaced by W0z0 = h0, because the
root node has no parent. For the feedback min-max problem,
h0 depends on the initial state of the system x0.

When solving a leaf node, variables θi,j and con-
straints (11c) are omitted because these nodes do not have
children. Note that this means that by definition,

V m
i (z) = V ∗

i (z),

for each leaf node and every algorithm iteration m.
The algorithm solves problems with relative complete

recourse [13], i.e. feasibility of the root problem P 1
0 assures

feasibility of all the problems of the nodes of the scenario
tree for all steps m. For general problems, feasibility cuts can
be added to the algorithm as in stochastic linear program-
ming [13], [16]. Note that feedback min-max is formulated
to have relatively complete recourse. By definition, if x0 lies
in χ0, there exists a sequence of control laws that drive x0 to
the terminal region satisfying the constraints for all possible
uncertainties because constraint (5) holds for each node.

The algorithm is based on adding optimality cuts at each
time step. These optimality cuts are obtained from feasible
solutions to the dual problem of Pm

i . The dual problem Dm
i

is defined as (note that strong duality holds):

max
λi,µ

k
i,j

,µj

(hi − Aizp(i))
T λi +

∑
j∈I(i)

rm
ij∑

k=1

dk
ijµ

k
ij

s.t. ci − WT
i λi −

∑
j∈I(i)

rm
ij∑

k=1

DkT
ij µk

ij ≥ 0,

1 −
∑

j∈I(i)

µj ≥ 0,

µj −
rm

ij∑
k=1

µk
ij ≥ 0, ∀j ∈ I(i),

µj , µ
k
i,j ≥ 0.

(12)

where λi, µ
k
i,j , µj are the dual variables corresponding to

constraints (11b), (11c) and (11d) respectively.
Theorem 1: Define Di = λT

i Ai and di = λT
i Aizp(i) +

V m
i (zp(i)), where λi are the dual variables of the equality

constraints (11b) for a given zp(i) and V m
i (zp(i)) is the

optimal value of the cost function.
Then it holds that for all z,

V m
i (z) ≥ di − Diz. (13)

Proof: From duality, given the set of optimal dual
variables λi, µ

k
i,j , µj for zp(i) with optimal value V m

i (zp(i)),
it is easy to see that the following inequality holds for any

given z:

V m
i (z) ≥ (hi − Aiz)T λi +

∑
j∈I(i)

rij∑
k=1

dk
ijµ

k
ij . (14)

Note also that

V m
i (zp(i)) = (hi − Aizp(i))

T λi +
∑

j∈I(i)

rij∑
k=1

dk
ijµ

k
ij . (15)

Subtracting (14) and (15):

V m
i (z) ≥ λT

i Aizp(i) + V m
i (zp(i)) − λT

i Aiz.

In this way, recalling the definition of di and Di, it is proved
that (13) holds.

Note that as the number of optimality cuts rm
ij is increased

at each step m for each children node j, the set of dual
constraints of a previous optimum solution may not be
optimal, but still remains feasible if new zero variables µk

ij

of the new optimality cuts are added. This way, although
problems Pm

i differ on each iteration because optimality cuts
are added, the lower bounds on the optimal value remain
valid.

The proposed algorithm is the following:
Algorithm 1: Proposed algorithm.
INITIALIZATION m = 0, r0

ij = 0,∀i, j.

IF P0 is unfeasible
Multi-stage min-max problem is unfeasible.
End of the algorithm.

END IF
DO

FOR i = 0, . . . , M − 1
Solve Pm

i using zp(i) and obtain V m
i (zp(i)), zi, θi,j

and λi.
END FOR
FOR i = M − 1, . . . , 0

FOR j ∈ I(i)
IF θi,j < V m

j (zi).
rm+1
i,j = rm

i,j + 1.

D
r

m+1
i,j

i,j = λT
j Aj .

d
r

m+1
i,j

i,j = λT
j Ajzi + V m

j (zi).
ELSE

rm+1
i,j = rm

i,j .
END IF

END FOR
ei = max

j∈I(i)
V m

j (zi) − θi,j + ej .

END FOR
m = m + 1.

WHILE e0 > 0
End of the algorithm.
Theorem 2: The solution obtained applying Algorithm 1,

denoted z∗0 , is an optimal solution of (10). The algorithm
converges in finite time.

Proof: The optimality cuts are obtained from a set of
optimal dual variables of Pm

j as sub-gradients of the optimal
solution V m

j (z). These sub-gradients are defined using the
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dual variables of the equality constraints (11b) λj and the
optimal value of the cost function V m

j (z) which includes the
remaining dual variables for different values of z. Taking into
account Theorem 1 and the definition of Dk

i,j and dk
i,j given

in Table 1, the following inequality holds for all iteration m

and node j

V m
j (z) ≥ max

k=1,...,rm
p(j),j

dk
p(j),j − Dk

p(j),jz. (16)

By construction, if I(i) is empty it holds V m
i (z) = V ∗

i (z)
because in this case (10) and (11) are equal. Taking this into
account and applying (16) backwards from the leaf nodes, it
holds for all iteration m and node j

V ∗
j (z) ≥ V m

j (z). (17)

The algorithm finishes when e0 = 0. By construction, if
e0 = 0, then ei = 0 for i = 0, . . . , M − 1, i.e. for the
values zi of the algorithm solution it holds:

V m
j (zp(j)) = max

k=1,...,rm
p(j),j

dk
p(j),j − Dk

p(j),jzp(j), (18)

for j = 0, . . . , M − 1.
By definition, all of these functions of z are convex so

the minimization problems have an unique minimum value.
Then if zi is a minimizer of Pm

i (and so minimizes θi),
ei = 0 and V ∗

j (zi) = V m
j (zi), then the following holds:

V ∗
i (zp(i)) = V m

i (zp(i)). (19)

Again taking into account that for the leaf nodes the hypo-
thesis V ∗

j (zi) = V m
j (zi) is true, applying backwards (19) it

is proved:
V ∗

0 = V m
0 . (20)

Finite termination of the algorithm is assured because
the optimality cuts are generated from the dual variables
of the optimal solutions of Pm

i . As Pm
i are LP problems,

the optimal dual variables are attained at the vertices of the
feasibility set of the dual problem. As the number of vertices
is finite and no cut can be repeated, the maximum number
of iterations of the algorithm is finite.

V. EXAMPLES

The computation time and the memory requirements of the
proposed algorithm is compared for a simple problem with
the corresponding solution to solving the min-max problem
with a single large scale LP problem. The comparisons
have been realized in Matlab in a AMD Athlon Xp 2800+
using GLPK [17] as the linear solver for the decomposition
algorithm and the large scale LP.

Consider the problem of robustly regulating to the origin
the system:

x(t + 1) =

[
1 1
0 1

]
x(t) +

[
0
1

]
u(t) + Dw(t). (21)

subject to constraints in the state and the input, namely,

−10 ≤ x(t) ≤ 10,

−3 ≤ u(t) ≤ 3.

TABLE I

COMPUTATIONAL ASPECTS FOR DIFFERENT PREDICTION HORIZONS

FOR S1.

node iter Ben(s) mem(Ben) LP(s) mem(LP)
N = 1 3 1 0.01 3Kb 0 2.23Kb
N = 2 7 2.4 0.01 5Kb 0.01 9.22Kb
N = 3 15 3.5 0.04 9Kb 0.01 30.5Kb
N = 4 31 4.2 0.09 18Kb 0.05 89.1Kb
N = 5 63 5.4 0.23 36Kb 0.29 244Kb
N = 6 127 6.1 0.53 72Kb 2.04 635Kb
N = 7 255 6.8 1.19 144Kb 17.77 1.5Mb
N = 8 511 7.3 2.54 288Kb 143.7 3.1Mb

TABLE II

COMPUTATIONAL ASPECTS FOR DIFFERENT PREDICTION HORIZONS

FOR S2.

node iter Ben(s) mem(Ben) LP(s) mem(LP)
N = 1 5 1 0.04 4Kb 0.02 3.84Kb
N = 2 21 2.2 0.03 11Kb 0.02 31.6Kb
N = 3 85 2.6 0.13 41Kb 0.37 203.Kb
N = 4 341 3.1 0.69 163Kb 25.2 1.41Mb
N = 5 1365 4.3 3.34 648Kb 203.2 8.4Mb

No terminal region is taken into account.
The disturbance in supposed to be bounded in the hyper-

cube ‖w(t)‖∞ ≤ 1.5. We consider two different cases: a
one-dimensional disturbance and a two-dimensional one, i.e.

• S1: D =

[
1
0

]
,

• S2: D =

[
1 0
0 1

]
.

We consider the performance measure based on infinity
norm with

P = Q =

[
1 1
0 1

]
, R = 1.8

and different predictions horizons.
Table I shows different results for prediction horizons from

N = 1 to 15 for system S1. The results are obtained from
over a hundred different initial states. Entry node denotes the
number of nodes of the scenario tree. iter is the mean number
of iterations of the decomposition algorithm and Benders
is the time in seconds. Entry mem(Ben) is the size of the
file that the Benders decomposition algorithm needs to solve
the optimization problem. The SMPS format [18] has been
used to store the problem. Entry mem(LP) is the size of the
MPS [19] file of the large scale LP and LP is the time needed
to solve the problem. Table II shows the same simulations
for S2 and different predictions horizons.

For each node and iteration of the Benders decomposition
algorithm, a small LP is solved (nx+nu+q+2 variables and
a number of constraints of the same order of magnitude). The
number of nodes of the scenario tree grows in an exponential
manner. The number of constraints and variables of the large
scale LP is proportional to the number of nodes.

In the simulation results it is seen that the proposed
algorithm gives promising results. It outperforms the LP
solver used and memory requirements are lower. Moreover,
the optimization problem has been solved with prediction
horizons N = 15 and N = 8 for S1 and S2 respectively. The

5130



Fig. 1. Simulation results for S2.
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(b) Simulation for the uncertainty trajectory of Figure 2(a).

mean computations time for over a hundred different initial
states were 625.55 and 350.11 seconds. Note that despite the
high computation time, this problems are hardly solved by
a single large scale output as the number of variables and
constraint is near half a million.

Figure 2(b) shows the optimal state and input trajectory
for the uncertainty trajectory shown in Figure 2(a) when a
min-max controller with a prediction horizon of N = 4 is
applied to system S2 from initial state x(0) = [ 0

−8 ].

VI. CONCLUSIONS

The paper has shown how to compute the solution of
a multi-stage min-max linear program in an efficient way.
The proposed algorithm can be applied to implement any
feedback min-max control problem with a stage cost that can
be evaluated via a LP problem. Although the complexity of
the algorithm still grows exponentially with the prediction
horizon, it broadens the family of processes to which this
control technique can be applied.

The decomposition algorithm also gives an insight into
the underlying structure of the problem formulation and
highlights that worst case minimization is closely related
with stochastic programming. Future works include efficient
implementations of the algorithm and extension to feedback
min-max based on quadratic performance indexes.
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[9] J. Löfberg, “Minimax approaches to robust model predictive con-
trol,” Ph.D. dissertation, Department of Electrical Engineering,
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