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a b s t r a c t

In safety-critical applications that rely on the solution of an optimization problem, the certification of
the optimization algorithm is of vital importance. Certification and suboptimality results are available
for a wide range of optimization algorithms. However, a typical underlying assumption is that the
operations performed by the algorithm are exact, i.e., that there is no numerical error during the
mathematical operations, which is hardly a valid assumption in a real hardware implementation. This
is particularly true in the case of fixed-point hardware, where computational inaccuracies are not
uncommon. This article presents a certification procedure for the proximal gradient method for box-
constrained QP problems implemented in fixed-point arithmetic. The procedure provides a method to
select the minimal fractional precision required to obtain a certain suboptimality bound, indicating the
maximum number of iterations of the optimization method required to obtain it. The procedure makes
use of formal verification methods to provide arbitrarily tight bounds on the suboptimality guarantee.
We apply the proposed certification procedure on the implementation of a non-trivial model predictive
controller on 32-bit fixed-point hardware.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Quadratic programming (QP) problems arise in various areas
f systems engineering and control, such as model predictive
ontrol (MPC), see Rawlings et al. (2017), or reference gover-
ors, see Garone et al. (2017), to name a few. Various practical
ontrol-related applications, such as the ones listed above, require
olving parameter-dependent QP problems at regular intervals on
mbedded hardware, which poses a challenge due to computa-
ional and memory limitations. In recent years there has been a
ignificant advance in this area due to the proposal of efficient
P solvers, some of them for generic QP problems, such as the
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OSQP solver presented in Stellato et al. (2020), and some tailored
to specific problems, such as the solvers proposed in Frison and
Diehl (2020) and Krupa, Limon et al. (2021), which address MPC
optimization problems.

In many practical applications of MPC, such as safety-critical
systems and space applications, the certification of the maximum
number of iterations required by the optimization algorithm and
a guarantee of the suboptimality of its provided solution are
mandatory for real deployment. Most solvers are based on opti-
mization algorithms with well-known convergence and subopti-
mality guarantees. The issue is that these guarantees are typically
derived considering ideal conditions, e.g., under the assumption
that the mathematical operations performed by the algorithm are
error-free; an assumption, however, that is no longer valid when
the optimization algorithm is implemented on hardware. This is
particularly noticeable on fixed-point hardware, where quanti-
zation and round-off errors may lead to significant differences
with respect to the ‘‘exact’’ counterpart. The magnitude of this
difference depends on the number of fractional bits, which must
be selected large enough to provide the required guarantees.

In linear-time-invariant (LTI) MPC, the use of explicit MPC (Be-
mporad, 2021) instead of an iterative solver provides a direct
certification of the computation time. However, explicit MPC may
require a considerable amount of memory to implement and is
only applicable to LTI systems (Bemporad, 2021).
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In Patrinos et al. (2015), the authors present a dual gradient-
projection algorithm for MPC tailored to fixed-point arithmetics.
The authors present convergence guarantees and concrete guide-
lines for selecting the fractional precision to obtain the required
suboptimality tolerance. The analysis is done using the notion
of the inexact oracle from Devolder et al. (2014), which presents
a generic framework for analyzing first-order optimization al-
gorithms in which the oracle provides inexact information. This
framework can be used to derive convergence rates when inexact
gradient information is available by considering the maximum er-
ror when computing the gradient. It has, however, two downsides
when applied to fixed-point arithmetic. The first is that it only
considers errors in the gradient information, i.e., it considers the
other operations performed by the algorithm to be exact, which
may not always be the case in fixed-point precision. Second,
the convergence results are presented in terms of the average
of the iterates of the algorithm (instead of with respect to the
current iterate), whose value is not generally available in fixed-
point arithmetic, since its computation requires dividing by the
current number of iterations.

Another approach for analyzing the error propagation is to
use affine arithmetic (Fang et al., 2003; Vakili et al., 2013). This
framework provides less conservative error bounds than simply
considering the worst-case error due to how it handles error
propagation in affine operations (addition, subtraction and mul-
tiplication by a constant), although the error bounds are still
conservative in the presence of multiplications between vari-
ables. The bounds can be improved by taking a probabilistic
approach, as proposed in Fang et al. (2003), at the expense of
no longer having a guaranteed certification. This framework was
used in Nadales et al. (2022) to certify the minimum number of
fractional bits required to satisfy the desired error bound when
performing Lipschitz interpolation for data-driven learning-based
control. In this case a tight certification could be proposed due to
the simplicity of the algorithm, which only required affine oper-
ations. However, its application to iterative convex optimization
algorithms would provide conservative results, due, precisely, to
their iterative nature along with the presence of multiplications.

Finally, formal verification methods have been used, for ex-
ample, to synthesize Lyapunov functions (Ahmed et al., 2020)
or to certify the Ellipsoid method (Cohen et al., 2020), includ-
ing floating-point arithmetic considerations. Simić et al. (2022)
proposed a non-conservative formal verification approach for an-
alyzing error propagation in fixed-point arithmetic. The technique
allows to check arbitrarily tight error bounds via a bit-vector
encoding into integer arithmetics and then into propositional sat-
isfiability, which allows to use mature SAT-based technology. The
authors use their procedure to calculate accurate error bounds
on a first-order optimization algorithm up to a given number of
iterations. However, due to the bit-precise encoding the compu-
tational cost of the analysis becomes prohibitive after only a few
iterations, even for small optimization problems; this is an issue
since first-order methods may require a significant number of
iterations to converge.

In this article we analyze the implementation of the proximal
gradient method (PGM) (Parikh & Boyd, 2013) under fixed-point
arithmetic applied to strongly convex QP problems with box
constraints; a choice motivated by its simplicity but practical
relevance and by its linear convergence guarantees under exact
arithmetic. We provide convergence guarantees in terms of the
maximum number of iterations of the algorithm as well as sub-
optimality guarantees of its output. Our certificate is based on
the formal verification procedure presented in Simić et al. (2022),
which we use to derive arbitrarily tight bounds on the quantities
that determine the convergence and suboptimality guarantees.

The proposed approach provides a procedure for selecting the

2

minimum fractional precision required to guarantee the given
suboptimality and computation-time specifications. Notably, the
important difference with respect to Simić et al. (2022) is that the
verification only needs to analyze a single iteration of the PGM,
thus remaining tractable for a wider range of problems. The main
features of our approach are:
(i) The suboptimality guarantees are provided in terms of the
output of the algorithm, instead of for the averaged iterates used
in Patrinos et al. (2015).
(ii) The bounds that determine the suboptimality guarantees are
obtained using the formal verification procedure from Simić et al.
(2022), which allows us to provide a non-conservative error-
bound of the gradient computation, in that the exact maximum
error committed in the computation of the gradient can be ap-
proximated to an arbitrarily large precision.
(iii) The certification results are formal guarantees, instead of
the probabilistic ones that would be obtained using probabilis-
tic affine arithmetic (Fang et al., 2003) or Monte Carlo analy-
sis (Saracco et al., 2012).
We present the application of our approach on a non-trivial MPC
problem implemented using 32-bit fixed-point arithmetic.

Notation: Given two vectors x, y ∈ Rn, x ≤ (≥) y denotes
componentwise inequalities and ⟨x, y⟩ is their standard inner
product. The standard Euclidean norm of a vector x ∈ Rn is
denoted by ∥x∥ .=

√
⟨x, x⟩. The closed ball of radius r ≥ 0 in Rn

is defined as the set Bn
r
.
= {x ∈ Rn

: ∥x∥ ≤ r}. The indicator
function of a set C is denoted by IC , i.e., IC(x) = 0 if x ∈ C
and IC(x) = ∞ if x ̸∈ C. The subdifferential of a function f is
denoted by ∂ f . We denote by R+ the set of strictly positive real
numbers. We denote by Rn

(p.q) ⊂ Rn the set of vectors whose
integer and fractional parts are representable using p and q binary
digits, respectively. This notion readily extends to the space of
matrices Rn×m, where Rn×m

(p.q) ⊂ Rn×m represents the space of
matrices whose every element is representable in R(p.q). For any
set C ⊆ Rn, we denote C(p.q) = {x ∈ Rn

(p.q) : x ∈ C}. It is obvious
that x ∈ C(p.q) H⇒ x ∈ C, but not vice-versa. It is also easy to
see that C(p′.q′) ⊆ C(p.q) for any p ≥ p′ and q ≥ q′, and therefore
that x ∈ C(p′.q′) H⇒ x ∈ C(p.q).

2. Exact proximal gradient method

We consider the class of strongly-convex QP problems

min
x∈Rn

1
2
x⊤Qx+ c⊤x

s.t. ℓ ≤ x ≤ u,
(P)

here c, ℓ, u,∈ Rn
(p′.q′), with ℓ ≤ u, and Q ∈ Rn×n

(p′.q′), for some

finite positive p′ and q′. In this article we are interested in finding
suboptimal solution of problem (P), using the proximal gradient
ethod (PGM) (Parikh & Boyd, 2013), for any given realization of

he ingredients of problem (P) satisfying

∈ Q ⊂ Rn×n
(p′.q′), c ∈ {c ∈ Rn

(p′.q′) : cmin ≤ c ≤ cmax}, (1a)

ℓ ∈ {ℓ ∈ Rn
(p′.q′) : ℓmin ≤ ℓ ≤ ℓmax}, (1b)

u ∈ {u ∈ Rn
(p′.q′) : umin ≤ u ≤ umax}, (1c)

here cmin, cmax, ℓmin, ℓmax, umin, umax ∈ Rn
(p′.q′), cmin ≤ cmax,

min ≤ ℓmax, umin ≤ umax, and Q is a compact set. This problem
rises in numerous control-related fields, such as MPC problems
hat can be written in compact form (Richter, 2012); it can also
e applied to a dual setting provided that a compact bound on
he dual variables is available (Patrinos et al., 2015). In par-
icular, we are interested in providing convergence guarantees
hen implementing the PGM in fixed-point arithmetic. To that
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Algorithm 1: PGM applied to (P)∈ P
Input: x0 ∈ X 0, 0 < ρ ≤ L−1

1 For each k = 0, 1, 2, . . . repeat
2 xk+1 ← Tρ(xk) = min{u,max{ℓ, xk − ρ∇f (xk)}}

end, let us start by recalling the classical ‘‘exact’’ PGM, i.e., its
implementation when operating using exact arithmetic.

We denote by P the set of problems (P) whose ingredients
atisfy (1) and ℓ ≤ u. Let X .

= {x ∈ Rn
: ℓ ≤ x ≤ u}, f : Rn

→ R
e given by f (x) = 1

2x
⊤Qx + c⊤x, x∗ ∈ Rn be the optimal

solution of problem (P) and f ∗ its optimal value, i.e., f ∗ = f (x∗).
Let L, σ ∈ R+ be the largest and smallest smoothness and strong
convexity parameters of f for any realization of (P)∈ P, i.e., the
calars for which the well-known inequalities

(x) ≤ f (y)+ ⟨∇f (y), x− y⟩ +
L
2
∥x− y∥2,

(x) ≥ f (y)+ ⟨∇f (y), x− y⟩ +
σ

2
∥x− y∥2,

re satisfied ∀x, y ∈ Rn for any given (P)∈ P.
Algorithm 1 shows the PGM applied to a realization of problem

P)∈ P, where the min and max operators are taken compo-
entwise and 0 < ρ ≤ L−1. It generates a sequence {xk} ∈ X

starting at an initial point x0 ∈ X 0, where X 0
⊆ X is the set

of possible initial guesses. Step 2 of the algorithm performs the
operator Tρ : X → X given by

Tρ(x)
.
= argmin

y∈X

1
2
∥y− (x− ρ∇f (x))∥2 ,

hich, when particularized to problem (P), is the evaluation of
he proximal operator (Parikh & Boyd, 2013) at x− ρ∇f (x). Oper-
tor Tρ in this setting can also be viewed as the evaluation of the
omposite gradient mapping (Nesterov, 2013, §2). Furthermore,
lgorithm 1 is equivalent in this case to the projected gradient
ethod (Parikh & Boyd, 2013, §4,2).
The following theorem recalls the linear convergence of Algo-

ithm 1 when working under ‘‘exact’’ arithmetic. In the following
ection we will derive a similar result when operating under
ixed-point arithmetic.

heorem 1 (Theorem 10.29 From Beck (2017)). Let {xk} be the
equence generated by Algorithm 1 starting at x0 ∈ X 0 applied to
P)∈ P. Then,

(i) ∥xk − x∗∥2 ≤ (1− ρσ)k ∥x0 − x∗∥2, ∀k ≥ 0,

(ii) f (xk)− f ∗ ≤
1
2ρ

(1− ρσ)k ∥x0 − x∗∥2, ∀k ≥ 1.

. Proximal gradient method in fixed-point arithmetic

The maximum number of iterations of Algorithm 1 required to
uarantee a given suboptimality can be certified using Theorem 1.
ndeed, an immediate result of Theorem 1 is that ∥xk − x∗∥2 ≤ ϵ,
or a given ϵ ∈ R+, is satisfied for every iteration k satisfying

≥

log
(

ϵ

∥x0 − x∗∥2

)
log(1− ρσ )

. (2)

We are now interested in providing an iteration and subop-
timality certification when Algorithm 1 is implemented using
fixed-point arithmetic. Therefore, let us consider Algorithm 1
when working under fixed-point arithmetic for some predeter-
mined choice of integer and fractional precision (p.q) satisfying
≥ p′ and q ≥ q′, where we recall that (p′.q′) is the precision
 e

3

Algorithm 2: PGM applied to (P)∈ P under fixed-point
arithmetic with precision (p.q)

Input: x̂0 ∈ X̂ 0
(p.q), 0 < ρ ≤ L−1, ϵ̂ ∈ R+(p.q), kmax ∈ R+

1 For each k = 0, 1, 2, . . . repeat
2 x̂k+1 ← min{u,max{ℓ, x̂k − ĝρ(x̂k)}}
3 until d̂2(x̂k) < ϵ̂ or k ≥ kmax

under which the ingredients of (P) are representable. Under this
paradigm, we can view the implementation of the PGM algo-
rithm as performing an inexact proximal operator, where the
source of inexactness is due to the fixed-point arithmetic and
representation of variables.

Algorithm 2 shows the implementation of Algorithm 1 under
fixed-point arithmetic. It generates a sequence of iterates {x̂k} ∈

(p.q) starting from an initial point x̂0 ∈ X̂ 0
(p.q) ⊆ X (p.q). Step 2

evaluates the operator ĝρ : X (p.q) → X (p.q), which is defined as the
operator that performs the computation of ρ∇f (·) in the fixed-
point paradigm. That is, ĝρ(x̂k) returns the result of the evaluation
of ρ∇f (x̂k) when performed under fixed-point arithmetic. Thus,
ρ ∈ R+(p.q) is an obvious requirement of Algorithm 2. Addi-
tionally, the algorithm includes an exit condition given by the
satisfaction of the condition d̂2(x̂k) < ϵ̂, where d̂2 : X (p.q) →

R+(p.q) ∪ {0} is the operator that performs the computation of
∥x̂k+1− x̂k∥2 in fixed-point arithmetic. This exit condition plays a
key role in the suboptimality guarantees provided in this section.

The value of ĝρ(x̂k) will generally differ from the exact value
of the expression ρ∇f (x̂k) due to the arithmetic errors that occur
when using fixed-point arithmetic, thus leading to the source of
discrepancy between the sequences generated by Algorithms 1
and 2. The magnitude of this discrepancy, which we formalize in
the following definition, will depend on the value of the fractional
precision q, with higher values of q obviously leading to smaller
errors.

Definition 1. Given a choice of q, we denote by Ω ∈ R+ a scalar
satisfying ∥ρ∇f (x̂)− ĝρ(x̂)∥ ≤ Ω , ∀x̂ ∈ X (p.q), ∀ (P) ∈ P.

The rest of the operations in Step 2 of Algorithm 2 do not incur
any additional error, as formally stated in the following lemma,
so they do not contribute towards the discrepancy between the
‘‘exact’’ and ‘‘fixed-point’’ implementations.

Lemma 1. Let v, v, x̂, ŷ ∈ Rn
(p.q), with v ≤ v, and consider the

set C .
= {v ∈ Rn

: v ≤ v ≤ v}. Then, the result of the fixed-point
computations min{v, max{v, x̂+ ŷ}} performed with any precision
p̂.q̂) satisfying p̂ ≥ p and q̂ ≥ q is the exact Euclidean projection of
ˆ + ŷ onto C if x̂+ ŷ does not result in an overflow.

The proof of the lemma is omitted because the claim is a direct
esult of the fact that the min, max and addition operations do not
ncur in any error under fixed-point arithmetic as long as there is
o overflow in the addition.

orollary 1. Variable x̂k+1 obtained from Step 2 of Algorithm 2 is
he exact Euclidean projection of x̂k−ĝρ(x̂k) onto X , assuming that no
verflow occurs during the computations. Therefore, x̂k ∈ X (p.q) ⊂ X ,
k ≥ 0.

The reader will note that Lemma 1 is only applicable to Al-
orithm 2 as long as there is no overflow during its execution,
.e., if the integer precision p is large enough. The certification
ool presented in Section 4 can be used to compute the minimum
alue of p required to avoid overflow. Thus, we henceforth simply
onsider that p is chosen so that no overflow occurs during the
xecution of Algorithm 2.
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Another useful consequence of Lemma 1 is presented in the
following lemma, which states that a scalar Ω satisfying Defini-
tion 1 also bounds the error in the computation of x̂k+1.

Lemma 2. Consider Algorithm 2 and let Ω satisfy Definition 1.
Then, ∥x̂k+1 − Tρ(x̂k)∥ ≤ Ω , ∀x̂k ∈ X (p.q), ∀ (P) ∈ P.

Proof. The claim is a direct consequence of Corollary 1 and the
fact that the projection operator to non-empty closed convex sets
is non-expansive (Ryu & Boyd, 2016, §3.1). ■

We now present the main result of this section, where we
characterize the local linear convergence of Algorithm 2, in terms
of the error-bound Ω , when sufficiently far away from the opti-
mal solution.

Theorem 2. Let {x̂k} be the sequence generated by Algorithm 2
applied to a realization of problem (P)∈ P with starting point
x̂0 ∈ X̂ 0

(p.q) and taking 0 < ρ ≤ L−1, ρ ∈ R(p.q). Choose ϵ ∈ R+
satisfying ϵρσ > 4Ω , where Ω ∈ R+ is given by Definition 1. Then,
as long as ∥x̂k+1 − x∗∥ ≥

ϵ

2
, the sequence {x̂k} satisfies:

(i) ∥x̂k − x∗∥2 ≤
(

1− ρσ
1− 4Ωϵ−1

)k

∥x̂0 − x∗∥2, ∀k ≥ 0.

(ii) f (x̂k)−f ∗ ≤
1−4Ωϵ−1

2ρ

(
1− ρσ

1−4Ωϵ−1

)k

∥x̂0 − x∗∥2, ∀k ≥ 1.

Proof. See the Appendix. ■

Theorem 2 provides a linear convergence result similar to the
one shown in Theorem 1, but where the convergence constant
degrades by the factor (1−4Ωϵ−1). That is, the convergence guar-
antee worsens as Ω increases and as the desired suboptimality
tolerance ϵ decreases. Since the theorem only holds as long as
∥x̂k+1 − x∗∥ ≥

ϵ

2
, we need to be able to check the satisfaction of

this condition during the execution of Algorithm 2.

Lemma 3. ∥x̂− Tρ(x̂)∥ ≤ 2∥x̂− x∗∥, ∀x̂ ∈ X .

Proof. From (Alamo et al., 2019, Property 1.(i)), particularized to
our problem formulation and notation, we have that

f (Tρ(x̂))− f ∗ ≤ ρ−1⟨x̂− Tρ(x̂), x̂− x∗⟩ −
1
2ρ
∥x̂− Tρ(x̂)∥2,

which along with f (Tρ(x̂))− f ∗ ≥ 0, leads to

1
2
∥x̂− Tρ(x̂)∥2 ≤ ⟨x̂− Tρ(x̂), x̂− x∗⟩ ≤ ∥x̂− Tρ(x̂)∥ · ∥x̂− x∗∥

by making use of the Cauchy–Schwarz inequality. ■

The previous lemma allows us to guarantee that the condition
∥x̂k− x∗∥ ≥

ϵ

2
in Theorem 2 holds for the iterates of Algorithm 2

as long as we can guarantee that ∥x̂k−Tρ(x̂k)∥ ≥ ϵ. The following
assumption allows us to use the exit condition of Algorithm 2 as
a means to guarantee that the condition ∥x̂k−x∗∥ ≥

ϵ

2
is satisfied

t iteration k.

ssumption 1. The exit tolerance ϵ̂ of Algorithm 2 satisfies
ˆ2(x̂k) ≥ ϵ̂ H⇒ ∥x̂k − Tρ(x̂k)∥2 ≥ ϵ2.

In the following section we present a tractable procedure for
ertifying the satisfaction of this assumption. In practice, we find
hat one can choose ϵ so that the smallest value of ϵ̂ satisfying
4

Assumption 1 is the smallest positive representable number in
precision q, i.e., 2−q. In this case the exit condition of Algorithm
2 becomes d̂2(x̂k) = 0.

Under Assumption 1, the convergence guarantee provided in
Theorem 2 holds as long as the exit condition d̂2(x̂k) < ϵ̂ is not
satisfied. If it is satisfied at some iteration k, then the convergence
guarantee provided by Theorem 2 is only guaranteed to hold until
iteration k−1. The following theorem provides the suboptimality
guarantees of Algorithm 2 when the exit condition is satisfied at
some iteration k. The result makes use of the bounds provided
in the following definition. The following section will provide
computationally tractable procedures for computing arbitrarily
tight values of said bounds.

Definition 2. Consider Algorithm 2. For a given choice of frac-
tional precision q and tolerance ϵ̂, we denote by δ, ω,Θ ∈ R+ the
scalars satisfying

∥x̂k − Tρ(x̂k)∥ ≤ δ, ∥x̂k+1 − Tρ(x̂k)∥ ≤ ω, ∥x̂k − x̂k+1∥ ≤ Θ

for all x̂k ∈ X (p.q) satisfying d̂2(x̂k) < ϵ̂, ∀ (P) ∈ P.

Theorem 3. Let {x̂k} be the sequence generated by Algorithm 2
applied to a realization of problem (P)∈ P with starting point
x̂0 ∈ X̂ 0

(p.q) and taking 0 < ρ ≤ L−1, ρ ∈ R(p.q). Denote
T .
= σ−1(ρ−1 + L). Then, if d̂2(x̂k) < ϵ̂,

(i) ∥x̂k+1 − x∗∥ ≤ ω + δT ,

(ii) f (x̂k+1)− f ∗ ≤ ρ−1
(
(Θ +Ω)(ω + δT )+

1
2
Θ2

)
.

Proof. From (Nesterov, 2013, Lemma 3), particularized to our no-
tation, we have that ∥x̂k−Tρ(x̂k)∥ ≥ T−1∥Tρ(x̂k)−x∗∥, which leads
o ∥x̂k − Tρ(x̂k)∥ ≤ δ H⇒ ∥Tρ(x̂k) − x∗∥ ≤ Tδ. Claim (i) follows
from adding the previous inequality with ∥x̂k+1 − Tρ(x̂k)∥ ≤ ω

and applying the triangle inequality. By the same procedure, we
also derive ∥x̂k − x∗∥ ≤ δ(T + 1). Claim (ii) then follows from
particularizing Lemma 5.(i) to y = x∗, using the Cauchy–Schwarz
inequality and then taking the previous inequalities along with
the inequalities presented in Definitions 1 and 2. ■

The following corollary gathers the guarantees that are ob-
tained from Algorithm 2 in terms of the error-bounds and tol-
erances presented throughout this section.

Corollary 2 (Suboptimality Guarantee of Algorithm 2). Let kmax ≥

log
(
ϵ2

4D

)
/ log(C), where C .

=
1−ρσ

1−4Ωϵ−1
and D satisfies D ≥

maxx̂∈X̂ 0(p.q)
∥x̂− x∗∥2. The following hold:

(i) If d̂2(x̂k) ≥ ϵ̂ for all k = {0, . . . kmax}, then

∥x̂kmax − x∗∥ ≤
ϵ

2
and f (x̂kmax )− f ∗ ≤

(ϵ2 − 4Ωϵ)
8ρ

.

(ii) If d̂2(x̂k) < ϵ̂ then ∥x̂k+1 − x∗∥ ≤ ω + δT and

f (x̂k+1)− f ∗ ≤ ρ−1
(
(Θ +Ω)(ω + δT )+

1
2
Θ2

)
.

emark 1. From Lemma 2 we have that the bound ω from
efinition 2 can be substituted by Ω from Definition 1. We find
hat for high fractional precision there can be an insignificant
ifference between the two quantities, thus not meriting the
dditional computation time required to compute ω.
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Algorithm 3: Example of input algorithm for formal
verification

Parameters: (p.q), b ∈ R(p.q), â ∈ R+, ξ ∈ R, χ ∈ R+
Non-deterministic: a ∈ A = {a ∈ Rm

: ||a||∞ ≤ â}
1 r = ⟨a, a⟩
2 µ = br
3 if |err(r)| > χ then FAIL
4 if exact(µ) < ξ then FAIL

4. Obtaining error-bounds for Algorithm 1

This section presents procedures for obtaining arbitrarily tight
alues of the bounds Ω , δ, ω and Θ introduced in Definitions 1
nd 2 as well as a procedure for checking the satisfaction of
ssumption 1. The procedures consist on the application of the
ormal verification procedure presented in Simić et al. (2022) to
heck the conditions provided in the definitions and assumption.
e first introduce the formal analysis technique for fixed-point

rithmetic, and then show how it fits within our certification
rocess.

.1. Formal verification for fixed-point arithmetic

Simić et al. (2022) consider the problem of estimating the
umerical accuracy of algorithms in fixed-point arithmetic with
ariables of arbitrary precision and possibly non-deterministic
alues. The idea is to re-compute in a greater precision the result
f each fixed-point operation, so that the numerical error can
e estimated based on the difference between the two values;
t the same time, the different errors are in turn accounted for
nd propagated through the re-computations. When sufficient
recision is used to store the re-computed values, this yields
n accurate error tracking for each variable at any point of the
omputation. The techniques relies on a bit-precise encoding
o transform the sequences of operations under analysis into
perations in integer arithmetic over vectors of bits; these are in
urn encoded as a SAT formula that is satisfiable if and only if the
lgorithm under analysis exceeds a given bound on the numerical
rror. The technique is quite accurate in that it allows to formally
erify arbitrarily tight bounds on the numerical error up to a
iven number of iterations. On the other hand, the required
rogram unfolding pass along with the bit-vector encoding ends
p introducing considerable overhead; the analysis can become
uickly intractable, even for small problems and a few iterations.
e note that this is not a problem in our case, as the algorithms

hat we need to analyze have been formulated so as to only
equire a single iteration.

We now provide an illustrative example to introduce the con-
epts and notation relevant to this article. Consider Algorithm 3
orking under a given fixed-point precision (p.q), where r is
fixed-point variable, exact{r} is its ‘‘exact’’ counterpart and
rr{r} is its error, i.e., exact{r} = r + err{r}. The same
pplies for the other variables, such as µ, whose exact value will
enerally differ from its value computed in fixed-point arithmetic
ue to the multiplication operations. The error of r is propagated
hen computing the error of µ, i.e., exact{µ} will contain the
alue of ⟨a, a⟩. We can perform assessments on the fixed-point
ariables, their errors and their exact values (as shown in Steps 3
nd 4) for all possible values of the non-deterministic inputs
variable a in this case). If all the assessments are satisfied for
ll possible values of the non-deterministic variables then the
rocedure will return a PASS. Otherwise, it will return a FAIL.
5

Algorithm 4: Algorithm for asserting Assumption 1

Parameters: (p.q), ϵ̂, ϵ2
Non-deterministic: x̂0 ∈ X (p.q), (P)∈ P

1 x̂k+1 ← min{u,max{ℓ, x̂k − ĝρ(x̂k)}}
2 d← ⟨x̂k − x̂k+1, x̂k − x̂k+1⟩
3 if d ≥ ϵ̂ and exact{d} < ϵ2 then FAIL

Algorithm 5: Algorithm for deriving Ω

Parameters: (p.q), Ω2

Non-deterministic: x̂0 ∈ X (p.q), (P)∈ P
1 ĝ ← ρ(Q x̂0 + c)
2 e← err{ĝ}
3 v← ⟨e, e⟩
4 if exact{v} > Ω2 then FAIL

Algorithm 6: Algorithm for deriving Definition 2 bounds

Select: b ∈ {δ2, ω2,Θ2
}

Parameters: (p.q), ϵ̂
Non-deterministic: x̂0 ∈ X (p.q), (P)∈ P

1 x̂k+1 ← min{u,max{ℓ, x̂k − ĝρ(x̂k)}}
2 if ⟨x̂k − x̂k+1, x̂k − x̂k+1⟩ < ϵ̂ then
3 switch b do
4 case δ2 do s← x̂k − x̂k+1

5 case ω2 do s← err{x̂k+1}
6 case Θ2 do
7 err{x̂k+1} ← 0
8 s← x̂k − x̂k+1

9 end case
10 end switch
11 end if
12 v← ⟨s, s⟩
13 if exact{v} > b then FAIL

Example 1. We run the verification procedure presented in Simić
et al. (2022) on Algorithm 3 with p = 8, q = 8, m = 20,
ˆ = 0.125, b = 1.5, ξ = 0, and χ = 0.069580078125. We
btain a PASS, that is, there is no value of a inside the box
efined by â for which the assertions stated in Steps 3 and 4 of
lgorithm 3 are violated. The result of this example highlights
ne of the main benefit of this procedure, which is the bound
= 0.069580078125. Variable r is the inner product of a by

tself. As stated in Patrinos et al. (2015), the standard theoretical
ound for the maximum error committed by an inner product
s given by err(⟨a, a⟩) ≤ 2−qm, which is equal to 0.078125
for the values of q and m in this example. However, the formal
verification procedure has found that this theoretical bound can
be improved to err(⟨a, a⟩) = 0.069580078125, which is a 12.28%
improvement. That is, the procedure may lead to tighter bounds
on the errors committed by the fixed-point algorithm than the
ones obtained by simply evaluating its execution under the the-
oretical worst-case scenario. The procedure finishes after ∼ 5s
using a standard machine with an Intel i5 processor.

4.2. Verification procedure for Algorithm 2

The application of the verification tool presented in the pre-
vious subsection to Algorithm 4 certifies if the given ϵ̂ and ϵ2
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Table 1
Bounds obtained from the verification procedures for the three-mass–spring case study.
Bound b Value b2 Tol. # P/F Av. PASS time [s] Av. FAIL time [s] Total time [s]

Ω 1.711 · 10−6 2−2q 10−14 4/8 218.1 982.8 8738.8
ϵ 6.8949 · 10−4 (4Ω/(ρσ ))2 10−9 11/4 73.8 75.2 1117.4
δ 1.383 · 10−3 2−q 10−9 10/4 84.7 90.8 1215.0
Θ 1.381 · 10−3 δ2 10−9 3/8 12.1 28.3 266.6
satisfy Assumption 1. Its application to Algorithms 5 certifies
if the provided value of Ω satisfies the condition presented in
Definition 1. A PASS indicates that the given Ω2 satisfies the
ondition ∥Tρ(x̂k) − x̂k+1∥2 ≤ Ω2, ∀x̂k ∈ X (p.q), ∀ (P) ∈ P,
hereas a FAIL indicates that there is at least one combination
f x̂k ∈ X (p.q) and (P)∈ P for which the condition is not satisfied.
ote that the condition is asserted with respect to Ω2, since
he verification tool does not allow the use of the square-root
peration. Similarly, for a given value of ϵ̂, Algorithm 6 is used
o certify if the bounds δ, ω or Θ satisfy the conditions presented
n Definition 2. Arbitrarily tight values of Ω , δ, ω or Θ can be
btained by applying the bisection method to Algorithms 5 and 6.
ote that Algorithms 4, 5 and 6 only execute a single iteration of
lgorithm 2. Thus, the proposed verification procedure remains
ractable for moderately-sized problems, in contrast with the
pproach taken in Simić et al. (2022).

emark 2. The verification tool from Simić et al. (2022) can be
onfigured to return a FAIL in the event of a numerical overflow.
hus, we can verify that no overflow occurs in Algorithm 2 for a
iven choice of the integer precision p if the tool does not fail due
o an overflow when applied to Algorithm 4.

. Numerical case study

We apply the verification procedures presented in the pre-
ious section to certify the fixed-point implementation of the
GM to solve the optimization problem of a linear MPC controller
or a discrete-time, time-invariant system given by a state-space
odel x̃(t) = Ax̃(t) + Bũ(t), where x̃(t) ∈ Rnx and ũ(t) ∈ Rnu are

the state and control input at sample time t .
In particular, we consider the system of three masses con-

nected by springs presented in Krupa, Jaouani et al. (2021, §3),
where we take the mass all three objects equal to 1kg and the
spring constants as 1 N/m. The 6-dimensional system state is
given by the position and velocity of each of the three objects,
while the control input is given by the two external forces applied
to the outer objects. We take the following MPC formulation:

min
Np−1∑
i=0

(
∥x̃i−x̃r∥2Wx

+∥ũi−ũr∥
2
Wu

)
+ ∥x̃Np − x̃r∥2P (3a)

s.t. x̃0 = x̃(t) (3b)

x̃i+1 = Ax̃i + Bũi, ∀i ∈ ZNp−1
0 (3c)

ũi = ũNc−1, ∀i ∈ ZNp−1
Nc

(3d)

ũ− ≤ ũi ≤ ũ+, ∀i ∈ ZNc−1
0 , (3e)

where Nc ∈ R+ is the control horizon; Np ≥ Nc is the prediction
horizon; Wx, P ∈ Rnx×nx and Wu ∈ Rnu×nu are positive definite;
(xr , ur ) are the state and input references; and ũ−, ũ+ ∈ Rnu

satisfying ũ− ≤ ũ+ define the bounds on the control input. We
take Nc = 2, Np = 5, ũ+ = (0.5, 0.5), ũ− = −ũ+, Wx = 0.5Inx ,
Wu = 0.25Inu and P as the solution of the associated discrete
algebraic Riccati equation. Problem (3) can be transformed into
(P) by eliminating the states and rewriting it in condensed form,
see e.g., Jerez et al. (2011) and Richter (2012), leading to a (nuNc)-
dimensional QP problem. In this case, ingredients Q , ℓ and u of
6

problem (P) are fixed, whereas the value of c will depend on the
value of the reference (xr , ur ) as well as the current state x̃(t).
We compute cmin and cmax by assuming that the position of the
objects belong to the interval [−0.5, 0.5] m and the velocities
to [−1, 1] m/s. A non-deterministic Q would be taken if we
allowed the possibility of changing the weight Wu online or if we
considered a time-varying model of the system.

We now certify the PGM applied to the resulting condensed
MPC problem when implemented in fixed-point arithmetic on a
32-bit device, where we take p = 10 for the integer precision
and q = 21 for the fractional precision (the remaining bit is used
for storing the sign). We store the matrices of the QP problem in
the selected precision. The resulting problem has L = 4.9645 and
σ = 0.3532. We take ρ as the largest number representable in
R(p.q) that satisfies ρ ≤ 1/L.

In our formal verification procedure we used the prototype
tool of Simić et al. (2022) for generating the bit-vector encoding,
CBMC 5.4 (Clarke et al., 2004) for generating the SAT formula from
the bit-vector encoding and MiniSat (Eén & Sörensson, 2004) to
check for the satisfiability of the SAT formula. All computations
are performed on an Intel i5 processor running at 1.6 GHz. We
start by computing the value of Ω by selecting an initial value of
Ω2 and then applying the bisection method on the verification of
Algorithm 5 with an exit tolerance of 10−14, i.e., until the differ-
ence between the largest and smallest values of Ω2 resulting in
a FAIL and a PASS, respectively, is smaller than 10−14. Table 1
shows the value of Ω obtained from this procedure, along with
the selected exit tolerance, initial guess of Ω2, number of tests
resulting in a PASS, number of tests resulting in a FAIL, average
computation times of calls resulting in a PASS or FAIL, and total
computation time of the bisection method. We take ϵ̂ = 2−q,
which is the smallest value it can take, and then find the largest
value of ϵ satisfying Assumption 4 by applying the bisection
method on Algorithm 4. The results are presented in Table 1,
where we note that the value of ϵ satisfies ϵ > 4Ω/(ρσ ) =
9.6195 · 10−5. Therefore, we can use the exit condition d̂2(x̂k) =
0. Finally, we obtain the bounds δ and Θ following the same
bisection procedure used to compute Ω . The results are also
presented in Table 1. We take ω = Ω , as stated in Remark 1.

Plugging the results into Corollary 2.2, we obtain the follow-
ing: kmax = 250, if d̂2(x̂k) = 0 then ∥x̂k+1 − x∗∥ ≤ 0.0389
and f (x̂k+1) − f ∗ ≤ 2.7165 · 10−4, are the best suboptimal-
ity bounds that can be guaranteed, since the ones from Corol-
lary 2.2 are smaller. The value of kmax required to obtain the same
ϵ/2-suboptimality under exact arithmetic is 217, c.f., (2).

6. Conclusions

This article has presented a procedure for certifying the im-
plementation of the PGM under fixed-point arithmetic when ap-
plied to strongly-convex box-constrained QP problems. We have
proven that the PGM maintains a linear convergence guarantee
when sufficiently far away from the optimal solution, indicated
by the choice of ϵ, whose value can be reduced up to a maximum
bound given by the fixed-point error-bound. We have then pre-
sented a procedure based on recent formal verification tools to
obtain a arbitrarily tight values of this error-bound and the other

bounds that characterize the suboptimality of the output of the
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GM. Finally, we have shown that the computation times of the
roposed verification procedures are tractable for a non-trivial
PC example.

ppendix. Proofs and auxiliary lemmas

We start by providing two lemmas whose results are used in
he proofs of Theorems 2 and 3.

emma 4. Consider Algorithm 2. For any α ∈ R+,

α
(
x̂k − x̂k+1 − ĝρ(x̂k)

)
∈ ∂IX (x̂k+1), ∀k ≥ 0.

roof. The claim follows from x̂k+1 being the Euclidean pro-
ection of x̂k − ĝρ(x̂k) onto X (see Corollary 1) along with the
ptimality condition of the projection operator (Bertsekas, 2009,
rop. 5.4.7) and the equivalence between the subdifferential of
he indicator function of a non-empty convex set and its normal
one (Bertsekas, 2009, Example 5.4.1). ■

The following lemma particularizes (Alamo et al., 2019, Prop-
rty 1) to the fixed-point PGM paradigm.

emma 5. Consider Algorithm 2 and let vk ∈ Bn
Ω be the vectors that

atisfy ρ∇f (x̂k) = ĝρ(x̂k)+vk for every k ≥ 0. Denote sk .= x̂k−x̂k+1.
hen, ∀y ∈ Rn,

(x̂k+1)− f (y) ≤ ρ−1⟨sk + vk, x̂k+1 − y⟩ +
1
2ρ
∥sk∥2 (i)

= ρ−1⟨sk, x̂k − y⟩ −
1
2ρ
∥sk∥2 + ρ−1⟨vk, x̂k+1 − y⟩ (ii)

=
1
2ρ
∥x̂k − y∥2−

1
2ρ
∥x̂k+1 − y∥2 + ρ−1⟨vk, x̂k+1 − y⟩. (iii)

Proof. From Lemma 4 we have that ρ−1(x̂k − x̂k+1 − ĝρ(x̂k)) ∈
∂IX (x̂k+1). Therefore, from the definition of the subdifferen-
tial (Parikh & Boyd, 2013, §2.3), we have that

IX (y) ≥ IX (x̂k+1)+ ρ−1⟨x̂k − x̂k+1 − ĝρ(x̂k), y− x̂k+1⟩,

where taking y ∈ X and recalling that x̂k+1 ∈ X (see Corollary 1),
leads to

0 ≥ ρ−1⟨x̂k − x̂k+1 − ĝρ(x̂k), y− x̂k+1⟩. (A.4)

From the convexity of f we have that

f (y) ≥ f (x̂k)+ ⟨∇f (x̂k), y− x̂k⟩. (A.5)

Additionally, from the L-smoothness of f and since ρ ≤ L−1, we
have that

f (x̂k) ≥ f (x̂k+1)− ⟨∇f (x̂k), x̂k+1 − x̂k⟩ −
1
2ρ
∥sk∥2. (A.6)

laim (i) follows from adding (A.4), (A.5) and (A.6) along with
he definition of vk. Claims (ii) and (iii) then follow from sim-
le algebraic manipulations; c.f. Property 1.(i) in Alamo et al.
2019). ■

We now present the proof of Theorem 2, which closely follows
he proofs of (Beck, 2017, Theorem 10.16 and Theorem 10.29),
lthough various modifications have to be made to extend the
esults to the fixed-point arithmetic paradigm.

roof of Theorem 2. Let sk .= x̂k+1−x̂k and γ k .
= x̂k−x∗. Consider

the function ψ : X → R given by

ψ(y) = f (x̂k)+ ⟨∇f (x̂k), y− x̂k⟩ + IX (y)+
1
∥y− x̂k∥2.
2ρ
7

Since ψ is an ρ−1-strongly convex function, it follows from (Beck,
2017, Theorem 5.24) that

ψ(y)− ψ(x̂k+1) ≥ ⟨µ, y− x̂k+1⟩ +
1
2ρ
∥y− x̂k+1∥2, (A.7)

x̂k+1 ∈ X (p.q), ∀µ ∈ ∂ψ(x̂k+1). Since ρ ≤ L−1, we have that f (·)
satisfies the well-known descent lemma (Beck, 2017, Lemma 5.7)

f (x̂k+1) ≤ f (x̂k)+ ⟨∇f (x̂k), x̂k+1 − x̂k⟩ +
1
2ρ
∥x̂k+1 − x̂k∥2,

x̂k+1 ∈ X (p.q), ∀y ∈ X , which along with the definition of ψ and
noting that IX (x̂k+1) = 0 by virtue of Corollary 1, leads to

(x̂k+1) = f (x̂k)+ ⟨∇f (x̂k), sk⟩ +
L
2
∥sk∥2 ≥ f (x̂k+1),

∀x̂k+1 ∈ X (p.q). Thus, we can rewrite (A.7) as

ψ(y)− f (x̂k+1) ≥ ⟨µ, y− x̂k+1⟩ +
1
2ρ
∥y− x̂k+1∥2, (A.8)

x̂k+1 ∈ X (p.q),∀µ ∈ ∂ψ(x̂k+1). The subdifferential of ψ evaluated
at x̂k+1 is given by

∂ψ(x̂k+1) = ∇f (x̂k)+ ρ−1(x̂k+1 − x̂k)+ ∂IX (x̂k+1). (A.9)

From Definition 1 we have that for each k ≥ 0 there exists a
ector vk ∈ Bn

Ω satisfying ρ∇f (x̂k) = ĝρ(x̂k) + vk. Therefore, we
an rewrite (A.9) as

ψ(x̂k+1) = ρ−1(vk + ĝρ(x̂k)+ x̂k+1 − x̂k)+ ∂IX (x̂k+1).

rom Lemma 4 we have 0 ∈ ρ−1(ĝρ(x̂k)+ x̂k+1 − x̂k)+ ∂IX (x̂k+1),
thus ρ−1vk ∈ ∂ψ(x̂k+1). This allows us to rewrite (A.8) as

ψ(y)− f (x̂k+1) ≥ ⟨Lvk, y− x̂k+1⟩ +
1
2ρ
∥y− x̂k+1∥2,

∀x̂k+1 ∈ X (p.q), for some vk ∈ Bn
Ω . Undoing the expression of ψ(y)

and particularizing to y = x∗ ∈ X leads to

f (x̂∗)− f (x̂k+1) ≥
1
2ρ
∥γ k+1

∥
2
−

1
2ρ
∥γ k
∥
2
+ f (x̂∗)− f (x̂k)

− ⟨∇f (x̂k), x̂∗ − x̂k⟩ + ρ−1⟨vk, x̂∗ − x̂k+1⟩.

ince f is a σ -strongly convex function, we have that (Beck, 2017,
heorem 5.24.(ii))

(x̂∗)− f (x̂k)− ⟨∇f (x̂k), x̂∗ − x̂k⟩ ≥
σ

2
∥x̂∗ − x̂k∥2.

Thus,

f (x̂∗)− f (x̂k+1) ≥
1
2ρ
∥γ k+1

∥
2
−
ρ−1 − σ

2
∥γ k
∥
2
− ρ−1⟨vk, γ k+1

⟩.

(A.10)

By definition of x̂∗, we have that f (x̂∗) − f (x̂k+1) ≤ 0. Therefore,
the right hand side of (A.10) must also be less or equal to 0, which
leads to
1
2
∥x̂k+1 − x̂∗∥2 ≤

1− ρσ
2
∥x̂k − x̂∗∥2 + ⟨vk, x̂k+1 − x̂∗⟩

(∗)
≤

1− ρσ
2
∥x̂k − x̂∗∥2 + ∥vk∥ · ∥x̂k+1 − x̂∗∥

(∗∗)
≤

1− ρσ
2
∥x̂k − x̂∗∥2 + 2Ωϵ−1∥x̂k+1 − x̂∗∥2,

where in (∗) we are making use of the Cauchy–Schwarz inequality
and in (∗∗) of the fact that ∥vk∥ ≤ Ω and ∥x̂k+1− x̂∗∥ >

ϵ

2
. Since

by construction ρσ ≤ 1, the assumption 4Ωϵ−1 < ρσ implies

2Ωϵ−1 <
1
2
. Thus, we derive

∥x̂k+1 − x̂∗∥2 ≤
(

1− ρσ
−1

)
∥x̂k − x̂∗∥2,
1− 4Ωϵ
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hich leads to claim (i) if applied recursively, where we note that
he assumption 4Ωϵ−1 < ρσ guarantees that the sequence is
onvergent.
We now prove claim (ii) by rearranging (A.10) and proceeding

s follows:

(x̂k+1)−f (x̂∗) ≤
ρ−1 − σ

2
∥γ k
∥
2
−

1
2ρ
∥γ k+1

∥
2
+ ρ−1⟨vk, γ k+1

⟩

≤
ρ−1 − σ

2
∥γ k
∥
2
−

1
2ρ
∥γ k+1

∥
2
+ 2ρ−1Ωϵ−1∥γ k+1

∥
2

≤
ρ−1 − σ

2
∥γ k
∥
2
+ ρ−1

(
2Ωϵ−1 −

1
2

)
∥γ k+1

∥
2

(∗)
≤

1− ρσ
2ρ
∥γ k
∥
2
=

1− 4Ωϵ−1

2ρ

(
1− ρσ

1− 4Ωϵ−1

)
∥γ k
∥
2

(∗∗)
≤

1− 4Ωϵ−1

2ρ

(
1− ρσ

1− 4Ωϵ−1

)k+1

∥x̂0 − x̂∗∥2,

∀x̂k+1 ∈ X (p.q), ∀k ≥ 0, where (∗) holds since 2Ωϵ−1 <
1
2

and
∗∗) follows from claim (i). ■
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