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Abstract

This paper presents a new (geometrical) approach to the computation of polyhedral (robustly) positively invariant (PI) sets for general
(possibly discontinuous) nonlinear discrete-time systems possibly affected by disturbances. Given a �-contractive ellipsoidal set E, the key idea
is to construct a polyhedral set that lies between the ellipsoidal sets �E and E. A proof that the resulting polyhedral set is contractive and thus,
PI, is given, and a new algorithm is developed to construct the desired polyhedral set. The problem of computing polyhedral invariant sets is
formulated as a number of quadratic programming (QP) problems. The number of QP problems is guaranteed to be finite and therefore, the
algorithm has finite termination. An important application of the proposed algorithm is the computation of polyhedral terminal constraint sets
for model predictive control based on quadratic costs.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Positively invariant sets; Contractive sets; Model predictive control; Stability; Robust stability

1. Introduction

Positively invariant (PI) sets and contractive sets have been
used in many control theoretic problems, such as the synthe-
sis of stabilizing controllers and the computation of domains
of attraction, e.g., see Kolmanovsky and Gilbert (1998) and
Blanchini (1999) for comprehensive overviews. In particular,
PI sets play a very important role in the design of stabilizing
model predictive controllers (MPC). For example, the terminal
cost and constraint set approach in MPC (Mayne, Rawlings,
Rao, & Scokaert, 2000) requires that the terminal set is PI

� Part of this paper appeared in Proceedings of the American Control
Conference 2006, organized in collaboration with IFAC. This paper was
recommended for publication in revised form by Associate Editor Martin
Guay under the direction of Editor Frank Allgöwer.
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under some appropriate local feedback law. The most utilized
types of invariant sets are the ellipsoidal ones, which have a
simple representation, but can be less flexible than polyhedral
invariant sets, which can be arbitrarily complex. Polyhedral
invariant sets are preferred in various cases due to the fact that
they are often derived from physical constraints on state and
control variables, which makes them a better approximation of
domains of attraction. Moreover, a polyhedral set is often more
suitable for usage in an optimization problem. For instance, in
case of MPC based on quadratic costs, to guarantee recursive
feasibility of the MPC optimization problem and stability one
often constrains the terminal state to a terminal set. This set
can be naturally chosen as an ellipsoidal sublevel set of a con-
structed (local) quadratic Lyapunov function, which is needed
as terminal cost for the MPC algorithm. However, if an ellip-
soidal set is used as the terminal set, then the MPC optimiza-
tion problem becomes a quadratically constrained quadratic
programming (QCQP) problem in case linear prediction mod-
els are used (or a mixed integer QCQP problem, if piece-
wise affine prediction models are used), which is usually not

http://www.elsevier.com/locate/automatica
mailto:alessio@dii.unisi.it
mailto:m.lazar@tue.nl
mailto:bemporad@dii.unisi.it
mailto:m.heemels@tue.nl


A. Alessio et al. / Automatica 43 (2007) 2096–2103 2097

tackled by standard solvers. Note that QCQP problems cannot
be solved by QP solvers, but rather require semi-definite pro-
gramming solvers (Cannon, Kouvaritakis, & Rossiter, 2001),
which are computationally much more demanding. In Lobo,
Vandenberghe, Boyd, and Lebret (1998), the authors show how
to reduce a QCQP problem into a second order cone program,
which can be solved via a primal-dual interior-point method
(Nesterov & Nemirovsky, 1994).

If a polyhedral invariant set is employed instead, then the
MPC optimization problem is a standard QP (or mixed inte-
ger QP) problem. Since most MPC algorithms with an a priori
stability guarantee are based on quadratic costs, e.g., see the
survey (Mayne et al., 2000) for an overview, a lot of effort has
been put in developing new approaches for computing polyhe-
dral PI sets, see, for example, Raković, Mayne, Kerrigan, and
Kouramas (2005), Pluymers, Rossiter, Suykens, and De Moor
(2005), and Lazar, Heemels, Weiland, and Bemporad (2006).

In this paper we consider the problem of constructing a
polyhedral PI set for discrete-time systems when an ellip-
soidal one is already available, which is the case for MPC
based on quadratic costs, as mentioned before. Given a �-
contractive1 ellipsoidal set E, the key idea is to construct a
polyhedral set that lies between the ellipsoidal sets �E and
E. We prove that the resulting polyhedral set is contractive
and thus, PI. Next, the problem of fitting a polyhedral set be-
tween two ellipsoidal sets is solved by treating the ellipsoidal
sets as sublevel sets of quadratic functions and constructing a
piecewise affine (PWA) function that approximates the “outer”
quadratic function well enough. A solution to the original
problem is then obtained by retrieving a suitable sublevel set
of the resulting PWA function. One of the advantages of the
proposed algorithm is that it requires the solution of a finite
number of QP problems, which guarantees finite termination.
Also, due to its unique geometrical approach, which is inde-
pendent of the system dynamics, the method is applicable to
a wide class of systems, including linear systems affected by
disturbances or subject to input saturation, switched linear sys-
tems under arbitrary switching and piecewise linear systems
defined on conical regions in the state-space.

The rest of the paper is organized as follows. After introduc-
ing some basic notions in Section 1.1, the problem statement
and the proposed solution are presented in Section 2. The al-
gorithm for constructing the desired polyhedral set is given in
Section 3 together with computational complexity aspects. Two
examples are presented in Section 4 to illustrate the potential
and the wide applicability of the method. Conclusions are sum-
marized in Section 5.

1.1. Notation and basic definitions

Let R, R+, Z and Z+ denote the field of real numbers,
the set of nonnegative reals, the set of integers and the set of
nonnegative integers, respectively. For a set S ⊆ Rn, we denote

1 A set E is a �-contractive set for an arbitrary discrete-time system, if
for all initial conditions in E, the state obtained after one discrete-time step
lies in the set �E.

by �S the boundary, by int(S) the interior and by cl(S) the
closure. For any real ��0, the set �S is defined as {x ∈ Rn |
x = �y for some y ∈ S}. The notation Co(S) denotes the
convex hull of S ⊆ Rn. Similarly, for a set of points �0, . . . , �n

of Rn, Co(�0, . . . , �n) denotes their convex hull, i.e.

Co(�0, . . . , �n)�
{

x ∈ Rn

∣∣∣∣∣x =
n∑

l=0

�l�l ,

n∑
l=0

�l = 1,

�l �0 for l = 0, 1, . . . , n

}
.

We call points �0, . . . , �k ∈ Rn affinely independent, if
(1��

0 )�, . . . , (1��
k )� are linearly independent in Rk+1. A sim-

plex in Rn is defined as the convex hull of (n + 1) affinely
independent points of Rn. A polyhedron (or a polyhedral set)
is a set obtained as the intersection of a finite number of open
and/or closed half-spaces. A piecewise polyhedral set is the
union of a finite number of polyhedra. The sets �1, . . . , �N

form a polyhedral partition of Rn, if �i ⊂ Rn is a polyhedron
(not necessarily closed) for all i = 1, . . . , N , �i ∩ �j = ∅ for
i 	= j , int(�i ) 	= ∅ for all i =1, . . . , N , and

⋃
i=1,...,N�i =Rn.

A function f : Rn → R is a quadratic function if
f (x)�x�Px + Cx + � for some P ∈ Rn×n, C ∈ R1×n

and � ∈ R. A quadratic function f is strictly convex if and
only if P > 0. A function f : Rn → R is called a piecewise
quadratic (PWQ) function if there exists a polyhedral partition
�1, . . . ,�N of Rn such that f (x) = x�Pix + Cix + �i when
x ∈ �i , i = 1, . . . , N . A function is called a PWA function, if
there exists a polyhedral partition �1, . . . ,�N of Rn such that
f̄ : Rn → R with f̄ (x) = Hix + ai when x ∈ �i , for some
Hi ∈ R1×n, ai ∈ R, i = 1, . . . , N .

An ellipsoid (or an ellipsoidal set) E is defined as a sublevel
set (corresponding to some constant level f0 ∈ R+) of a strictly
convex quadratic function, i.e. E�{x ∈ Rn | f (x)�f0}. A
piecewise ellipsoidal set is defined in this paper as a sublevel
set of a piecewise quadratic function with matrices Pi > 0 for
all i = 1, . . . , N . Note that the sublevel set of PWA function is
a piecewise polyhedral set.

2. Problem statement and proposed solution

Consider the discrete-time perturbed nonlinear system

xk+1 = G(xk, wk, vk), k ∈ Z+, (1)

where xk ∈ Rn, wk ∈ W ⊂ Rp, and vk ∈ V ⊂ Rq are the
state, an unknown parametric uncertainty and an unknown dis-
turbance input, respectively, and W and V are known, bounded
sets. G : Rn × Rp × Rq → Rn is an arbitrary, possibly dis-
continuous, nonlinear function. We assume that the origin is
an equilibrium of (1) for zero disturbance input, meaning that
G(0, w, 0) = 0 for all w ∈ W.

Definition 1. For a given 0���1, a set P ⊆ Rn with �P ⊂
P and 0 ∈ int(P) is called a (robustly) �-contractive set for
system (1) if for all x ∈ P, it holds that G(x, w, v) ∈ �P for
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all w ∈ W and all v ∈ V. For � = 1 a (robustly) �-contractive
set is called a (robustly) PI set.

For a set P ⊆ Rn, let Q1(P)�{x ∈ Rn | G(x, w, v) ∈
P, ∀w ∈ W, ∀v ∈ V} denote the (robustly) one-step control-
lable set for system (1), with respect to P.

Problem 2. Suppose that a (piecewise) ellipsoidal �-
contractive set with � ∈ [0, 1) is known for system (1). Con-
struct a (piecewise) polyhedral �-contractive set with � ∈ [0, 1]
for system (1).2

Systematic solutions to obtain �-contractive (piecewise)
ellipsoidal sets are available in the literature for many rel-
evant subclasses of (1), such as linear systems subject to
input saturation (Hu, Lin, & Chen, 2002), perturbed linear
systems (Kolmanovsky & Gilbert, 1998), piecewise affine sys-
tems (Ferrari-Trecate, Cuzzola, Mignone, & Morari, 2002),
et cetera. Typically, they are obtained as sublevel sets of
quadratic (PWQ) Lyapunov functions, which can be calculated
efficiently via semi-definite programming.

An alternative solution to Problem 2 can be obtained via
the existing algorithms for computing maximal �-contractive
(PI) sets (also named maximal admissible sets (MAS) in some
works). The articles (Blanchini, 1994; Blanchini, Mesquine, &
Miani, 1995; Dorea & Hennet, 1999; Kolmanovsky & Gilbert,
1998) provide recursive algorithms for calculating polyhedral
invariant sets for linear systems. Although these algorithms do
not require that an ellipsoidal contractive set is known, existence
of a quadratic Lyapunov function is often used to prove finite
termination of the algorithms.

Remark 3. The algorithm developed in the present paper does
not produce a maximal PI set, but just a polyhedral PI set. How-
ever, while the above-mentioned methods for computing MAS
are only applicable to linear systems, the procedure presented
here is independent of the system dynamics and can be applied
to a wider class of systems, including linear systems, piecewise
linear systems and nonlinear systems that are quadratically sta-
bilizable. Furthermore, the polyhedral PI set obtained via the
developed algorithm can be used as a starting point for com-
puting the MAS, using the backward procedure of Blanchini
et al. (1995).

In this paper we generalize results from Blanchini (1995) to
obtain a novel solution to Problem 2. In Lemmas 4.1 and 4.2 in
Blanchini (1995), where perturbed linear systems are consid-
ered, it was shown that a polyhedral set contained in between
two convex sublevel sets of a Lyapunov function is invariant
and �-contractive. The result of Blanchini (1995) is extended in
the theorem presented next to a wide class of systems, which
includes, for example, any stable (closed-loop) system allow-
ing a PWQ Lyapunov function.

2 Notice that � = 1 corresponds to a PI set.

Theorem 4. Consider system (1) and let E ⊆ Rn be a �-
contractive set for system (1), for some � ∈ (0, 1), that contains
the origin in its interior. Let �E ⊂ �P ⊂ P ⊂ E for some3 � ∈
(0, 1]. Then, P is a (robustly) �-contractive set for system (1)
and 0 ∈ int(P). Moreover, Q1(�P) is a (robustly) �-contractive
set for system (1) and E ⊂ Q1(�P).

Proof. For any x ∈ P ⊂ E it follows that G(x, w, v) ∈
�E ⊂ �P for any w ∈ W and any v ∈ V due to the fact
that E is a �-contractive set for system (1). Hence, P is a
(robustly) �-contractive set for system (1) and 0 ∈ int(P) as
�E ⊂ �P. Moreover, from the fact that for any x ∈ E it holds
that G(x, w, v) ∈ �E ⊂ �P for any w ∈ W and any v ∈ V,
it follows that E ⊂ Q1(�P). Since P ⊂ E, we have that P ⊂
Q1(�P) and thus, �P ⊂ �Q1(�P). Then, for any x ∈ Q1(�P)

we have that G(x, w, v) ∈ �P ⊂ �Q1(�P) for any w ∈ W and
any v ∈ V. Hence, Q1(�P) is a (robustly) �-contractive set for
system (1) and E ⊂ Q1(�P). �

From the above theorem we get the following corollary for
the case � = 1 which is related to (robust) positive invariance.

Corollary 5. Consider system (1) and let E ⊆ Rn be a �-
contractive set for system (1), for some � ∈ (0, 1), with 0 ∈
int(E). Suppose there exists a set P ⊆ Rn that satisfies �E ⊂
P ⊂ E. Then, P is a (robustly) PI set for system (1) and 0 ∈
int(P). Moreover, Q1(P) is a (robustly) PI set for system (1)
and E ⊂ Q1(P).

Theorem 4 assumes the satisfaction of the triple inclusion
�E ⊂ �P ⊂ P ⊂ E. The corollary below provides a way to
reduce it to a double inclusion at the price of having tighter
inclusions.

Corollary 6. Consider system (1) and let E ⊆ Rn be a �-
contractive set for system (1), for some � ∈ (0, 1), with 0 ∈
int(E). Suppose there exists a set P ⊆ Rn that satisfies

√
�E ⊂

P ⊂ E. Then, P is a (robustly) �-contractive set for system (1)
for � =√� and 0 ∈ int(P).

Proof. From
√

�E ⊂ P ⊂ E one obtains

�E ⊂ √�P ⊂ P ⊂ E.

The result then follows from Theorem 4. �

Notice that the above results apply to certain types of non-
convex sets E and P, i.e. for instance piecewise ellipsoidal and
piecewise polyhedral sets, respectively (see Section 4 for an
illustrative example).

Remark 7. The fact that E ⊂ Q1(�P) in Theorem 4 is rel-
evant when the state of system (1) is constrained in a com-
pact polyhedral set X ⊂ Rn with 0 ∈ int(X). Then, given the

3 The result also holds when � = 0 and � = 0 except that in this case P

does not necessarily contain the origin in its interior.
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largest �-contractive piecewise ellipsoidal set contained in X,
we construct a larger �-contractive set, i.e. Q1(�P) ∩ X.

The case of interest in this paper is, as stated in Problem 2,
when E is a piecewise ellipsoidal set and P is a piecewise poly-
hedral set. By Theorem 4, it is sufficient to construct a piece-
wise polyhedral setP that lies between the piecewise ellipsoidal
sets �E (or

√
�E) and E to obtain a PI or

√
�-contractive solu-

tion, respectively to Problem 2. In the next section we present
an algorithm for solving this problem of computational geom-
etry and also indicate in Remark 8 how one can solve the triple
inclusion �E ⊂ �P ⊂ P ⊂ E of Theorem 4.

3. Squaring the circle

In this section we present a solution to the problem of fit-
ting a piecewise polyhedral set P between two piecewise el-
lipsoidal sets where one is contained in the interior of the
other, i.e. �E�E, with � a real number4 in (0, 1), by adapt-
ing the algorithm of Alessio, Bemporad, Addis, and Pasini
(2005). In case E is an ellipsoid, the main idea is to treat
the sets E and �E as sublevel sets of two quadratic functions
fE(x) and f�E(x), respectively, that correspond to the same
constant (level) f0 ∈ R+, i.e. E�{x ∈ Rn | fE(x)�f0} and
�E�{x ∈ Rn | f�E(x)�f0}. Then, we compute a PWA func-
tion f̄ that satisfies f�E(x) > f̄ (x)�fE(x) for all x ∈ Rn. The
desired piecewise polyhedral set is obtained as P�{x ∈ Rn |
f̄ (x)�f0}.

In case of a piecewise ellipsoidal set E we assume that the
polyhedral partitioning {�j | j ∈ S} (S is a finite set of
indexes) consists of cones, which ensures that ��j ⊆ �j . We
write E as

E =
⋃
j∈S

(Ej ∩ �j ) with Ej�{x ∈ Rn | fEj
(x)�f0},

where fEj
(x)�x�Pjx+Cjx+�j is a strictly convex quadratic

function for all j ∈ S. Then, we construct for each j ∈ S
a PWA function f̄j (x), as in the quadratic (ellipsoidal) case
mentioned above, such that f�Ej

(x) > f̄j (x)�fEj
(x) for all

x ∈ Rn. Then, a piecewise polyhedral set P that satisfies �E ⊂
P ⊂ E is simply obtained as

P =
⋃
j∈S

(Pj ∩ �j ) with

Pj�Co(Pj ) = Co({x ∈ Rn | f̄j (x)�f0}).

Indeed, as Pj is a polyhedral set that satisfies �Ej ⊂ Pj ⊂ Ej ,
j ∈ S, we obtain

P =
⋃
j∈S

(Pj ∩ �j ) ⊂
⋃
j∈S

(Ej ∩ �j ) = E.

4 The case � = 0 is trivial: any P ⊂ E with 0 ∈ int(P) works.

Since �Ej ⊂ Pj and ��j ⊆ �j for all j ∈ S, we have that

�E = �

⎛⎝⋃
j∈S

(Ej ∩ �j )

⎞⎠=
⋃
j∈S

�(Ej ∩ �j )

=
⋃
j∈S

(�Ej ∩ ��j ) ⊆
⋃
j∈S

(Pj ∩ �j ) = P.

As the PWQ case can be split into a finite number of quadratic
instances of the problem, we consider only the ellipsoidal case,
i.e. when the set E is a sublevel set of a strictly convex quadratic
function fE.

Next, choose P ∈ Rn×n (with P > 0) and f0, �E ∈ R (with
f0 > �E) such that E is the sublevel set of5 fE(x)�x�Px+�E,
corresponding to the level f0. Then, we have that �E is the
sublevel set of f�E(x)�x�Px+��E, corresponding to the level
f0, where

��E�(1 − �2)f0 + �2�E > �E.

Consider now an initial polyhedron P0 ⊂ Rn that contains E.
Let (�̃0, . . . , �̃m), with m�n, be the vertices of P0. An initial
set of simplices S0

1 , . . . , S0
l0

that contains these points is deter-
mined by Delaunay triangulation (Yepremyan & Falk, 2005).
Then, for every simplex S0

i �Co(�0
0i , . . . , �

0
ni), i=1, . . . , l0, the

following operations are performed.

Algorithm 1. (1) Let k = 0.
(2) For every simplex Sk

i , i = 1, . . . , lk , construct the matrix

Mk
i �
[

1 1 . . . 1
�k

0i �k
1i . . . �k

ni

]
.

(3) Set vk
i �[fE(�k

0i ) fE(�k
1i ) . . . fE(�k

ni)]� and construct

the function f̄ k
i (x)�(vk

i )
�(Mk

i )−1
[

1
x

]
.

(4) Solve the QP problem:

J k∗
i � min

x∈Sk
i

{J k
i (x)�f�E(x) − f̄ k

i (x)}. (2)

(5) If J k∗
i > 0 for all i = 1, . . . , lk , then Stop. Otherwise,

for all Sk
i , i = 1, . . . , lk , for which J k∗

i �0 build two new sim-

plices S
i

0, S
i

1 defined by the vertices (�k
0i , . . . , �

k
ti , x̃

k
i , . . . , �k

ni),
(�k

0i , . . . , x̃
k
i , �k

si , . . . , �
k
ni), where (�k

ti , �
k
si) are the vertices of

the maximal length edge of the simplex Sk
i , and x̃k

i = (�k
ti +

�k
si)/2. Increment k by one, add the new simplices S

i

0, S
i

1 to
the set of simplices {Sk

i }i=1,...,lk
and repeat the algorithm recur-

sively from Step 2.

Algorithm 1 computes a simplicial partition of a given initial
polyhedral set P0 that contains the ellipsoidal set E, by splitting
a single simplex Sk

i into n+1 simplices. This is done by fixing
a new vertex x̃k

i which is obtained by solving the QP problem
(2), and by calculating a new PWA approximation over the new
set of simplices.

The steps of Algorithm 1 are repeated for all resulting sim-
plices, until J k∗

i > 0 for all simplices. At every iteration k, a

5 Note that by a suitable change of coordinates we can always take C=0.
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tighter PWA approximation of the quadratic function fE is
obtained. Algorithm 1 proceeds in a typical branch and bound
way, i.e. branching on a new vertex x̃k

i , and bounding whenever
it finds a simplex Sk

i for which it holds that J k∗
i > 0.

Suppose Algorithm 1 stops at the k̄th iteration6 for some
k̄ ∈ Z+. The following PWA function is generated:

f̄ (x)�f̄ k̄
i (x) when x ∈ Sk̄

i , i = 1, . . . , lk̄

� Hk̄
i x + ak̄

i when x ∈ Sk̄
i , i = 1, . . . , lk̄ , (3)

where lk̄ is the number of simplices obtained at the end of Algo-

rithm 1 and Hk̄
i x +ak̄

i = (vk̄
i )

�(Mk̄
i )−1

[
1
x

]
. The PWA function

f̄ constructed via Algorithm 1 is a continuous function (Alessio
et al., 2005). Moreover, for x =∑n

j=0 �j�ji with
∑n

j=0 �j =1,

the corresponding functions f̄ k̄
i satisfy

f̄ k̄
i (x) = f̄ k̄

i

⎛⎝ n∑
j=0

�j�ji

⎞⎠=
n∑

j=0

�j fE(�ji),

which, by convexity of fE, implies that f̄ k̄
i (x)�fE(x) for all

x ∈ Sk̄
i and all i = 1, . . . , lk̄ . Hence, f̄ (x)�fE(x) for all x ∈

P0. Since the stopping criterion defined in Step 4 of Algorithm
1 assures that at the end of the entire procedure the optimal
value J k̄∗

i of the QP problem (2) will be greater than zero in

every simplex Sk̄
i , i = 1, . . . , lk̄ , it follows that

fE(x)� f̄ (x) < f�E(x), ∀x ∈
⋃

i=1,...,lk̄

Sk̄
i = P0.

Then, the sublevel set of f̄ given by

P�
⋃

i=1,...,lk̄

{x ∈ Sk̄
i |Hk̄

i x + ak̄
i �f0},

satisfies �E ⊂ P ⊂ E. Indeed, note that for x ∈ P it holds that

f̄ (x)�f0 ⇒ fE(x)� f̄ (x)�f0 ⇒ x ∈ E

and for x ∈ �E it holds that

f�E(x)�f0 ⇒ f̄ (x) < f�E(x)�f0 ⇒ x ∈ P.

The desired polyhedral set P (see Fig. 1) satisfying �E ⊂
P ⊂ E, is obtained as the convex hull of P. Indeed �E ⊂
P ⊂ Co(P)�P and, by the convexity of E, it holds that P =
Co(P) ⊆ Co(E)=E. Notice that the computation of the vertices
of P and of their convex hull can be performed efficiently
using, for instance, the Geometric Bounding Toolbox (GBT)
(Veres, 1995).

Remark 8. The following identity

min
i

J k∗
i = min

x∈P0

[f�E(x) − f̄ k(x)]
= �max − max

x∈P0

[f̄ k(x) − fE(x)] (4)

6 The existence of a finite k̄ will be established in Section 3.1.

Fig. 1. Illustration of the proposed solution for constructing the polyhedral
invariant set P.

is an immediate consequence of f�E(x)−fE(x)=�max���E−
�E > 0. Hence, the error �̄�maxx∈P0 [f̄ (x) − fE(x)] obtained
at the end of Algorithm 1 is upper bounded by the allowed
maximum error �max = maxx∈P0 [f�E(x) − fE(x)]. Thus, the
Stop criterion of Algorithm 1 can be set as J k∗

i > 	 for some
	 ∈ (0, �max), instead of just J k∗

i > 0, to create a gap between
P and �E. A larger 	 will result in a smaller � ∈ (0, 1) for
which it holds that �E ⊂ �P ⊂ P ⊂ E. Note that if 	 tends
to �max, then the number of vertices of P tends to infinity, P
recovers the ellipsoidal set E and � tends to �.

3.1. An estimate of the computational complexity

Algorithm 1 computes at every iteration k a tighter PWA ap-
proximation f̄ k of the given strictly convex quadratic function
fE. It stops when the approximation error obtained at the kth
iteration of the algorithm satisfies

0 < min
x∈P0

[f�E(x) − f̄ k(x)]

or equivalently (due to (4)),

�k� max
x∈P0

[f̄ k(x) − fE(x)] < �max, k ∈ Z+.

The algorithm builds recursively a binary tree, where in each
node it stores the vertices of the current simplex Sk

i and the
pairs (Hk

i , ak
i ) such that f̄ k(x) = Hk

i x + ak
i , for all x ∈ Sk

i ,
i�1, k ∈ Z+. If the value of J k∗

i for the current simplex is
less than zero, then Algorithm 1 splits Sk

i in 2 simplices and
adds a new level to the tree. The height of the tree can be easily
computed once the values of the allowed maximum error �max
is known, which yields the following result.

Theorem 9 (Alessio et al., 2005). Suppose that the initial poly-
hedral set P0 and the desired final approximation error �max
are known. Then, Algorithm 1 has complexity:

O

(
2

n(n−1)
2 n log n

(
d0

√
�max(P )

�

)
)
,
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where 
 = 1/(1 − log
√

3) and d0 is the maximal length edge
of the initial simplex (Alessio et al., 2005).

Remark 10. The number of facets of the resulting polyhedron
depends on the contraction factor � and on the size of the prob-
lem data. As it depends on the number of vertices and simplices
generated, in most cases the number of facets is tractable. How-
ever, as the contraction factor tends to one, the number of facets
of the resulting polyhedron may become very large.

Remark 11. By exploiting symmetries of the problem, it is
always possible to reduce the overall computational time of the
algorithm. If the axes of symmetry of the ellipsoids are used as
a new orthogonal basis for the system,7 the algorithm does not
need to be run over the entire polyhedron P0, but only over a
reduced closed convex set P̂0, i.e.

P̂0�{x ∈ Rn | x ∈ P0, xi �0}. (5)

The polyhedron P̂0 so obtained, is then used to compute poly-
hedron P̄, through n reflections of P̂0 along appropriate hyper-
planes. The desired polyhedral set P is obtained as the convex
hull of P.

4. Illustrative examples

In this section we present two examples that illustrate the
potential of the algorithm.

4.1. Perturbed linear systems

Consider the perturbed discrete-time triple integrator

xk+1 = Axk + Buk + vk, k ∈ Z+, (6)

where, A =
⎡⎣1 Ts

T 2
s

2
0 1 Ts

0 0 1

⎤⎦, B =
⎡⎢⎣

T 3
s

3!
T 2

s

2
Ts

⎤⎥⎦, Ts = 0.8, vk ∈ V

is the additive disturbance input, and V = [−0.1, 0.1] ×
[−0.1, 0.1] × [−0.1, 0.1]. We employed the method of
Lazar and Heemels (2006) to calculate a robust stabilizing
state-feedback control law for system (6), i.e. uk = Kxk ,
with K = [−1.1739 − 2.4071 − 2.0888], together with
a robust quadratic Lyapunov function V (x) = x�Px with

P =
[14.4684 13.5850 4.0221

13.5850 17.4375 5.4581
4.0221 5.4581 2.5328

]
. The procedure presented

in this paper was employed to calculate a polyhedral set P
such that �E ⊂ P ⊂ E, where E is the sublevel set of V, cor-
responding to the level f0 = 20, and the contraction factor is
� = 0.8. The resulting set P is �-contractive with � = 0.9 and
has 56 vertices. A plot of P is given in Fig. 2 together with
a plot of the closed-loop system state trajectory obtained for
x0 = [−3 2 2]� and randomly generated additive disturbance
inputs.

7 This operation is realized by a simple change of coordinates.

Fig. 2. Polyhedral invariant set and state trajectory for system (6) in
closed-loop with uk = Kxk , k ∈ Z+, and randomly generated disturbances
v in V.

4.2. Piecewise linear systems

Consider the following open-loop unstable PWL system:

xk+1 =

⎧⎪⎨⎪⎩
A1xk + Buk if E1xk > 0,

A2xk + Buk if E2xk �0,

A3xk + Buk if E3xk > 0,

A4xk + Buk if E4xk �0,

(7)

subject to the constraints xk∈X =[−10, 10]×[−10, 10], uk∈
U = [−1, 1], where A1 =

[
0.5
0.9

0.61
1.345

]
, A2 =

[−0.92
0.758

0.644
−0.71

]
,

B =
[

1
0

]
, A3 = A1 and A4 = A2. The state-space partition of

the system is given by E1 = −E3 =
[−1

−1
1

−1

]
, E2 = −E4 =[−1

1
1
1

]
. The following PWQ Lyapunov function V (x) =

x�Pjx when x ∈ �j , j = 1, 2, 3, 4, feedback gains and con-
traction factor � were calculated in Lazar, Heemels, Weiland,
and Bemporad (2005):

P1 =
[

12.9707 10.9974
10.9974 14.9026

]
, P2 =

[
7.9915 −5.5898

−5.5898 5.3833

]
,

P3 = P1, P4 = P2,

K1 = [−0.7757 − 1.0299], K2 = [0.6788 − 0.4302],
K3 = K1, K4 = K2, � = 0.9378. (8)

Let XU ⊆ X denote the set of states for which the feedback
control law given in (7)–(8) satisfies the state and input con-
straints. A contractive piecewise polyhedral set P was com-
puted for system (7) in closed-loop with the feedbacks given
in (8) using the approach of Theorem 4 and Algorithm 1 for
the sublevel sets E�{x ∈ X | V (x)�14} ⊆ XU and �E. The
resulting set P is the union of four polyhedra and it is a �-
contractive set with � = 0.9286. The closed-loop state trajec-
tories with the vertices of P as initial conditions are plotted in
Fig. 3 together with a plot of the safe set XU. The trajecto-
ries of the closed-loop system remain inside P at all times and
converge to zero.
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Fig. 3. Piecewise polyhedral invariant set P (light grey) and XU (dark grey
and light grey) for system (7).

5. Conclusions

A new method for computing (piecewise) polyhedral (ro-
bustly) PI and contractive sets was developed based on a geo-
metrical argument. The novelty of the proposed approach con-
sists of formulating the problem of computing polyhedral in-
variant sets as solving a number of QP problems. This was
achieved by observing that any polyhedral set that lies between
two ellipsoidal sets �E and E with E �-contractive for some
� ∈ (0, 1) is contractive and thus, PI. A new algorithm based
on QP was developed to construct the desired polyhedral set.
A guarantee that the number of QP problems that need to be
solved is always finite was also given. This fact establishes fi-
nite termination for the algorithm. Two examples illustrated the
wide applicability of the method.
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