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Abstract—A method based on conceptual tools of predictive
control is described for tackling tracking problems of uncertain
linear systems wherein pointwise-in-time input and,/or state in-
equality constraints are present. The method consists of adding
to a primal compensated system a nonlinear device called pre-
dictive reference filter which manipulates the desired reference in
order to fulfill the prescribed constraints. Provided that an
admissibility condition on the initial state is satisfied, the control
scheme is proved to fulfill the constraints, as well as stability
and set-point tracking requirements, for all systems whose
impulse/step responses lie within given uncertainty ranges.
© 1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

In applications the design of feedback controllers is
often complicated by the presence of physical con-
straints: saturating actuators, temperatures and
pressures within safety margins, working space lim-
ited by constructive restrictions, etc. This issue has
stimulated substantial theoretical advancements in
the field of feedback control of dynamic systems
subject to input/state constraints [see Mayne and
Polak (1993), and Sussmann er al. (1994), which
also include relevant references, for an account of
pertinent results]. Most of this work has addressed
the regulation problem in the presence of con-
straints—in particular input saturation—under the
hypothesis that the plant model is exactly known.
The main goal of the present paper is to address the
constrained tracking problem for systems affected
by model uncertainties, by using tools from predic-
tive control. Handling of hard constraints is in fact
one of the potential benefits of predictive control
(Clarke, 1994; Keerthi and Gilbert, 1988; Mayne
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and Michalska, 1990; Mosca, 1995; Rawlings and
Muske, 1993). Predictive control is based on the
receding horizon control philosophy: a sequence
a future control actions is chosen, by predicting the
future evolution of the system, and applied to the
plant until new measurements are available. Then,
a new sequence is evaluated so as to replace the
previous one. Each selected sequence is the result of
an optimization procedure which takes into ac-
count two objectives: (i) maximize the tracking
performance, and (i) guarantee that the con-
straints are and will be fulfilled, i.e. no “blind-alley”
is entered. Recently, Bemporad et al., (1997) and
Bemporad and Mosca (1994) have applied receding
horizon tools to the reference trajectory rather than
to the control input, with a consequent substantial
eduction of computational complexity. In fact, in
contrast to other predictive control approaches
(Kothare et al., 1996; Zheng and Morari, 1993), in
Bemporad et al. (1997) and Bemporad and Mosca
(1994) the constraint fulfillment problem is separ-
ated from stability, set-point tracking, and distur-
bance attenuation requirements, which in turn—in
the absence of constraints—are supposed to be
taken care of by a formerly designed compensator.
By using the output maximal admissible sets the-
ory, Gilbert et al. (1995) and Gilbert and Tan {1991)
have developed a reference management technique
for constraint fulfilment in the ideal noiseless case.
An extension to the case of input disturbances has
appeared in Gilbert and Kolmanovsky (1995),
where no model mismatch is considered. The aim of
the present paper is to lay down guidelines for
synthesizing predictive reference filters (PRF) for
systems whose impulse and step response are un-
certain in that they are only known to lie within
given sets. The system is supposed to be a standard
feedback loop, designed according to available ro-
bust control techniques so as to perform satisfac-
torily in the absence of constraints. Whenever
necessary, the filter alters on line the input to the
primal control system so as to avoid constraint
violation and possibly maximize the tracking per-
formance, according to a worst-case criterion.
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The paper is arranged as follows. Section 2 intro-
duces the problem and presents the PRF algorithm
for the class of systems under consideration. A de-
scription of the adopted model uncertainty is given
in Section 3. Section 4 studies how to reduce the
infinite number of constraints involved in the prob-
lem formulation into a finite number. Stability,
tracking and other properties of the PRF are inves-
tigated in Section 5, while Section 6 is devoted
to computational aspects. Finally, a simulative
example of application of the PRF, which provides
some design guidelines, is described in Section 7.

2. PREDICTIVE REFERENCE FILTER DESIGN

Consider a family % of linear asymptotically
stable systems. Each member ¥ of % has a state-
space description of the form

x(t + 1) = Ox(1) + Gg(z),
Z:{ y(1) = Hx(1) + Dg(1), (1)
c(t)=Hx(t)+ Dglr), e

wherete Z. £{0, 1, ... }, x(r) € R™ is the state vec-
tor, g(r) € R? the command input, which in the
absence of constraints would coincide with the
desired output reference r(z), y(zr) € R? the output
which is required to track r(z), and c(r) € R? the
vector to be constrained within a given set ¢, which
satisfies the following

Assumption 1. ¥ 1s a convex polyhedron with
nonempty interior.

Without loss of generality, we assume that % has
the form

% ={ceR%c<B,) 2)

In fact, a generic polyhedron described by inequali-
ties of the form A.c < B, can be rewritten in the
form (2) by defining a new vector ¢* = A,c and,
accordingly, new matrices H¥ = A.H., D¥ = A.D..
Typically, equation (1) consists of an uncertain lin-
ear system under robustly stabilizing control. We
take into account model uncertainties by assuming
the true (unknown) plant is included in %, where
& will be characterized in Section 3. Furthermore,
inside the ., we choose a particular £ called
nominal system

. £t + 1) = d%(1) + Gyg(1),
" e(r) = HA(1)

+ Dogle), G)

with £ € R".

The aim of this paper is to design a PRF, a device
finalized to transform the desired reference r(z) to
the command vector ¢(t) so as to possibly enforce
the prescribed constraints c(t)e %, te€Z ., for all
possible systems in &, and make the tracking error

y(r) — r(r) small. The filtering action operates in
a predictive manner: at time t a virtual command
sequence {g(1),g(t + 1), ... } is selected in such
a way that, for all systems Z € &, the corresponding
predicted c-evolution lies within %. Then, accord-
ing to a receding horizon strategy, only the first
sample of the virtual sequence is applied at time t,
a new virtual command sequence being recom-
puted at time 7 + 1. Several criteria (Bemporad et
al., 1997, Bemporad and Mosca, 1994; Gilbert ez al.,
1995) can be used to select the class of virtual
commands. For reasons that will be clearer soon,
we restrict our attention to the class of constant
command sequences introduced in Gilbert et al.
(1995). This class is parameterized by the scalar f,
and each of its members defined by

gt + tlt, 2 g(t — 1) + Blr(x) — g(z — 1)],
VieZ.,. (@)

At each time 1, the free parameter f is selected by
the PRF via the optimization criterion

arg max f
& Belo0, 1] S
o subject to clt + 7|7, %, x(1), ) %, )
: Vi>0,Vie?

where c(t + 11, Z, x(1), f) denotes the predicted c-
evolution at time ¢t + t which results by applying
the constant input g(t + |7, f§) to X from state x(1)
at time T onwards. Then, according to the receding
horizon strategy, at each time 7 the PRF selects

g(t) = g(zlt, f(7)).

Notice that requiring f(1) as close as possible to
1 corresponds to minimizing ||g(z) — r(1)|, and
consequently the norm of the tracking error
y(r) — r(1)|, depending on the tracking properties
of system (1). A scalar f8, or a constant command
g € R? satisfying the constraints in equation (5) will
be referred to as admissible at time 1.

Assumption 2 (Feasible as initial condition). There
exists a vector g( — 1) € R? such that at time t =0
the virtual command ¢g(t]0,0) = g( — 1), Ve Z ., is
admissible.

For instance, Assumption 2 is satisfied for
x(0)=(I—®) 'Gg(—-1), Hx(0)+ D.g(— 1)e¥.
Assumption 2, the particular structure of equation
(4), and equation (5) ensure that § = 0 is admissible,
and therefore the optimization problem (5) admits
feasible solutions, at each time te 7. .

3. MODEL UNCERTAINTY DESCRIPTION

Uncertainty of dynamic systems models can be
described in various ways. In the case at hand,
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frequency domain descriptions are not convenient
because of the time-domain PRF design logic (4),
(5). Furthermore, if uncertainties involving state-
space realizations are adopted, the effect of matrix
perturbations on the predicted evolutions become
cumbersome to compute. Consider, for instance,
a free response of the form (& + ®)'x(0): this gives
rise to prediction perturbations which are nonlin-
ear in the uncertain parameter ®. On the contrary,
uncertainties on the step-response or impulse-re-
sponse samples provide a practical description in
many applications, as they can be easily determined
by experimental tests, and allow a reasonably
simple way to compute predictions. Seemingly,
step-response and impulse-response are equivalent,
and one could be tempted to use either one or the
other without distinction to describe model uncer-
tainties. However, when used individually, both
exhibit drawbacks. To show this, consider Fig. 1,
which depicts perturbations expressed only in
terms of the impulse response. The resulting step-
response uncertainty turns out to be very large as
t — o0. However, this is not the case when each X,
for instance, contains an integrator in the feedback
loop, which yields a unity DC-gain, and conse-
quently vanishing step-response perturbations as
t — oo, Conversely, as depicted in Fig. 2, uncertain-
ty expressed only in terms of the step response
could lead to nonzero impulse-response samples at
large values of ¢, for instance when the DC-gain
from g to ¢ is uncertain; therefore, any a priori
information about asymptotic stability properties
would be wasted. In order to minimize the conser-
vatism of the approach in equation (5), it is clear
that the set T should be as small as possible. For

Impulse response Step response
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Fig. 1. Step-response interval ranges (right) arising from an
impulse-response description (left).

Impulse response Step response
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Fig. 2. Impulse-response interval ranges (left) arising from
a step-response description (right).

this reason, in this paper we will jointly consider
both step-response and impulse-response in order
to describe model uncertainty.

Assumption 3. Let Z € & and let H be the impulse
response from g to c. Then, there exist a matrix
M e R7*? and a scalar 4, 0 < 4 < 1, such that, for
all systems X € &,

HY| < MY3,teZ,, Vi=1,..,q,
Yi=1,...,p, (6)

where HY is the impulse response at time ¢ from
the jth command input g; to the ith constrained
variable ;.

Notice that, although in equation (1) we are
considering asymptotically stable systems, condi-
tion (6) characterizes only stability properties of the
subspace which is observable from c.

The impulse response H, can be expressed as the
sum of a nominal impulse response,

qa A®G if >0,
"D, if t=0,

and an additive perturbation H,. We describe the
range intervals of H, as

Hie[HY AY] ift=0,1,...,N—1,

(A¥| < EYpt if t>N,
where E€R7*P, N is a fixed integer, and i =
I,...,q,j=1, ..., p. In the same way, the step-

response from g to ¢ can be expressed as the sum of
a nominal response,

(7

and an additive perturbation W,
Wie Wi Wi if t=0, 1,...,N—1(8)
\WH — Wl | <EY)" if t >N.

4. REDUCTION TO A FINITE NUMBER
OF CONSTRAINTS

Since the PRF operates over a semi-infinite pre-
diction horizon, the optimization criterion in equa-
tion (5) involves an infinite number of constraints.
In order to effectively solve equation (5), we need to
reduce this infinite number to a finite one. This will
be achieved by borrowing techniques presented in
(Gilbert and Tan, 1991), as follows. Under some
assumptions on the desired reference r and the past
command inputs g( — 1) applied before the PRF
was switched on at time t = 0, Lemma 1 will show
that the command sequence g(t) generated by the
PRF 1s bounded. A new constraint on f§ will be
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introduced, which ensures that in steady state the

predicted c-evolution stays away from the border of
%. Then, Theorem 1 will prove the existence of
a finite constraint horizon, the shortest prediction
interval over which constraints must be checked in
order to assert admissibility of a given virtual com-
mand sequence. Finally, an algorithm to find such
a constraint horizon will be provided.

Assumption (Set-Point Conditioning). The reference
signal r(-) satisfies r(7)e # for all 1€ Z,, where
2 is compact and convex.

This amounts to assuming either that the class
of references to be tracked is bounded, or that
a clamping device is artificially added to the PRF
mechanism so as to satisfy Assumption 4. In
practice, this is not a restriction since bounds
on the reference are often dictated by the physical
application.

Assumption 5. For all1> 0, g( — 1) 4.

Lemma 1. Provided that Assumptions 4 and 5 are
satisfied, g(z) e &, Ve Z., .

Proof. By equation (5), §(z) € [0, 1]. Then, as depic-
ted in Fig. 3, g(z) lies on the segment whose vertices
are g(t — 1), r(r). By convexity of #, the result
straightforwardly follows by induction.

In order to proceed further, we impose an addi-
tional constraint on the optimization (5). By equa-
tion (7), we can define W,, £1im,_, . W,, along with
the relation

W, e [Wa, We.], ©)

wherein W, 2Wy_ —[AY(1 —A)]E, W 2 Wy_, +
[A¥/(1 — /)] E, and by Assumption 3, W,, £lim, . ,, ;.

Notice that equation (9) is not overconservative
in that there exist systems X €. for which

W, =W, or W,. For an arbitrarily small § > 0,
consider the following set:

géz ge*@(Woo+Woo)gSBc_é

VW e[ W, Wo1,0=| 1 |eReL. (10)

For all constant command inputs ge%;, the
corresponding steady-state constrained vector
c,2W,g is located in ¥ at a distance from the

Fig. 3. Reference set.

border greater than or equal to a fixed quantity,
which depends on 6. The constraint g € %, adds the
following ¢ additional constraints:

W, +W)g<B.—3, YW,el[W, W1 (11)

Hereafter, the constraints (11) will be added in
equation (5) to determine f(1).

In order to simplify the notation, in the next
theorem we consider T = 0. Moreover, we replace
x(0) with the sequence of past commands
F_2{gk)}> _,, and define #*L{X_: X_ < A}
Accordingly, ¢(t + 0|0, Z, x(0),g) is denoted by
c(t,X, ¥_,g), or, when the remaining arguments
will be clear from the context, by ¢(¢).

Theorem 1. Suppose that Assumptions 4 and
5 hold. Then there exists a finite time ¢* such that

c(eb,Vi<t* <« c()e¥, VielZ,

VIied, VE.eR* VgeR (12)
Proof. See Appendix.

Theorem 1 proves that in the optimization
problem (5) it is sufficient to take into account
only the constraints up to time t*. Since we are
interested in the smallest time ¥, we define the
following.

Definition 1 (Constraint horizon).

to = min {t*: (12) holds}. (13)
tx

Theorem 1 provides an existence result, as it
proves that ¢, in equation (13) is well defined. How-
ever, in general, t, is smaller than the quantity
t* estimated by Theorem 1 [see equations (32) and
(33) for details]. In order to find out an algorithm
which enables us to compute t,, define
28{[Z,.,g]le ¥ xR*xR&: c(k,Z,%-,9g)<B,,
Vk=0, ...t limj_ .c(j, X, Z-,9) < B. — 3},
where, clearly, 2, € 2,.
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Theorem 2. Suppose that Assumptions 4 and 5
hold. Then,

224y = =%, VK20 (14)
and

to =min {t: 2, = 2,4 ,}.

Proof. Let t such that equation (14) holds, and
consider a generic [X,%,g]€ 2,,,. By shifting
Z_={g(~1),9(—2), ...} in the new sequence
*L2{g.g(—1),9(—2),..}, it follows that
ct+LEX_,9)=c(t, X, &%, g). Moreover, by
Lemma 1, &* € #* Then, [Z, &*, g] € 2,, and be-
ing 2,€9%4,, [Z,2%,9] € 2,.,, which implies
[Z,%-,9}l€2,,,. Hence, 2,,;< 2., or
24+2=2,.1=2,. By induction, 2= 2,
Vk>0. Let now t,2min{t:2 =2.,}. If
[(Z.%_,9le 2, . then [, Z_,gle2, V=t and
hence ¢, > t,,. If, by contradiction, ¢,, <t,, then,
by minimality of t,, there exists [X,2_,gle 2,
such that c(t, + 1,Z,%_,9)¢%, which implies
2,82, 1.

Following an approach similar to the one used in
Bemporad et al. (1997) and Gilbert and Tan (1991),
to can be determined by the following algorithm:

Algorithm 1 (Determination of t,)

) te -1

(2) :2—1 « {[25 9{‘_’ g] C( - 17 Z’ '%r_’ g) < Bca
limj,oc(j, 2, %-,9)<B.— 90,2, ¥ €R*,
geR}

(3) mf « maxg., g i+ L2 2, g) - B,
i=1..,q

4) f mi<0,foralli=1,...,q,goto?7

) t—t+1

(6) Goto3

(7) tog « t

(8) Stop.

Observe that Algorithm 1 involves optimizations
with respect to an infinite dimensional vector which
contains - and the impulse (or step) response
coefficients of system X. However, by virtue of
Assumption 3 (asymptotic stability), these can be
approximated with arbitrary precision by finite-di-
mensional optimizations. In fact, once a precision
¢, has been fixed, we can express the evolution of
vector ¢ as

M
ct,Z,%_,9)=Wg+ Y Hglt—k

k=t+1

+ i Hyg(t — k) (15)

k=M+1

with M such that

x )4

S Y Higi—k)|<é, Vi=1,..,q,

k=M+1 j=1
Vie, VI _eR*

This allows one to implement Algorithm 1 by
solving quadratically constrained quadratic pro-
grams (QCQP) with respect to [{g(—1), ...;
g( — M)}, {H,, ..., Hy}, g]. Notice that M, and,
consequently, the complexity of Algorithm 1, is
related to the estimate A in equation (6).

5. MAIN PROPERTIES OF PRF

We investigate how the PRF affects system stab-
ility when the reference to be tracked becomes
constant. Since all systems X e are asymp-
totically stable, next Lemma 2 first guarantees sys-
tem stability by simply showing that g(1) converges
to a vector g,. By using the viability result of
Lemma 4, Lemma 5 will prove that, amongst the
admissible command inputs, g, is the vector which
is closest to r. Lemma 6 will show that this limit is
reached in a finite time. Finally, Theorem 3 will
summarize the overall properties of the PRF.

Lemma 2. Suppose r(t) =r for all t > 1,. Then
there exists g, = lim,, ,, g(1).

Proof. If g(to) =r, it follows that B(zr)=1 is
admissible for all 7 > 75, and therefore g, =r.
Suppose ¢(1,) # r. Since, by equation (4), g(zy + k)
lies on a segment whose vertices are g(to) and r,
by setting d(1)2 |jg(z) — r| one has g(t)=r +
d(t)/lig(zo) —ri)g(to) —r] and 0<d(r)<
d(t — 1). Hence, since d(r) is monotonically non-
increasing and lower-bounded, there exists
d,2lim.. d(tr), and, as a consequence, g, =
r+ (do/llg(zo) — rl)g(ro) — rl.

Lemma 3. Convexity of ¢ implies convexity of the
set 45 defined in equation (10), vV > 0.

Proof. Consider & such that 4; #0 (%;=0 is
trivially convex), two set-points gy, ¢, €%,
and g,290 +2[g; —go), 0<a<1. Define
Wo2W, +W,. Being % convex, the set
%5 ={ceR% ¢ <B.—d} is convex as well. Since
Weole = Wego + a[Weog, — W, gol, it follows that
W.g.€€s;, Ve .

We show now that, given an admissible set-point
go € %5 and a new set-point g, € ¥;, there always
exists a finite settling time after which a new
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admissible set point g, is found by moving
from g, towards g,. In other words, as x(t) ap-
proaches the equilibrium state respective to gy,
a new set-point in the direction of g, becomes
admissible.

Lemma 4 (Viability). Let go, g, € %5. At each time
7 there exist two positive reals y and ¢ such that
the command g, = go + y(g1 — go) is admissible
for all the past input sequences - = {g(t — 1),
g(t — 2), ... } € #* satisfying the condition

lgi(t — 1) — ghl < eA™"% Vit >0,

Yi=1, ...,p, (16)

where g' denotes the ith component of g.
Proof. See Appendix.

Lemma 5. Suppose r(t)=re#, V1>1,. Then
9. = ¢gr, Where

arg min [lg; —r®
deR

gr = { subject to g, £¢g(tq — 1) (17
+d[r—g(to — 1)] € %,.

Proof. Suppose by contradiction that g, # g,. We
can apply Lemma 4 to the pair g, g,. In fact, since
# 1s bounded and g(t) € #, ¥Vt € Z, then there exist
e, T, such that |g'(t; — k) — go| < ed™¥2% Vk >0,
with ¢ given by equation (36). By defining y as in
equation (36), by Lemma 4 the command
g, = Gu + 7(9, — 9..) is admissible. Since d, < d,,
and d(r) 1s monotonically not increasing,
d(r) < d(t)) =d, <d,, V1 = 1,, which contradicts
d, =lim,., d(7).

Lemma 6 (Finite stopping time). If r(t1)=re A,
V1 > 10, then there exists a finite stopping time
7, such that ¢g(t)=g, Vr=>r1, with g, as in
equation (17).

Proof. By Lemma 5, lim,, .g(7) = ¢,, and therefore
Lemma 4 can be applied to the pair g(z,), g,, with
¢ given by equation (36) and 7, such that y =1
satisfies equation (36).

Next Theorem 3 summarizes the properties of
PRF.

Theorem 3 (PRF Properties). Suppose that As-
sumptions 1-5 hold, and that r(z) = re %, V1 > 1,.
Then, once the integer t, is computed off-line via

Algorithm 1, the optimization problem

) =

arg max f
pel0, 1]
ct+1|1,Z,x(1),B) e,
Vt>t, VEed

gt — D)+ plr(z) —glt — D] e %,
(18)

subject to

can be solved for all 7 > 0. By setting
g0 =g9( — 1)+ pOLr(1) =gt - 1)}, V=0,

the constraints ¢(t) € € are fulfilled for all t > 0,
and for all £ € .¥. Morecover, after a finite stopping
time 1.,

gty =g, Vixt,

where g, is defined in equation (17). In particular, if
re %;, the PRF behaves as an all-pass filter for all
T2>Ts.

Remark 1. Since after a finite time g(z) = g¢,, the
asymptotical properties of the original system 1 re-
main unaltered, in particular x(7) - (I — ®)™ ' Gy,
as 1T 0.

6. PREDICTIONS AND COMPUTATIONS

To lighten the notation, assume 7 =0, and
consider the predicted evolution ¢(t) determined by
a past command sequence Z- & # and a future
constant command g()=g, Vt>0, c()=
Yo Higlt — K) = A0 + 1), A2 Y o Higlt — b,
ane ¥, H,g(t — k). Equivalently, the nominal
prediction é(t) can be expressed in the computa-
tionally more preferable form,

ér) = H'2(0) + W,g, (19)

for a consistent initial state £(0). For the sake of
simplicity, suppose that the quantity N in equation
(7) is such that N > ¢, where t, is the constraint
horizon computed via Algorithm 1. Then, the
prediction error &) can be rewritten as
Aty = Wig + TN24 Heglt — R+ 000, &,(02
Yo v Heglt —k),0<t<t,<N.

We wish to obtain a recursive formula to
determine the range of ¢,(1) without requiring the
storage of all past commands ¢(t — k). Consider
now a generic time 7 € 7. and define

it + 1|02 max
(e[ — EZNEX TNy

et +1)1)

= i i Eij% | gl(t — k + 1)|.

J=1k=N
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At time 7 + 1, at the same prediction step t, one has

S+ (t+ D]t +1) = Ac(t +1|7)

P
+ ) EVY| gt

i=1

~N+t+D.  (20)

Assuming that at time t =0, system (1) is in an
equilibrium condition, corresponding to g( — 1) = g,
for all t > 0, equation (20) can be initialized with
N i L
EY|gb| (21)
-2 7
The constraint c(t + 1|1, Z, x(1), 9) €€ can be
finally expressed as the following constraint on g:

Cplt10) =

(Vf/, + I;Vl‘)g < Bc - ﬁcﬁ)kf(f) - CAp(t +T | T)
N—-1 - o
- Z (W — W, 1)glt —k+1)
k=t+1
(22)

or equivalently, by equation (4), as the following
constraint on f;

(al + yt)ﬁ S bl + xb t= Oa LA ] th (23)
where
a2 W,[r(0) — g(r — 1],

b,2B, —H(I)‘Jé(r) - ,g(r—l)
N-t 5
x&¢ Colt +1l7) — Z (Wi — Wi_gt —k + 1)
k=r+2
- ~t+1g(1_1)’
and

y2W,[r(t) — g(z — 1)].

In the same manner, constraints (11} can be rear-
ranged in the form (23). While vectors a, and b, are
known, vectors x, and y, are linear functions of the
uncertainties W,. Observe that the particular form
(4) has allowed to make x,, y, independent; in
fact, y, is a function of W, while x, depends
on {W,}¥2/\ 1. Therefore, x{ e [x}, ], yi € [y, 7],
for each component i=1,...,q, and for all
t=0, ..., ty, with

s=min e - 3 ¥ 07— WLk
k=t+2 j=1
- Z Wig'(— 1)}
Wi

subject to {W e[WJ e (24)

yf=min{ 2 Wi}j[rj(o)—gj(t—k)]}

j=1
subject to Wi e [Wi, WY (25)

and x/!, j defined analogously.

6.1. f-parameter selection

The constraints involved in the optimization
problem (18) can be rewritten as

(@ + y)B <bi+xi, Vxe[x, X1,

Vye [)_iﬁ,yf],t =0,...,to+1Li=1,..,q9 (26
where xj, X;, y1, J; are obtained by equations (24)
and (25) for t <t,, and the index t =t, + 1 has
been defined for the constraints deriving by equa-
tion (11). Consider the generic constraint

@+yp<b+x (27
By defining

b+x -
f(xy y)éa—_l_y’ X € [)_C, x:|5

vely y1\{a}
and recalling the result in Bazaraa and Shetty
(1979, pp. 101, 473), f(x, y) assumes global minima
and maxima on the extreme points of its domain.
Consequently, it is easy to show that equation (23)
has the following solution:

a+y a+y -
b b
T g ?TE o a8
aty a+y
b+ x b+ x|
B = min =, => fy< —a
aty a+y

Constraints (26) can be summarized as

max Bi<p< min B
l(; H,+1 =l(_ ; “,+1

where, possibly, fi = — o0, fi = + .

Remark 2. Recalling equation (24), the bounds
xi, Xt are evaluated as solutions of linear programs.
The computational burden can be hugely llghtened
if uncertamty ranges are given only on W,
t =0, ..., N — I In this case, equation (24) can be
solved as trivially as equation (25) without the need
of linear programs, at the cost of a more conserva-
tive description of system uncertainty, as pointed
out in Section 3.

Remark 3. In the present formulation, the state X(1)
is calculated in an open-loop manner by iterating
equation (3). Apparently, this would lead to high
sensitivity w.r.t. sensor noise, which in this paper is
not taken into account. In fact, no feedback from
2 takes part in the selection of g(t) . However, one
should remind that system X, in general, represents
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a feedback linear loop. For example, for a constant
reference trajectory r(t) = r € %,, after a finite stop-
ping time 7, system X receives g(t) = r. Then, y()
will track r with the error rejection properties deriv-
ing from the primal linear controller.

7. AN EXAMPLE

The PRF is applied in connection with the posi-
tion servomechanism schematically described in
Fig. 4. This consists of a DC-motor, a gear-box, an
elastic shaft and an uncertain load. Technical speci-
fications involve bounds on the shaft torsional
torque T as well as on the input voltage V. System
parameters are reported in Table 1. Model uncer-
tainties originate from the moment of inertia J; of
the load. which is determined by the specific task.
Denoting by . 8, . respectively, the motor and the
load angle, and by setting x, 2[00, Oyfy]. the
model can be described by the following state-space
form:

|‘ 0 ! 0 0 7
| _E _{J,l L 0
Np = ‘ A ¢ P Xp
0 0 0 1
ke 0 .  Put ki/R
L Ay p*Jy Iu 1l
(0]
0 |
+ I,
[ 0
ko
LRIu
b.=[1 0 0 0]x,,

T:[k., 0o N {)J.\‘p.
P

Since the steel shaft has finite shear strength, deter-
mined by a maximum admissible 1,4, = 50 N/mm?,
the torsional torque T must satisfy the constraint

[T | < 78.5398 Nm. (29)

Moreover, the input DC voltage V' has to be con-
strained within the range

V] < 220 V., (30)

The model is transformed in discrete time by
samphing everv T.=0.1s and using a zero-
order holder on the input voltage. A robust digital
controller is designed by pole-placement technig-

Fig. 4, Servomechanism model.

Table 1. Model parameters

Symbol  Value (MKS) Meaning
L 1.0 Shaft length
ds 0.02 Shaft diameter
Js Negligible  Shaft inertia
Ju 0.5 Motor nertia
Py 0.1 Motor viscous friction coetticient
R 20 Resistance of armature
K+ 10 Motor constant
p 20 Gear ratio
kq 1280.2 Torsional rigidity
Jy 20y Nominal load inertia
i 25 Load viscous friction coeilicient
j 0.1 Sampling time
50 Load Position (deg |
40 ;/'\\ |
20 ‘
0 |
0 0.5 1 1.5 2 2.5 3
Torsional Torque (Nm) 1'Me (s) Input Voltage (V)
200 1000
100
- - 500
ok |
-100’ U J |
-200 -500
0 1 2 3
Time (s) Time (s)

Fig. 5. Unconstrained linear response. The shadowed irea rep-
resents the admissible range.

ues, and has the following transfer function from
e=(r—_0)to V:

G.(z) = 1000 x

9.7929z% = 2.1860z% — 7.2663z + 2.5556
10z* — 2.72822° — 3.55852% — 1.3029z — 0.0853"

(31

The resulting closed-loop system exhibits a ver
fast response but inadmissible voltage inputs and
torsional torques for the references of interest, as
shown in Fig. 5 for a set-point r = 30"

The PRF is applied in order to fulfill equations
(29) and (30) for the uncertainty range which



Brief Papers 459

derives by an unknown load Jy, 10/y < Jy <307y
(the corresponding impulse/step response uncer-
tainty limits were obtained by maximizing
+ HY, + W with respect to J,). Figure 6 shows
the resulting uncertainty set for both the impulse
and step responses. The constraint horizon is
to = 15. A nominal load inertia Jy = 20Jy is se-
lected, along with N =17. E=1000[1 1 117,
i —08. 5 =10"° As a design rule of thumb, in
order to have a description of the family of plant
& as less conservative as possible, N should be
approximately equal to the “length” of the impulse
response in terms of time steps: sufficiently large to
describe accurately the range of variation of each
sample when this is perceptibly nonzero, but also
small enough to minimize computational complex-
ity. Figure 7 shows the resulting trajectories for
a set-point r = 30° and a load J = 25Jy. These

were obtained in 112 s by using Matlab4.2ona 486 -

Impulse Response (Torque) Impulse Response (Voltage)

40 /.\ 400
20 / \
/. \ 2000
Tt /\}7\

\ —
200~ t ¢ J
400 | ! 2000

0 10 20 0 10 20

Step Response (Torgue) Step Response (Voltage)

300
2000+

|
\v——& 1 00G A -
-50 l -‘.004—\\//

0 10 20 0 10 20
Discrete time Discrete time

Fig. 6. Uncertainty ranges for 10Jy < Ji < 30Jy (thick lines)
and nominal J, = 20Jy, response (thin lines).

Load Position and Generated Reference (deg)

2.5 3
Input Voltage (V)

Time (s) Time (s)

Fig. 7. Response for J = 28]y, 10y < Jy < 30Jy. and a real
9y =250y

DX2/66 personal computer, with no particular care
of code optimization. The standard Matlab LP.M
routine was used to solve linear programs. Figure 8
describes the effect of the width of the uncertainty
interval. The larger the uncertainty range, the more
conservative the PRF action, and hence the slower
the output response.

In order to make comparisons, constraint fulfil-
ment is also achieved by linear control. The gain of
controller (31) is reduced by a factor 16.9802 in
order to have a maximum admissible set-point of
180° for the nominal plant Ji = 20Jy (with such
a gain the linear loop reaches the maximum ad-
missible torque T during the transient). The result-
ing trajectories are depicted in Fig. 9 (thin line). In
the same figure, the trajectories produced by ap-
plying the PRF together with the fast controller
(31) are shown (thick lines). Figure 9 shows also the
resulting trajectories for r = 90" While for the

- Load Positions (deg)

40 / = \]
20 —— _ =
0

2 25 3

Torsional Torgue (Nm) Input Voltage (V)

1.5
Time (s)
40

Time (s)

Fig. 8. Response for Ji = J, = 20Jy and diflerent uncertainty
ranges: no uncertainty (thick solid line), [15Jy, 25Jy] (dashed
line), and [2Jy. 40Jy] (thin solid line).

Load Position (deg)

200 I I =
150 .
100
50 //~)<' S—
Ny |
0 2 4 6 8 10 12
b Time (s)

5 Torsional Torque(Nm) Input Voltage (V)

300

2 4
Time (s) Time (s)

Fig. 9. Set-point r =90, 180°, Jy = 20J, no uncertainty, Fas
controller + PRF (thick lines) linear controller (thin lines).
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linear closed loop the rise time is the same for
both r = 180 and 90° (thin lines), this is no more
true for responses obtained by applying the nonlin-
ear PRF (thick lines). In general, even if a linear
controller gives the same performance of the PRF
for the maximum admissible set-point, when the de-
sired reference sequence is nonconstant a better
tracking is provided by using a nonlinear reference
filter.

Remark 5. As a general rule of thumb to design
controllers which will be used in connection with
a PRF, in order to maximize the properties of
tracking one should select a robust controller
which provides fast closed-loop response for all the
systems of the considered family. This usually cor-
responds to large violations of the constraints,
which therefore can be enforced by inserting
a PRF. On the other hand, this cannot improve
poor tracking properties of the original system be-
cause, as observed in Remark 1, the PRF becomes
an all-pass filter when the constraints are inactive.

8. CONCLUSIONS

This paper has addressed the robust PRF prob-
lem, viz., the one of filtering the desired reference
trajectory in such a way that an uncertain primal
compensated control system can operate in a stable
way with satisfactory tracking performance and no
constraint violation in the face of plant impulse/step
responses uncertainties. The computational burden
turns out to be moderate because of the underlying
simple constrained optimization problem.

Acknowledgements—The authors gratefully acknowledge the
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submitted version of this paper.
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APPENDIX: PROOFS OF THEOREM 1 AND LEMMA 4

Proof of Theorem 1. Consider the c-evolution at a generic time
t> Ntocommands g{ —t)e R. g(t) = ge A, VieZ,,

.
)= Y H, g+ W,oy+W.g— Y Hy
k= — o k=t+1

Since # is bounded, all references r € # satisfy inequalities of the
form || <7, Vj =1, ..., p, where 1’/ denotes the jth component
of r. Therefore, forr > N — 1,

St

[ty — [W, + W, gl1<2 1‘ - Y M,
-5
By setting
log [$6(1 — )Y 2_ MYFi
= g[2 ( /)Zj 1 r]-l (A])
log A
and
t* = max ¢, (A2)
i=1... .4
one has

() — ¢ — [Wogll <0. Vi % Vi=1, ....q (A3)

Since g € %, it follows that c(t)€ €, ¥t > t*. This proves the
“=" part. The “<=” part is obvious.

Proof of Lemma 4. Without loss of generality, assume 7 = 0.
Define §(t)2 g{t) — go and consider the predicted evolution of
vector ¢ obtained by supplying system X with the constant
command g() =g, VteZ,.

-1 t
o) = Z H, «[go + ‘i(k)] + Z Hrfkgv
= - k=0

& =

= (W, + W.)lgo + 7(g1 — go)]

-1

+ 72 H,_[§(k) — (g1 — g0)]- (AS)

k x.

By Lemma 3, g, € %;. In order to prove that g, is admissible, we
must show that ¢(t)e €, VX € ¥, and Vi > 0, or, equivalently,
by equation (AS), ¥ ', H, [g(k) —y(g1 — go)] <&, Vi = 0.

—x
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Then,
1 N-1
Y HoW[§tk) —ylgr —goll = Y Hdgk)
k=—x k=r+1

x

v Y Hak +y Y Hilg - do)

k=max{Nt + 1} k=1+1

where the first sum in the second term is equal to zero for
t > N — 1. By letting

Wiy — Wi+
ay | { max{IWE =W
mE Ywi—wey [ e
% &L 0. N2 %= max
i=1,..q1 4

fO<t<N-—2
0, ift>N-—1E

it follows that

for

2 P . ) )
c®)<B. -8+ Y Y oule+(gi —gby]<B.

A=1j=1

]

e ———,
22,?:12,}’:1‘1:.

¥

]

< R
2% 0 25 gl — gb)
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