
Automatica 156 (2023) 111183

A
I

e
w
1

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Training recurrent neural networks by sequential least squares and the
alternating directionmethod ofmultipliers✩

lberto Bemporad
MT School for Advanced Studies Lucca, Piazza San Francesco 19, Lucca, Italy

a r t i c l e i n f o

Article history:
Received 31 December 2021
Received in revised form 26 January 2023
Accepted 29 May 2023
Available online xxxx

Keywords:
Recurrent neural networks
Nonlinear system identification
Nonlinear least-squares
Generalized Gauss–Newton methods
Levenberg–Marquardt algorithm
Alternating direction method of multipliers
Non-smooth loss functions

a b s t r a c t

This paper proposes a novel algorithm for training recurrent neural network models of nonlinear
dynamical systems from an input/output training dataset. Arbitrary convex and twice-differentiable
loss functions and regularization terms are handled by sequential least squares and either a line-search
(LS) or a trust-region method of Levenberg–Marquardt (LM) type for ensuring convergence. In addition,
to handle non-smooth regularization terms such as ℓ1, ℓ0, and group-Lasso regularizers, as well as to
impose possibly non-convex constraints such as integer and mixed-integer constraints, we combine
sequential least squares with the alternating direction method of multipliers (ADMM). We call the
resulting algorithm NAILS (nonconvex ADMM iterations and least squares) in the case line search (LS)
is used, or NAILM if a trust-region method (LM) is employed instead. The training method, which is
also applicable to feedforward neural networks as a special case, is tested in three nonlinear system
identification problems.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Neural networks (NNs) have recently gained attention in sev-
ral fields, although their use for modeling dynamical systems
as already popular in the 1990s (Narendra & Parthasarathy,
990). While feedforward NNs can model the output function of a

dynamical system in autoregressive form with exogenous inputs
(NNARX), recurrent neural networks (RNNs) often better capture
the dynamics of the system due to their state-space form.

The RNN training problem is usually solved by gradient de-
scent methods in which backpropagation through time (or its
approximate truncated version (Williams & Peng, 1990)) is used
to evaluate derivatives. To enable minibatch stochastic gradient
descent (SGD) methods, Beintema, Toth, and Schoukens (2021)
proposed to split the experiment into multiple sections where
the initial state of each section is written as a NN function of a
finite set of past inputs and outputs. Gradient-descent methods,
however, suffer from a slow convergence rate. To improve com-
putation efficiency, quality of the trained model, and to be able to
train RNN models in real-time as new input/output data become
available, training methods based on extended Kalman filtering
(EKF) (Puskorius & Feldkamp, 1994) or recursive least squares

✩ This paper was partially supported by the Italian Ministry of University and
Research under the PRIN’17 project ‘‘Data-driven learning of constrained control
systems’’, contract no. 2017J89ARP. The material in this paper was not presented
at any conference. This paper was recommended for publication in revised form
by Associate Editor Tianshi Chen under the direction of Editor Alessandro Chiuso.

E-mail address: alberto.bemporad@imtlucca.it.
ttps://doi.org/10.1016/j.automatica.2023.111183
005-1098/© 2023 Elsevier Ltd. All rights reserved.
(RLS) (Xu, Krishnamurthy, McMillin, & Lu, 1994) were proposed
based on minimizing the mean-squared error (MSE) loss. These
results were recently extended in Bemporad (2023) to handle
general convex and twice-differentiable loss terms when training
RNNs whose state-update and output functions are multi-layer
feedforward NNs.

This paper proposes an offline training method based on
two main contributions. First, to handle arbitrary convex and
twice-differentiable loss terms, we propose using sequential least
squares constructed by linearizing the RNN dynamics succes-
sively and taking a quadratic approximation of the loss to mini-
mize. An advantage of this approach, compared to more classical
backpropagation (Werbos, 1990), is that the required Jacobian
matrices, whose evaluation is usually the most expensive part
of the training algorithm, can be computed in parallel to prop-
agate the gradients. To force the objective function to decrease
monotonically, we consider two alternative ways: a line-search
(LS) method and a trust-region method, the latter in the classical
Levenberg–Marquardt (LM) setting (Levenberg, 1944; Marquardt,
1963; Transtrum & Sethna, 2012).

A second contribution of this paper is to combine sequential
least squares with nonconvex alternating direction method of
multipliers (ADMM) iterations to handle non-smooth and possi-
bly non-convex regularization terms. ADMM has been proposed
for training NNs, mainly feedforward NNs (Taylor et al., 2016)
but also recurrent ones (Tang et al., 2020). However, existing
methods entirely rely on ADMM to solve the learning problem,

such as to gain efficiency by parallelizing numerical operations.
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n this paper, we combine ADMM with the smooth nonlinear
ptimizer mentioned above based on sequential LS to handle the
on-smooth terms, therefore allowing handling sparsification (via
1, ℓ0, or group-Lasso penalties) and imposing (mixed-)integer
onstraints, such as for quantizing the network coefficients. In
articular, we show that we can use ADMM and group Lasso
o select the number of states to include in the nonlinear RNN
ynamics, therefore allowing a tradeoff between model com-
lexity and quality of fit, a fundamental aspect for identifying
ontrol-oriented black-box models. See also (Li et al., 2019) for
sing nonconvex ADMM to handle combinatorial constraints in
ombination with RNN training.
We call the overall algorithm NAILS (nonconvex ADMM it-

rations and least squares) when line search (LS) is used, or
AILM if a trust-region approach of Levenberg–Marquardt (LM)
ype is employed instead. We show that NAILS/NAILM is com-
utationally more efficient and provides better-quality solutions
han classical gradient-descent methods, and that is competitive
ith respect to EKF-based approaches (Bemporad, 2023) and
eneral-purpose non-smooth nonlinear programming (NLP) al-
orithms (Burke, Curtis, Lewis, Overton, & Simões, 2020; Curtis,
itchell, & Overton, 2017).
The paper is organized as follows. After formulating the train-

ng problem in Section 2, we present the sequential least-squares
pproach to solving the smooth version of the problem in Sec-
ion 3 and extend the method to handle non-smooth/non-convex
egularization terms by ADMM iterations in Section 4. The per-
ormance and versatility of the proposed approach are shown in
hree nonlinear identification problems in Section 5.

. Problem formulation

Given a set of input/output training data (u0, y0), . . .,
uN−1, yN−1), uk ∈ Rnu , yk ∈ Rny , we want to identify a nonlinear
tate-space model in recurrent neural network (RNN) form

k+1 = fx(xk, uk, θx), ŷk = fy(xk, uk, θy) (1)

here k denotes the sample instant, xk ∈ Rnx is the vector of
hidden states, fx : Rnx × Rnu → Rnx and fy : Rnx × Rnu → Rny are
classical multi-layer feedforward neural networks parameterized
by weight/bias terms θx ∈ Rnθx and θy ∈ Rnθy , respectively. In
particular, fx is a feedforward NN with linear output function and
Lx− 1 layers parameterized by weight/bias terms {Ax

i , b
x
i } (whose

components are collected in θx), i = 1, . . . , Lx, and activation
unctions f xi , i = 1, . . . , Lx − 1, and similarly fy by weight/bias
erms {Ay

i , b
y
i }, i = 1, . . . , Ly (forming θy) and activation functions

y
i , i = 1, . . . , Ly−1, followed by a possibly nonlinear output func-
ion f yLy (Bemporad, 2022, 2023). Let us denote by nx

1, . . . , nLx−1

nd ny
1, . . . , nLy−1 the number of neurons in the hidden layers of

x and fy, respectively. Note that the RNN (1) can be made strictly
ausal by simply omitting uk in fy, or, equivalently, forcing the last
u columns of Ay

1 to be zero.
The training problem we want to solve is:

in
z

r(x0, θx, θy)+ g(θx, θy)+
N−1∑
k=0

ℓ(yk, fy(xk, uk, θy)) (2a)

s.t. xk+1 = fx(xk, uk, θx), k = 0, . . . ,N − 2 (2b)

here z = [x′0 . . . x′N−1 θ ′x θ ′y]
′
∈ Rn is the overall optimization

vector, n = Nnx + nθx + nθy , ℓ : Rny × Rny → R is a loss
function that we assume strongly convex and twice differentiable
with respect to its second argument, r : Rnx × Rnθx × Rnθy → R
is a regularization term that we also assume strongly convex
and twice differentiable (for example, an ℓ2-regularizer), and

nθx nθx
: R × R → R ∪ {+∞} is a possibly non-smooth and

2

non-convex regularization term. For simplicity, in the following
we assume that r is separable with respect to x0, θx, and θy,
.e., r(x0, θx, θy) = rx(x0) + rxθ (θx) + ryθ (θy), and that in case of
ultiple outputs ny > 1, the loss function ℓ is also separa-
le, i.e., ℓ(y, ŷ) =

∑ny
i=1 ℓi(yki, fyi(xk, uk, θy)), where the subscript

i denotes the ith component of the output signal yk and the
corresponding loss function.

Problem (2) can be rewritten as the following unconstrained
NLP problem in condensed form

min
x0,θx,θy

V (x0, θx, θy)+ g(θx, θy) (3)

where, by replacing xk+1 = fx(xk, uk, θx) iteratively, we have
defined

V (x0, θx, θy) = r(x0, θx, θy)+
N−1∑
k=0

ℓ(yk, fy(xk, uk, θy)) (4)

Note that Problem (3) can be highly nonconvex and present
several local minima, see, e.g., recent studies reported in Ribeiro,
Tiels, Umenberger, Schön, and Aguirre (2020).

2.1. Multiple training traces and initial-state encoder

For simplicity of notation, in this paper, we focus on training
a RNN model (1) based on a single input/output trace. The ex-
tension to M multiple experiments is trivial and can be achieved
by introducing an initial state x0,j per trace and minimizing the
sum of the corresponding loss functions and the regularization
terms with respect to (x0,1, . . . , x0,M , θx, θy). Alternatively, we can
parameterize

x0,i = fx0(v0,i, θx0) (5)

where v0 ∈ Rnv is a measured vector available at time 0, such as a
collection of na past outputs and nb past inputs, as also suggested
in Beintema et al. (2021) and Masti and Bemporad (2021), and/or
other measurable values that are known to affect the initial
state of the system we want to model. The initial-state encoder
function fx0 : Rnv ×Rnθx0 → Rnx is a feedforward neural network
defined similarly to fx, fy and parameterized by a new vector θx0 ∈
Rnθx0 to be learned jointly with θx, θy. The regularization term in
this case is defined as r(θx0, θx, θy) = rx(θx0)+ rxθ (θx)+ ryθ (θy).

3. Sequential linear least squares

We first handle the smooth case g(θx, θy) = 0. Let (x00, θ
0
x , θ0

y )
be an initial guess. By simulating the RNN model (1) we get the
corresponding sequence of hidden states x0k , k = 1, . . . ,N − 1,
and predicted outputs ŷ0k . At a generic iteration h of the algorithm
proposed next, we assume that the nominal trajectory is feasible,
i.e., xhk+1 = fx(xhk, uk, θ

h
x ), k = 0, . . . ,N − 2. We want to find

updates xh+1k , θh+1
x , θh+1

y by solving a least-squares approximation
of problem (2) as described in the next paragraphs.

3.1. Linearization of the dynamic constraints

To get a quadratic approximation of problem (3) we first
linearize the RNN dynamic constraints (2b) around xhk by approx-
imating xhk+1 + pxk+1 = fx(xhk + pxk , uk, θ

h
x + pθx ) ≈ fx(xhk, uk, θ

h
x ) +

∇xfx(xhk, uk, θ
h
x )pxk +∇θx fx(x

h
k, uk, θ

h
x )pθx . Since xhk+1 = fx(xhk, uk, θ

h
x ),

we can write the linearized state-update equations as

pxk+1 = ∇xfx(xhk, uk, θ
h
x )pxk +∇θx fx(x

h
k, uk, θ

h
x )pθx (6)

The dynamics (6) can be condensed to
pxk = Mkxpx0 +Mkθxpθx (7)
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here matrices Mkx ∈ Rnx×nx and Mkθx ∈ Rnx×nθx , k = 0, . . . ,N −
, are recursively defined as follows:

M0x = I, M0θx = 0 (8)
M(k+1)x = ∇xfx(xhk, uk, θ

h
x )Mkx

(k+1)θx = ∇xfx(xhk, uk, θ
h
x )Mkθx +∇θx fx(x

h
k, uk, θ

h
x )

In case x0 is parameterized as in (5), by approximating xh0 ≈
x0(v0, θ

h
x0)+∇θx0 fx0(v0, θ

h
x0)pθx0 , where pθx0 is the increment of θx0

o be computed, it is enough to replace px0 with pθx0 in (7) and
0x = ∇θx0 fx0(v0, θ

h
x0) in (8).

3.2. Quadratic approximation of the cost function

Let us now find a quadratic approximation of the cost func-
tion (4). First, regarding the regularization term r , we take the
2nd-order Taylor expansions

rx(x0 + px0 ) ≈
1
2
p′x0∇

2rx(xh0)px0 +∇rx(x
h
0)px0 + r(xh0)

rxθ (θ
h
x + pθx ) ≈

1
2
p′θx∇

2rxθ (θ
h
x )pθx +∇r

x
θ (θ

h
x )pθx + rxθ (θ

h
x )

ryθ (θ
h
y + pθy ) ≈

1
2
p′θy∇

2ryθ (θ
h
y )pθy +∇r

y
θ (θ

h
y )pθy + ryθ (θ

h
y )

By neglecting the constant terms, minimizing the 2nd-order Tay-
lor expansion of r(x0 + px0 , θx + pθx , θy + pθy ) is equivalent to
minimizing the least-squares term

1
2


[

Lr0px0+(L′r0)
−1
∇xrx(xh0)

Lrxpθx+(L
′
rx)
−1
∇rx

θ
(θhx )

Lrypθy+(L
′
ry)
−1
∇ry

θ
(θhy )

]
2

2

(9)

where L′r0Lr0 = ∇
2rx(x0), L′rxLrx = ∇

2rxθ (θx), and L′ryLry = ∇
2ryθ (θy)

are Cholesky factorizations of the corresponding Hessian matri-
ces. Note that in the case of standard ℓ2-regularization rx(x0) =
ρx
2 ∥x0∥

2
2, r

x
θ (θx) =

ρθ

2 ∥θx∥
2
2, r

y
θ (θy) =

ρθ

2 ∥θy∥
2
2, we simply have

r0 =
√

ρxI , Lrx =
√

ρθ I , Lry =
√

ρθ I , ∇xrx(x0) =
√

ρxx0,
x
θ (θx) =

√
ρθθx, r

y
θ (θy) =

√
ρθθy, and hence (9) becomes

1
2


[√

ρxpx0+
√

ρxxh0
√

ρθ pθx+
√

ρθ θhx
√

ρθ pθy+
√

ρθ θhy

]
2

2

(10)

Regarding the loss terms penalizing the ith output-prediction
error at step k, we have that

∇xkℓi(yki, fyi(x
h
k, uk, θ

h
y )) = ∇xk fyi(x

h
k, uk, θ

h
y )ℓ
′

ik

∇θyℓi(yki, fyi(x
h
k, uk, θ

h
y )) = ∇θy fyi(x

h
k, uk, θ

h
y )ℓ
′

ik

where ℓ′ik ≜
dℓi(yk,fyi(xhk ,uk,θ

h
y ))

dŷi
, ℓ′ik ∈ R, and hence, by differentiating

gain with respect to
[xk
θy

]
and setting ℓ′′ik ≜

d2ℓi(yk,fyi(xhk ,uk,θ
h
y ))

dŷ2i
, ℓ′′ik ∈

R, ℓ′′ik > 0, we get∇2[xk
θy

][xk
θy

]ℓi(yki, fyi(xhk, uk, θ
h
y )) = (∇[xk

θy

]fyi)(∇[xk
θy

]fyi)′
ℓ′′ik + ∇

2[xk
θy

][xk
θy

]fyi(xhk, uk, θ
h
y )ℓ
′

ik (we have omitted the dependence

f ℓ′, ℓ′′ on the iteration h for simplicity). By neglecting the Hes-
sian of the output function fyi (as it is common in Gauss–Newton
methods), the minimization of ℓi(yki, fyi(xhk+pxk , uk, θ

h
x +pθx )) can

e approximated by the minimization of 1
2

pxk
pθx

]′
ℓ′′ik(∇

[xk
θy

]fyi)(∇[xk
θy

]fyi)′ [pxkpθy

]
+ ℓ′ik

[
∇xk fyi
∇θy fyi

]′ [pxk
pθy

]
. By strong con-

vexity of the loss function ℓ, this can be further rewritten as the
minimization of the least-squares term

1
(ℓ′′ik) 1

2 (∇[xk]fyi)′ [pxkpθy

]
+ (ℓ′′ik)

−
1
2 ℓ′ik

2

(11)

2 θy 2

3

that, by exploiting (7), is equivalent to
1
2

(ℓ′′ik) 1
2
[
(∇xk fyi)

′Mkx (∇xk fyi)
′Mkθx (∇θy fyi)

′
]

·

[
pxk
pθx
pθy

]
+ (ℓ′′ik)

−
1
2 ℓ′ik

2
2 (12)

Finally, the minimization of the quadratic approximation of (4)
can be recast as the linear LS problem

ph = argmin
p

1
2
∥Ahp− bh∥22 (13)

where p =
[
px0
pθx
pθy

]
, Ah and bh are constructed by collecting the

least-squares terms from (10) and (12), Ah
∈ RnA×np , bh ∈ RnA ,

nA = Nny + nx + nθx + nθy , and np = nx + nθx + nθy . The reader is
referred to Bemporad (2022) for alternative ways of solving (13)
and their numerical complexity.

We remark that most of the computation effort is usually
spent in computing the Jacobian matrices ∇[xk

θx

]fx(xhk, uk, θ
h
x ) and

∇[xk
θy

]fyi(xhk, uk, θ
h
y ). Given the current nominal trajectory {xhk}, such

computations can be completely parallelized. Hence, we are not
forced to use sequential computations as in backpropagation
(Werbos, 1990) to solve for ph in (13), as typically done in classical
training methods based on gradient descent.

Note also that for training feedforward neural networks (nx =

0), we only optimize with respect to θy. In this case, the opera-
tions performed at each iteration h to predict ŷk and compute V h

can also be parallelized.
For the sake of comparison, a gradient-descent method would

set

ph = −∇V (xh0, θ
h
x , θh

y ) (14)

=

[
∇x0 rx(x

h
0)

∇θx r
x
θ
(θhx )

∇θy r
y
θ
(θhy )

]
+

N−1∑
k=0

ny∑
i=1

ℓ′ik

[
∇xk fyi(x

h
k ,θ

h
y )
′Mkx

∇xk fyi(x
h
k ,θ

h
y )
′Mkθx

∇θy fyi(x
h
k ,θ

h
y )

]
since, from (8), ∇x0xk = Mkx and ∇θxxk = Mkθx .

3.3. Line search

To enforce the decrease of the cost function (2a) across itera-
tions h = 0, 1, . . . , E, where E is the maximum number of epochs
we allow processing, a possibility is to update the solution as[

xh+10
θh+1x
θh+1y

]
=

[
xh0
θhx
θhy

]
+ αh

⎡⎣phx0
ph
θx

ph
θy

⎤⎦ (15)

and set xh+1k+1 = fx(xh+1k , uk, θ
h+1
x ), k = 1, . . . ,N − 1. We choose

the step-size αh by finding the largest α satisfying the classical
Armijo condition

V h+1
≤ V h

+ c1α(∇V h)′ph (16)

where V h+1, V h are the costs defined as in (2) associated with the
corresponding combinations of (x0, θx, θy), the gradient is taken

with respect to
[x0

θx
θy

]
, and c1 is a constant (e.g., c1 = 10−4) (Nocedal

& Wright, 2006, Chapter 3.1). The algorithm is stopped when
V h
−V h−1

≤ ϵV , where ϵV is a prescribed optimality tolerance, or
h ≥ E.

In this paper we use the common approach of starting with
α = 1 and then changing α ← σα, σ ∈ (0, 1) until (16) is
satisfied. We set a bound Nσ on the number of line-search steps
that can be performed, setting α = 0 in the case of line-search
failure , which makes V h

= V h−1 and hence stops the iterations.
Since V (x +αph , θ +αph , θ +αph ) ≈ V (x , θh, θh)+ 1

∥Ahαph−
0 x0 x θx y θy 0 x y 2
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h
∥
2
2 for small values of α, the directional derivative

n (16) can be computed from Ah, bh as

(∇V h)′ph = lim
α→0

V (x0+αphx0 ,θx+αph
θx ,θy+αph

θy )−V (x0,θhx ,θhy )

α

= lim
α→0

1
2
∥Ahαph−bh∥22−∥b

h
∥
2
2

α
= −(bh)′Ahph

ote that when the loss function ℓ(y, ŷ) = 1
2∥y− ŷ∥22 and the reg-

ularization terms rx, rθy , rθx are quadratic, the loss V (x0, θh
x , θh

y ) =
1
2 (b

h)′bh by construction. See Bemporad (2022) for further details.
The proposed method belongs to the class of Generalized

Gauss–Newton (GGN) methods (Messerer, Baumgärtner, & Diehl,
2021) applied to solve problem (4), with the addition of line
search. In fact, following the notation in Messerer et al. (2021),
we can write V (x0, θx, θy) = Φ0(F (w)) where w ≜ [x′0 θx

′ θy]
′

is the optimization vector, function Φ0 : RNφ → R, Nφ ≜ nx +

θx + nθy +Nny, is given by the composition Φ0 = Φ+ ◦Φℓ of the
summation function Φ+ : RNφ → R, Φ+(x) =

∑Nφ

i=1 xi, with the
ectorized loss Φℓ : RNφ → RNφ , Φℓ([x′0 θ ′x θ ′y ŷ′0 . . . ŷ′N−1]

′) =
rx(x0) rxθ (θx) ryθ (θy) ℓ(y0, ŷ0)′ . . . ℓ(yN−1, ŷN−1)′]′. By assumption,
all the components of Φℓ are strongly convex functions, and since
Φ+ is also strongly convex, Φ0 is strongly convex with respect
to its argument F (w). As in GGN methods, we take a second-
order approximation of Φ0 and a linearization of F (w) during the
iterations. In Messerer et al. (2021), local convergence under the
full step αh ≡ 1, ∀h ≥ 0, is shown under additional assumptions
on Φ0 and the neglected second-order derivatives of F , while
here we force the monotonic decrease of the loss function V at
each iteration h by line search, hence obtaining a ‘‘damped’’ GGN
algorithm.

3.4. A Levenberg–Marquardt variant

In alternative to the line-search method based on (16), we
can force monotonicity of the objective function by adopting a
trust-region method, in particular, the well-known Levenberg–
Marquardt (LM) algorithm (Levenberg, 1944; Marquardt, 1963).
In LM methods, (13) is changed to

ph = argmin
p

1
2
∥Ahp− bh∥22 +

1
2
λh∥p∥22 (17)

here the regularization term λh is tuned at each iteration h to
eet the condition V h

≤ V h−1. It is easy to show that tuning λh is
quivalent to tuning the trust-region radius, see e.g. Nocedal and
right (2006, Chapter 10). Clearly, setting λh = 0 corresponds to

he full GGN step, as in line-search when αh = 1, and λh → ∞

orresponds to ph → 0 (αh → 0). Several methods exist to update
h (Transtrum & Sethna, 2012). In this paper, we take the simplest
pproach suggested in Transtrum and Sethna (2012, Section 2.1)
nd, starting from λh = λh−1, keep multiplying λh ← c2λh until
he condition V h

≤ V h−1 is met, then reduce λh ← λh/c3 before
roceeding to step h+ 1.
Similarly to the line-search method, we set a bound Nλ on

the number of least-squares problems that can be solved at each
epoch h. Again, the LM algorithm is stopped when either V h

−

V h−1
≤ ϵV , or h ≥ E.

The main difference between performing line search and com-
puting LM iterations instead is that at each epoch h, the former
only solves the linear least-squares problems (13), the latter
requires solving up to Nλ problems (17). Note that, however,
both only construct Ah and bh once at each iteration h, which,
as remarked earlier, is usually the dominant computation effort
due to the evaluation of the required Jacobian matrices ∇xfx, ∇θx fx,
xfy, ∇θy fy. m

4

3.5. Initialization

In this paper, we initialize x00 = 0 (unless an additional state-
encoder network fx0 is used as described in (5)), set zero initial
bias terms, and draw the remaining components of θ0

x and θ0
y

from the normal distribution with zero mean and standard de-
viation defined as in Glorot and Bengio (2010), further multiplied
by the quantity σ0 ≤ 1. The rationale to select small initial values
of θ0

x , θ
0
y is to avoid that the initial dynamics fx used to compute x0k

for k = 1, . . . ,N−1 are unstable. Then, since the overall loss V h is
decreasing, the divergence of state trajectories is unlikely to occur
at subsequent iterations. Note that this makes the elimination of
the state variables x1, . . . , xN−1 in the condensing approach (3)
suitable for the current RNN training setting, contrarily to solving
nonlinear model predictive problems in which the initial state x0
and the model coefficients θx, θy are fixed and may therefore lead
to excite unstable linearized model responses, with consequent
numerical issues (Bemporad & Cimini, 2023). Note also that ideas
to enforce open-loop stability could be introduced in our setting
by adopting ideas as in Kolter and Manek (2019), where the
authors propose to also learn a Lyapunov function while learning
the model.

4. Non-smooth regularization

We now want to solve the full problem (2) by considering also
the additional non-smooth regularization term g(θx, θy). Consider
again the condensed loss function (4) and rewrite problem (2)
according to the following split

min
x0,θx,θy,νx,νy

V (x0, θx, θy)+ g(νx, νy)

s. t. θx = νx, θy = νy (18)

We solve problem (18) by executing the following scaled ADMM
iterations[
x0(t+1)
θx(t+1)
θy(t+1)

]
= argmin

x0,θx,θy
V (x0, θx, θy)+

ρ

2

[θx−νx(t)+wx(t)
θy−νy(t)+wy(t)

]2

2
(19a)[

νx(t+1)
νy(t+1)

]
= argmin

νx,νy

1
ρ
g(νx, νy)+

1
2

[νx−θx(t+1)−wx(t)
νy−θy(t+1)−wy(t)

]2

2

= prox 1
ρ g (θx(t + 1)+ wx(t), θy(t + 1)+ wy(t)) (19b)

wx(t+1)
wy(t+1)

]
=

[
wx(t)+θx(t+1)−νx(t+1)
wy(t)+θy(t+1)−νy(t+1)

]
(19c)

or t = 0, . . . ,NADMM − 1, where ‘‘prox’’ denotes the prox-
mal operator. Problem (19a) is solved by running sequential
east-squares with line search or its LM variant, with initial
ondition x00 = x0(t), θ0

x = θx(t), θ0
y = θy(t). Note that

hen solving the least-squares problem (13) or (17), Ah, bh are
ugmented to include the additional ℓ2-regularization term 1

2
√

ρ

[
pθx
pθy

]
−
√

ρ

[
νx(t)−θhx−wx(t)
νy(t)−θhy−wy(t)

]2

2
introduced in the ADMM iter-

tion (19a).
Our numerical experiments show that setting E = 1 is a good

hoice, which corresponds to just computing one sequential LS
teration to solve (19a) approximately. The overall algorithm that
e call NAILS (nonconvex ADMM iterations) when line-search is
sed, or NAILM when the Levenberg–Marquardt method is in-
tead used, is summarized in Algorithm 1. Note that NAILS/NAILM
rocesses the training dataset for a maximum of E ·NADMM epochs.
The final model parameters are given by θx = νx(t), θy = νy(t),

0(t), where t = NADMM is the last ADMM iteration executed. In
ase x0 also needs to be regularized by a non-smooth penalty, we
an extend the approach to include a further split νx0 = x0.
Algorithm 1 can be modified to return the initial state and
odel obtained after each ADMM step that provide the best loss
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lgorithm 1. Nonconvex ADMM iterations and least squares, either with
line-search (NAILS) or Levenberg–Marquardt (NAILM) approach.

Input: Training dataset {uk, yk}N−1k=0 , initial guess x00, θ0
x , θ0

y ,
number NADMM of ADMM iterations, ADMM parameter ρ > 0,
maximum number E of epochs, tolerance ϵV > 0; line-search
parameters c1 > 0, σ ∈ (0, 1), and Nσ > 1 (NAILS), or LM
parameters λ0 > 0, c2, c3 > 1, and Nλ > 0 (NAILM).

1.
[

ν0x
ν0y

]
←

[
θ0x
θ0y

]
,
[

w0
x

w0
y

]
← 0;

2. for t = 0, 1, . . . ,NADMM − 1 do:

2.1. update x0(t+1), θx(t+1), and θy(t+1) as in Eq. (19a),
using one of the methods described in Section 3;

2.2. update
[

νx(t+1)
νy(t+1)

]
as in Eq. (19b) and

[
wx(t+1)
wy(t+1)

]
as

in Eq. (19c);
2.3. t ← t + 1;

3. end.

Output: RNN parameters θx = νx(t), θy = νy(t) and initial
hidden state x0(t).

∑
ℓ(yk, ŷk) observed during the execution of the algorithm on

training data or, if available, on a separate validation dataset.
Note that the iterations (19) are not guaranteed to converge

to a global optimum of the problem. Moreover, it is well known
that in some cases, nonconvex ADMM iterations may even di-
verge (Houska, Frasch, & Diehl, 2016). The reader is referred
to Hong, Luo, and Razaviyayn (2016), Houska et al. (2016),
Themelis and Patrinos (2020) and Wang, Yin, and Zeng (2019) for
convergence conditions and/or alternative ADMM formulations.

We finally remark that, in the absence of the non-smooth
regularization term g , Algorithm 1 simply reduces to a smooth
GGN method running with tolerance ϵV for a maximum number
E of epochs.

4.1. ℓ1-regularization

A typical instance of regularization is the ℓ1-penalty

g(θx, θy) = τx∥θx∥1 + τy∥θy∥1 (20)

to attempt pruning an overly-parameterized network structure,
with τx, τy ≥ 0. In this case, the update in (19b) simply becomes
νx(t+1) = S τx

ρ
(θx(t+1)+wh

x ), νy(t+1) = S τy
ρ
(θy(t+1)+wh

y ), where
β is the soft-threshold operator [Sβ (w)]i = max{wi − β, 0} +
in{wi + β, 0}.

.2. Group-lasso regularization and model reduction

The complexity of the structure of the networks fx, fy can be
reduced by using group-Lasso penalties (Yuan & Lin, 2006) that
attempt zeroing entire subsets of parameters. In particular, the
order nx of the RNN can be penalized by creating nx groups θ

g
i of

variables, θ
g
i ∈ Rng , ng = nx

1 + ny
1 + nx

Lx−1 + 1, i = 1, . . . , nx,
each one stacking the ith columns of Ax

1 and Ay
1, the ith row

of ALx , and the ith entry of bLx . In this case, in (18) we only
introduce the splitting θ

g
i = ν

g
i on those variables and penalize

g(νg
i ) = τg

∑nx
i=1 ∥ν

g
i ∥2, τg ≥ 0. Then, we update ν

g
i (t + 1) =

g
τg
ρ

(θ g
i (t + 1)+ w

g
i (t)), where Sgβ (w) = (1− β

∥w∥2
)w if ∥w∥2 > β ,

r 0 otherwise, is the block soft thresholding operator.
The larger the penalty τg , the larger is expected the number

f state indices i such that the ith column of Ax and Ay , the ith
1 1 t

5

Fig. 1. MSE loss (4) evaluated on training data as a function of training time
(mean value and range computed over 20 runs from different random initial
weights).

row of ALx , and the ith entry of bLx are all zero. Consequently, the
corresponding ith hidden state does not influence the model.

4.3. ℓ0-regularization

The ℓ0-regularization term g(θx, θy) = τ 0
x ∥θx∥0 + τ 0

y ∥θy∥0,
0
x , τ 0

y ≥ 0, also admits the explicit proximal ‘‘hard-thresholding’’
perator [proxβ∥x∥0 ]i = xi if x2i ≥ 2β , or 0 otherwise, and can be

used in alternative to (20).

4.4. Mixed-integer constraints

Constraints on θx, θy that can be expressed as mixed-integer
linear inequalities

AMI

[
θx
θy

]
≤ bMI, θxi, θyj ∈ {0, 1}, ∀i ∈ Ix, j ∈ Iy (21)

where Ix ⊆ {1, . . . , nθx}, Iy ⊆ {1, . . . , nθy}, AMI ∈ RnMI×(nθx+nθy ),
bMI ∈ RnMI , nMI ≥ 0, can be handled by setting g as the indicator
function

g(θx, θy) =
{

0 if (21) is satisfied
+∞ otherwise

In this case, νh+1
x , νh+1

y can be computed from (19b) by solving
the mixed-integer quadratic programming (MIQP) problem

minνx,νy
1
2

[
νx−θx(t+1)−wx(t)
νy−θy(t+1)−wy(t)

]2

2

s. t. AMI

[
θx
θy

]
≤ bMI

θxi, θyj ∈ {0, 1} ∀i ∈ Ix, j ∈ Iy

(22)

ote that in the special case nMI = 0, (22) has the following
xplicit solution (Takapoui, Moehle, Boyd, & Bemporad, 2020)

νxi(t + 1) = round(θxi(t + 1)+ wxi(t)), i ∈ Ix
yj(t + 1) = round(θxj(t + 1)+ wxj(t)), j ∈ Iy

(23)

here round(β) = 0 if β < 0.5, or 1 otherwise.
Binary constraints can be extended to more general quantiza-

ion constraints θxi, θyj ∈ Q ≜ {q1, . . . , qnQ } ⊂ R, ∀i ∈ Ix, ∀j ∈ Iy.
uch constraints can be handled by setting νxi(t + 1) equal to the
alue in Q that is closest to θxi(t + 1) + wh

xi, and similarly for
yj(t + 1).

. Numerical experiments

We test NAILS and NAILM on three nonlinear system iden-
ification problems. The hyper-parameters of Algorithm 1 are



A. Bemporad Automatica 156 (2023) 111183

w
a
ρ

N
p
N
(
θ

o
s
=

o
i
t
t

d
h
t
t

5

d
f
a
t
o
s
e
f

f
f
e
n
n
f
r
u
t
c
L
a
o
u
t
y
s
o
i
p
m
T
i
o
t

Table 1
Fluid damper benchmark: mean (standard deviation) of BFR on training and test
data.
BFR Training Test

NAILS 94.41 (0.27) 89.35 (2.63)
NAILM 94.07 (0.38) 89.64 (2.30)
EKF 91.41 (0.70) 87.17 (3.06)
AMSGrad 84.69 (0.15) 80.56 (0.18)

summarized in Bemporad (2022, Table 1). All computations have
been carried out in MATLABR2022b on an Apple M1 Max CPU, us-
ing the library CasADi (Andersson, Gillis, Horn, Rawlings, & Diehl,
2019) to compute the Jacobian matrices via automatic differenti-
ation. The scaling factor σ0 = 0.15 is used to initialize the weights
of the neural networks in all the experiments. Unless the state en-
coder (5) is used, after training a model the best initial condition
x0 is computed by solving the small-scale non-convex simulation-
error minimization problem minx0 ρx∥x0∥22 +

∑N0
k=0 ℓ(yk, ŷk) by

using the particle swarm optimizer (PSO) PSwarm (Vaz & Vicente,
2009) with initial population of 2nx samples, each component of
x0 constrained in [−3, 3], and with N0 = 100. When solving the
training problems by gradient descent methods, the learning rate
of the latter are selected by trial and error to achieve a good
tradeoff between increasing the convergence rate and reducing
oscillations.

5.1. RNN training with smooth quadratic loss

We first test NAILS/NAILM against the EKF approach (Bem-
porad, 2023) and gradient-descent based on the AMSGrad al-
gorithm (Reddi, Kale, & Kumar, 2019), for which we compute
the gradient as in (14), on real-world data from the nonlinear
magneto-rheological fluid damper benchmark proposed in Wang,
Sano, Chen, and Huang (2009). We use N = 2000 data samples for
training and 1499 samples for testing the model, obtained from
the System Identification (SYS-ID) Toolbox for MATLAB (Ljung,
2001), where a nonlinear autoregressive (NLARX) model identi-
fication algorithm is employed for black-box nonlinear modeling.

We consider a RNN model (1) with nx = 4 hidden states and
shallow state-update and output network functions (Lx = Ly =
2) with nx

1 = ny
1 = 4 neurons, hyperbolic-tangent activation

functions f x1 , f y1 , and linear output function f y2 , parameterized by
θx ∈ R44, θy ∈ R29. The CPU time to retrieve x0 by PSO is
approximately 30 ms in all tests.

In (2) we use the quadratic loss ℓ(yk, ŷk) = 1
2σ2

y
∥yk − ŷk∥22,

here σy is the standard deviation of the output training data,
nd quadratic regularization r(x0, θx, θy) = 1

2 (ρx∥x0∥22+ρθ∥θx∥
2
2+

θ∥θx∥
2
2) with ρx = 1, ρθ = 0.1. As g(θx, θy) = 0, NAILS and

AILM only solve a nonlinear least-squares problem once with
arameters ϵV = 10−6 and, respectively, c1 = 10−4, σ = 0.5,
σ = 20 (NAILS), and λ0 = 100, c2 = 1.5, c3 = 5, Nλ = 20
NAILM). The initial condition is x00 = 0 and the components of
0
x , θ

0
y are randomly generated as described in Section 3.5.

Table 1 shows the mean and standard deviation (computed
ver 20 experiments, each one starting from a different random
et of weights and zero bias terms) of the final best fit rate BFR
100(1−∥Y− Ŷ∥2/∥Y− ȳ∥2), where Y is the vector of measured

utput samples, Ŷ the vector of output samples simulated by the
dentified model fed in open-loop with the input data, and ȳ is
he mean of Y , achieved on training and test data. For illustration,
he evolution of the MSE loss 1

2N

∑N−1
k=0 (yk − ŷk)2 as a function of

training time is shown in Fig. 1 for each run. The average CPU
time per epoch spent by the training algorithm is 54.3 ms (NAILS),
72.2 ms (NAILM), 253.3 ms (EKF), and 34.6 ms (AMSGrad).
 ~

6

Fig. 2. Fluid damper benchmark: average CPU time (s) per epoch against number
nθx + nθy of model coefficients.

It is apparent that NAILS and NAILM obtain similar quality of
fit and are computationally comparable. They get better fit results
than EKF on average and, not surprisingly, outperform gradient
descent. On the other hand, EKF converges more quickly to a good
quality of fit, as the model parameters θx, θy are updated within
each epoch, rather than after each epoch is processed.

Fig. 2 shows how the average CPU time per epoch spent by
the tested learning algorithms scales as a function of the number
nθx + nθy of trained model parameters using the same training
ataset. Each model contains nx states, nx ∈ {1, . . . , 14}, and 2
idden layers (Lx = Ly = 3) containing nx neurons each. Note
hat the considered algorithms require a substantially different
otal number E of epochs to reach a comparable model quality.

.1.1. Silverbox benchmark problem
We test the proposed training algorithm on the Silverbox

ataset, a popular benchmark for nonlinear system identification,
or which we refer the reader to Wigren and Schoukens (2013) for
detailed description. The first 40000 samples are used as the

est set, the remaining samples, which correspond to a sequence
f 10 different random odd multi-sine excitations, are manually
plit in M = 10 different training traces of about 8600 samples
ach (the intervals between each different excitation are removed
rom the training set, as they bring no information).

We consider a RNNmodel (1) with nx = 8 hidden states, no I/O
eedthrough (Ay

1 ∈ Rny1×nx ), and state-update and output network
unctions with three hidden layers (Lx = Ly = 4) with 8 neurons
ach, a neural network model fx0 (5) with two hidden layers of 4
eurons each mapping the vector v0 of past na = 8 outputs and
b = 8 inputs to the initial state x0, hyperbolic-tangent activation
unctions, and linear output functions. The total number of pa-
ameters is nθx+nθy+nθx0 = 296+225+128 = 649, that we train
sing NAILM1 on E = 150 epochs with ρθ = 0.01 and regulariza-
ion 0.1

2 ∥θx0∥
2
2 on the parameters defining fx0. For comparison, we

onsider the autoregressive models considered in Ljung, Zhang,
indskog, and Juditski (2004), in particular the ARX model ml
nd NLARX models ms, mlc, ms, and ms8c50, that we trained
n the same dataset by using the SYS-ID Toolbox (Ljung, 2001)
sing the same commands reported in Ljung et al. (2004). Note
hat the latter two models explicitly contain the nonlinear term
3
k−1, in accordance with the physics-based model of the Silverbox
ystem, which is an electronic implementation of the Duffing
scillator. The results of the comparison on test data are shown
n Table 2, which also includes the results reported in the recent
aper (Beintema et al., 2021) and those obtained by the LSTM
odel proposed in Ljung, Andersson, Tiels, and Schön (2020).
he results reproduced here differ from those reported originally
n the papers that we show included in brackets (the results
riginally reported in Ljung et al. (2020) have been omitted, as
hey were obtained on a reduced subset of test and training data).

1 The resulting model can be retrieved at http://cse.lab.imtlucca.it/
bemporad/shared/silverbox/rnn888.zip.

http://cse.lab.imtlucca.it/~bemporad/shared/silverbox/rnn888.zip
http://cse.lab.imtlucca.it/~bemporad/shared/silverbox/rnn888.zip
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Table 2
Silverbox benchmark: RMSE (mV) and BFR on test data obtained by different methods. The numbers
in brackets refer to the results reported in the corresponding original papers.
Identification method RMSE BFR

ARX (ml) (Ljung et al., 2004) 16.29 [4.40] 69.22 [73.79]
NLARX (ms) (Ljung et al., 2004) 8.42 [4.20] 83.67 [92.06]
NLARX (mlc) (Ljung et al., 2004) 1.75 [1.70] 96.67 [96.79]
NLARX (ms8c50) (Ljung et al., 2004) 1.05 [0.30] 98.01 [99.43]
Recurrent LSTM model (Ljung et al., 2020) 2.20 95.83
SS encoder (Beintema et al., 2021) (nx = 4) [1.40] [97.35]
NAILM (this paper) 0.35 99.33
(
u

2
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e
s
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m

Fig. 3. Fluid damper benchmark: BRF and sparsity of θx, θy for different ℓ1-
regularization coefficients τ (mean results over 20 runs from different random
initial weights).

5.2. RNN training with ℓ1-regularization

We consider the fluid damper benchmark dataset again and
add an ℓ1-regularization term g(θx, θy) as in (20) and use NAILS
to train the same RNN model structure (1), for different values of
τx = τy ≜ τ . Fig. 3 shows the resulting BRF. Fig. 3 also shows the
percentage of zero coefficients in the resulting parameter vector[

θx
θy

]
∈ R73, i.e., its sparsity.

The benefit of using ℓ1-regularization to reduce the complexity
of the model without sacrificing fit quality is clear. In fact, the BRF
value on test data remains roughly constant until τ ≈ 0.1, which
corresponds to ≈ 30% zero coefficients in the model.

In order to compare NAILS/NAILM with other state-of-the-art
training algorithms that can deal with ℓ1-regularization terms, we
report in Table 3 the results obtained by solving the training prob-
lem for τ = 0.2 using the EKF approach (Bemporad, 2023), some
of the SGD algorithms mostly used in machine-learning packages
(Adam (Kingma & Ba, 2014), AMSGrad (Reddi et al., 2019), and
diffGrad (Dubey et al., 2019)), the state-of-the-art non-smooth
NLP solvers GRANSO (Curtis et al., 2017) and HANSO (Burke
et al., 2020) with default options, and, although not explicitly
conceived to handle non-smooth terms, MATLAB’s interior-point
NLP solver fmincon. NAILS/NAILM is run for E = 250, SGD
or E = 2000, EKF for E = 50, GRANSO/HANSO/fmincon for
= 1000 epochs, where the number of epochs has been selected

o ensure a good convergence of the solvers. In fact, during our
ests, we observed that SGD and NLP solvers require many more
terations than NAILS/NAILM and EKF to achieve solutions with a
ood percentage of zeros. All the methods but EKF compute the
radient ∇V of the smooth part of the loss function as in (14).
GD and NLP solvers take ∇∥θ∥1 ≜ sign(θ ). While all methods
et a similar BFR, NAILS and NAILM are more effective not only
n execution time but especially in sparsifying θx, θy, which is the
ltimate reason for introducing ℓ1-penalties.
For the Silverbox benchmark problem, following the analy-

is performed in Marconato, Schoukens, Rolain, and Schoukens
2013), Fig. 4 shows the obtained RMSE on test data as a function
f the number of nonzero parameters in the model that are ob-
ained by running NAILM to train the same RNN model structure
efined in Section 5.1.1 under an additional ℓ1-regularization
erm with weight τ between 10−4 and 20. The figure shows the
7

Table 3
Fluid damper benchmark: mean BRF, sparsity of [θ ′x θ ′y]

′ (standard deviation
in parentheses), and average total CPU time to process all epochs of different
solution methods when solving the ℓ1-regularized training problem with τ = 0.2
results obtained over 20 runs from different random initial weights). When
sing NAILS/NAILM about 3

4 of the entries in θx and half the entries in θy are
zeroed.
Training BFR BFR Sparsity CPU
algorithm training test % time

NAILS 91.00 (1.66) 87.71 (2.67) 65.1 (6.5) 11.4 s
NAILM 91.32 (1.19) 87.80 (1.86) 64.1 (7.4) 11.7 s
EKF 89.27 (1.48) 86.67 (2.71) 47.9 (9.1) 13.2 s
AMSGrad 91.04 (0.47) 88.32 (0.80) 16.8 (7.1) 64.0 s
Adam 90.47 (0.34) 87.79 (0.44) 8.3 (3.5) 63.9 s
diffGrad 90.05 (0.64) 87.34 (1.14) 7.4 (4.5) 63.9 s
GRANSO 91.58 (0.91) 88.15 (1.40) 44.1 (11.2) 41.9 s
HANSO 91.66 (0.65) 88.41 (1.17) 44.1 (11.2) 40.5 s
fmincon 92.07 (0.63) 88.95 (1.10) 23.2 (13.7) 32.4 s

Fig. 4. Silverbox benchmark: RMSE on test data vs. number of parameters.
Models ml, ms, mlc, and ms8c50 (Ljung et al., 2004), LSTM model (Ljung et al.,
020), and RNN models generated by NAILM for values of the ℓ1-regularization
arameter τ between 0 and 20.

ffectiveness of NAILM in balancing the tradeoff between model
implicity and quality of fit.

.3. RNN training with quantization

Consider again the fluid damper benchmark dataset and let
x, θy be only allowed to take values in the finite set Q of the
multiples of 0.1 between −0.5 and 0.5. We also change the acti-
vation function of the neurons to the leaky-ReLU function f (x) =
ax{x, 0} + 0.1min{x, 0}, so that the evaluation of the resulting

model amounts to extremely simple arithmetic operations, and
increase the number of hidden neurons to nx

1 = ny
1 = 6. We train

the model using NAILS to handle the non-smooth and nonconvex
regularization term g(θx, θy) = 0 if θx ∈ Qnθx , θy ∈ Qnθy ,
g(θx, θy) = +∞ otherwise, with E = 1, NADMM = 200, ρ = 10,
without changing the remaining parameters. For comparison, we
solve the same problem without non-smooth regularization term
g by running sequential LS with line-search for E = NADMM epochs
and then quantize the components of the resulting vectors θx, θy
to their closest values in Q.
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Table 4
Fluid damper benchmark with quantized model coefficients: mean BRF and CPU
time (standard deviation) over 20 runs.
BFR NAILS Post-quantization

Training 84.36 (3.00) 17.64 (6.41)
Test 78.43 (4.38) 12.79 (7.38)

CPU time 12.04 (0.54) 7.19 (2.82)

Fig. 5. BRF and resulting model order nx for different group-Lasso regularization
oefficients τg (mean results over 20 runs from different random initial weights).

The mean and standard deviation of the BRF and correspond-
ng CPU time obtained over 20 runs from different random ini-
ial weights are reported in Table 4. Quantizing a posteriori the
arameters of a trained RNN leads to much poorer results.

.4. Group-lasso penalty and model-order reduction

We use the group-Lasso penalty τg described in Section 4.2
o control the model order nx when training a RNN model (1)
n the fluid damper benchmark dataset. We consider the same
ettings as in Section 5.1, except for the model-order nx = 8,
x
1 = ny

1 = 6 neurons in the hidden layers of the state-update and
utput functions, and set the ADMM parameter ρ = 10τg . The
ean BRF results over 20 different runs of the NAILS algorithm
btained for different values of τg are reported in Fig. 5, along
ith the resulting mean model order obtained. From the figure,
ne can see that nx = 3 is a good candidate model order to
rovide the best BRF on test data.

.5. RNN training with smooth non-quadratic loss

To test the effectiveness of the proposed approach in han-
ling non-quadratic strongly convex and smooth loss terms, we
onsider 2000 input/output pairs generated by the following non-
inear system with binary outputs

(k+ 1) =
[

.8 .2 −.1
0 .9 .1
.1 −.1 .7

]
diag(x(k))(0.9+ 0.1 sin(x(k)))

+

[
−1
.5
1

]
u(k)(1− u3(k))+ ξ (k)

y(k) =

{
1 if

[
−2
1.5
0.5

]′
(x(k)+ 1

3x
3(k))− 4+ ζ (k) ≥ 0

0 otherwise

rom x(0) = 0, with the values of the input u(k) changed with
0% probability from step k to k+1 with a new value drawn from
he uniform distribution on [0, 1]. We consider independent noise
ignals ξi(k), ζ (k) ∼ N (0, σ 2

n ), i = 1, 2, 3, for different values
f the standard deviation σn. The first N = 1000 samples are
sed for training, and the rest for testing the model. NAILS and
AILM are used to train a RNN model (1) with no feedthrough,
ne hidden layer (Lx = Ly = 2) with 5 neurons and hyperbolic-
angent activation function, and sigmoid output function f y2 (y) =
/(1 + e−A

y
2[x
′(k) u(k)]′−by2 ). The resulting model-parameter vectors

x ∈ R43 and θy ∈ R26 are trained using the modified cross-
ntropy loss ℓ(y(k), ŷ) =

∑ny
−y (k) log(ϵ+ŷ )−(1−y (k)) log(1+
i=1 i i i

8

Table 5
Nonlinear system with binary outputs: mean final accuracy (%) (standard
deviation) over 20 runs on training and test data.
σn Accuracy (%) Accuracy (%)

Training data Test data

0.00 NAILS 99.16 (0.6) 96.87 (1.0)
NAILM 99.30 (1.0) 96.66 (1.3)

0.05 NAILS 98.45 (0.7) 94.53 (1.2)
NAILM 98.13 (0.3) 94.73 (1.9)

0.20 NAILS 86.03 (4.1) 83.32 (5.5)
NAILM 86.33 (1.5) 85.52 (1.7)

ϵ − ŷi) (Bemporad, 2023), where ŷ = fy(xk, θy) and ϵ = 10−4,
quadratic regularization with ρx = 0.1, ρθ = 0.01, optimality
tolerance ϵV = 10−6, parameters c1 = 10−4, σ = 0.5, Nσ = 10
(NAILS), and λ0 = 100, c2 = 1.5, c3 = 5, Nλ = 30 (NAILM), for
maximum NADMM = 150 epochs.

Table 5 shows the final accuracy (%) achieved on training and
test data for different levels σn of noise, averaged over 20 runs
from different initial values of the model parameters. The average
CPU time to converge is 5.2 s (NAILS) and 6.2 s (NAILM).

6. Conclusions

We have proposed a training algorithm for RNNs that is com-
putationally efficient, provides very good quality solutions, and
can handle rather general loss and regularization terms. Although
we assumed that (1) represents a recurrent neural network model
in state-space form, the algorithm is applicable to learn para-
metric models with rather arbitrary structures, including other
black-box state-space models (such as LSTM models), gray-box
(physics-informed) and white-box models, and static models.

Future research will be devoted to further analyzing the con-
vergence properties of the proposed algorithms within the Gen-
eralized Gauss–Newton framework, and to establish conditions
on the ADMM parameter ρ, number of epochs E used when
solving (19a), the model structure to learn, and the regularization
function g that guarantee convergence of the nonconvex ADMM
iterations.
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