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a b s t r a c t

Risk-averse model predictive control (MPC) offers a control framework that allows one to account for
ambiguity in the knowledge of the underlying probability distribution and unifies stochastic and worst-
case MPC. In this paper we study risk-averse MPC problems for constrained nonlinear Markovian switch-
ing systems using generic cost functions, and derive Lyapunov-type risk-averse stability conditions by
leveraging the properties of risk-averse dynamic programming operators. We propose a controller design
procedure to design risk-averse stabilizing terminal conditions for constrained nonlinear Markovian
switching systems. Lastly, we cast the resulting risk-averse optimal control problem in a favorable form
which can be solved efficiently and thus deems risk-averse MPC suitable for applications.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background and contributions

There exist two main ways to deal with uncertainty in model
predictive control (MPC), namely, the robust and the stochastic ap-
proaches. In robust MPC, modeling errors or disturbances are mod-
eled as unknown-but-bounded quantities and the performance
index is minimized with respect to the worst-case realization
(min–max approach) (Rawlings, Mayne, & Diehl, 2018). However,
suchworst-case events are unlikely to occur in practice and render
robustMPC severely conservative since any statistical information,
typically available from past measurements, is ignored.

On the other hand, in stochastic MPC we assume that the under-
lying uncertainty is a random vector following some probability
distribution (Mesbah, 2016) and minimize the expectation of a
performance index; such formulations are significantly less con-
servative. The driving randomprocess is often taken to be normally
and independently identically distributed (Hokayem, Cinquemani,
Chatterjee, Ramponi, & Lygeros, 2012) or it is assumed that it is a
finiteMarkov process (Patrinos, Sopasakis, Sarimveis, & Bemporad,
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2014) and in scenario-based MPC, filtered probability distributions
are estimated from data (Hans, Sopasakis, Bemporad, Raisch, &
Reincke-Collon, 2015). However, not always can we accurately
estimate a distribution from available data, nor does it remain
constant in time. Stochastic MPC will guarantee mean-square sta-
bility of the closed-loop system only with respect to the nominal
probability distribution, therefore, errors in the estimation of that
distribution may lead to bad performance or even instability.

The theory of risk measures (Shapiro, Dentcheva, & Ruszczyński,
2014) allows to interpolate between these two extreme cases.
Roughly speaking, risk measures quantify the importance and ef-
fect of the right tail of a distribution of losses, that is, the impact
of the occurrence of extreme events. As such they offer a mathe-
matically elegant tool to tackle problems where we seek to avoid
high effect low probability (HELP) events and can be readily used in
various applications.

The first steps to risk-averse formulations can be traced back
to linear–exponential–quadratic Gaussian control (Jacobson, 1973)
and the study of stochastic control problems under inexact knowl-
edge of the underlying probability distribution which is often
termed distributionally robust (Goh & Sim, 2010). Distributionally
robust control methodologies have been proposed for linear sys-
tems with probabilistic constraints assuming knowledge of some
moments of the distribution (Van Parys, Kuhn, Goulart, & Morari,
2016). The same problem was also recently addressed for Markov
decision processeswith uncertain transition probabilities (Yu&Xu,
2016).

Risk-averse MPC formulations for Markov jump linear systems
(MJLS) are studied in Chow and Pavone (2014) and Chow, Singh,
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Majumdar, and Pavone (2017). In Chow and Pavone (2014) the
authors formulate an MPC optimization problem employing a co-
herent risk measure of an uncertain cost as an objective function
and give conditions underwhich theMPC control law is stabilizing,
albeit for a systemwith no state-input constraints. This is extended
in Chow et al. (2017) assuming ellipsoidal state-input constraints.
Building up on these results, we further improve on the state of
the art by studying nonlinear systems and propose a computation-
ally favorable formulation for risk-averse optimization problems
which leads to low computation times.

In the optimization and operations research communities, the
solution of multistage risk-averse optimal control problems has
been considered prohibitive as only bundle and cutting-plane
methods are currently used (Asamov & Ruszczyński, 2015; Bruno,
Ahmed, Shapiro, & Stree, 2016; Collado, Papp, & Ruszczyński,
2012). Reported results are limited to short prediction horizons
and linear stage cost functions. An alternative solution approach
solves the dynamic programming (DP) problem using multipara-
metric piecewise quadratic programming (Patrinos & Sarimveis,
2011), but its applicability is limited to systems with few states
and small prediction horizons (Patrinos & Sarimveis, 2007). In a
2017 paper, Rockafellar proposed an algorithmic scheme for solv-
ing multistage problems using a non-composite (not nested) risk
measure recognizing the difficulty of solving problemswith nested
risk mappings (Rockafellar, 2017). Indeed, the difficulty lies in that
the cost function is written as a series of compositions of typically
nonsmooth operators. In Section 5 we present a computationally
tractable approach for the solution of multistage risk-averse prob-
lems by disentangling this series of compositions. This formulation
renders risk-averse MPC suitable for embedded applications.

In this paper we formulate multistage risk-averse optimal con-
trol problems using Markov risk measures in a DP setting and
derive Lyapunov-type risk-averse stability conditions. We study
risk-averse MPC formulations for nonlinear Markovian switching
systems under generally nonconvex joint state-input constraints
and propose a controller design procedure for nonlinear systems
with smooth dynamics and Lipschitz-continuous gradient. Lastly,
we provide simulation examples to demonstrate the applicability
of the proposed approach.

1.2. Notation

LetR := R∪{+∞} be the set of extended-real numbers,N[k1,k2]

the integers in [k1, k2], for z ∈ Rn let [z]
+

= max{0, z} (where the
max is taken element-wise).We denote by 1n the vector inRn with
all coordinates equal to 1. We denote the sets of n-by-n symmetric
positive definite (semidefinite) matrices as Sn

++
(Sn

+
). For two n-by-

n symmetric matricesM1,M2,M1 ≽ M2 means thatM1 −M2 ∈ Sn
+
.

Wedenote the transpose of amatrixAbyA⊤ and the identitymatrix
by I . For a g : Rn

→ Rm, its Jacobian matrix is the mapping
Jg : Rn

→ Rm×n defined as Jg(x) = (∂gi(x)/∂xj)i,j, provided that the
partial derivatives exist. For ϵ ≥ 0 we define Bϵ = {x | ∥x∥ ≤ ϵ}.
For a set C ⊆ Rn, we define its indicator function as δC (x) = 0 if
x ∈ C and δC (x) = ∞ otherwise. The domain of an extended-real-
valued function f : Rn

→ R is dom f = {x ∈ Rn
| f (x) < ∞}. An

extended-real-valued function f : Rn
→ R is called proper if its

domain is nonempty; it is called lower semi-continuous (lsc) if its
lower level sets are closed. An ℓ : Rn

× Rm
∋ (x, u) ↦→ ℓ(x, u) ∈ R

is called level bounded in u locally uniformly in x if for each x0 ∈ Rn

and α ∈ R, there is a neighborhood Ux0 of x0 along with a bounded
set B ⊆ Rm such that {u | ℓ(x, u) ≤ α} ⊆ B for all x0 ∈ Ux0 . The
effective domain of a set-valuedmapping F : Rn ⇒ Rm is defined as
dom F = {x ∈ Rn

| F (x) ̸= ∅}. For a nonempty set E and a finite set

N we define fcns(E,N ) = {V : E×N → R | V (x, i) ≥ 0, V (0, i) =

0, for all x ∈ E, i ∈ N }.

2. Risk-averse optimal control

2.1. Measuring risk

Let N = N[1,n] be a discrete sample space. A probability
measure thereon can be identified by a probability vector p ∈ Rn

with
∑n

i=1pi = 1, pi ≥ 0 for i ∈ N . Let Z : N → R be a real-valued
random variable on N which represents a random cost; for i ∈ N
let Zi = Z(i). The vector (Zi)i∈N identifies the random variable Z .

The expectation of a random variable Z with respect to the
probability vector p is defined as

Ep[Z] ≡ Ep[Z(i); i] =

∑
i∈N

piZi. (1)

The notation Ep[Z; i] is to emphasize that the expectation is taken
with respect to i.

A risk measure on Rn is a mapping ρ : Rn
→ R. It is called

coherent if it satisfies the following properties (Shapiro et al., 2014,
Sec. 6.3) for Z, Z ′

∈ Rn, α ≥ 0, λ ∈ [0, 1]

A1. Convexity. ρ(λZ + (1 − λ)Z ′) ≤ λρ(Z) + (1 − λ)ρ(Z ′),
A2. Monotonicity. ρ(Z) ≤ ρ(Z ′) whenever Z ≤ Z ′,
A3. Translation equivariance. ρ(c1n + Z) = c + ρ(Z),
A4. Positive homogeneity. ρ(αZ) = αρ(Z).

Trivially, the expectation is a coherent risk measure and so is
the essential maximum essmax[Z] := max{Zi | pi > 0, i ∈ N }.
A popular risk measure is the average value-at-risk, also known as
conditional value-at-risk or expected shortfall, which is defined as

AV@Rα[Z] =

{
min
t∈R

{t + α−1Ep[Z − t]
+
}, α ∈ (0, 1]

essmax(Z), α = 0.

As a result of assumptions A1–A4, coherent risk measures
can be written in the following dual form (Shapiro et al., 2014,
Thm. 6.5)

ρ[Z] = max
µ∈A(p)

Eµ[Z], (2)

where A(p) ⊆ Rn is a compact convex set of probability vectors
containing p which we shall call the ambiguity set of ρ. We may
think of a coherent risk measure as the worst-case expectation
with respect to a probability distribution taken from a set of
probability vectors. We call ρ a polytopic risk measure if A(p)
is a polytope, i.e., it can be described by ρ(Z) = max{µ⊤Z |

1⊤

nµ = 1, F (p)µ ≤ b(p)} for some F (p) ∈ Rq×n and b(p) ∈ Rq.
The expectation, the essential maximum and AV@Rα are polytopic
risk measures. The ambiguity set of AV@Rα for α ∈ [0, 1] is the
polytope Aα(p) = {µ ∈ Rn

|
∑n

i=1µi = 1, µi ≥ 0, αµi ≤ pi}. The
ambiguity set A0(p) is the whole probability simplex. Apparently
AV@Rα is a polytopic risk measure. AV@Rα interpolates between
the risk-neutral expectation operator (AV@R1 = Ep, with A0(p) =

{p}) and the worst-case essential maximum (AV@R0 = essmax).

2.2. Markovian switching systems

In this work we consider Markovian switching systems

xk+1 = f (xk, uk, ik), (3)

driven by the random parameter ik which is a time-homogeneous
Markov chain with values in a finite setN = N[1,n] with transition
matrix P = (pij) ∈ Rn×n, that is P[ik+1 = j | ik = i] = pij
(Costa, Fragoso, &Marques, 2005).We call the states of thisMarkov
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chain, the modes of (3). We denote the cover of each mode by
cov(i) := {j ∈ N | pij > 0}. We assume that at time k we
measure the full state xk and the value of ik. As the probabilistic
information available up to time k is fully described by the pair
(xk, ik), the control actions uk may be decided by a causal control
law uk = κk(xk, ik). This formulation aligns with that of the classic
textbook (Costa et al., 2005), but there exist formulations where ik
is not known at time k and the control law is a function of xk only
(Chow et al., 2017).

Each f (·, ·, i) : Rnx × Rnu → Rnx , i ∈ N , is assumed to be
continuous and satisfy f (0, 0, i) = 0. MJLS are a special case of (3)
with f (x, u, i) = Aix + Biu, i ∈ N . System (3) is subject to the joint
state-input constraints

(xk, uk) ∈ Yik , (4)

andwe shall assume that for all i ∈ N , Yi are nonempty, closed sets
containing the origin.

2.3. Markov risk measures

Consider the space of pairs (i, j) inΩ := N × N equipped with
the σ -algebra F = 2Ω and the probability measure P[{(i, j)}] = pij.
The conditional probability conditioned by the knowledge of i can
be identified with the probability vector Pi — the ith row of P . For
a random variable Z : Ω → R, the conditional expectation of Z
conditioned by i, denoted as Ei[Z; j], is a random variable on N ,
that is N ∋ i ↦→ Ei[Z; j] ∈ R, with

Ei[Z; j] := EPi [Z; j] =

∑
j∈N

pijZ(i, j). (5)

Wemay extend this definition to define conditional variants of risk
measures. Following (5), we give the following definition

Definition 1 (Markov RiskMeasure). Given a coherent riskmeasure
ρ with ambiguity set A and a probability transition matrix P of a
Markov chain, we define the Markov risk measure ρi [Z; j] as

ρi [Z; j] = max
µ∈A(Pi)

∑
j∈N

µjZ(i, j)

Eµ[Z;j]

, (6)

for all random variables Z : Ω → R.

This definition falls into the general framework of Ruszczyński
(2010). This way, with every i we associate the coherent risk
measure ρi [Z; j]. As with the expectation, the notation ρi [Z; j] is
to emphasize that the risk is computed with respect to j.

2.4. Risk-averse optimal control and dynamic programming

Consider a stage cost function ℓ ∈ fcns(Rnx × Rnu ,N ) and a
terminal cost ℓN ∈ fcns(Rnx ,N ). Functions ℓ are extended-real-
valued, therefore, they can encode constraints such as (4) by taking
dom ℓ(·, ·, i) = Yi, i ∈ N . Likewise, ℓN can encode constraints on
the terminal state of the form xN ∈ X f

iN
by taking dom ℓN (·, i) = X f

i ,
i ∈ N , where X f

i contain the origin in their interiors. We may now
introduce the following finite-horizon risk-averse optimal control
problem

minimize
u0

ℓ(x0, u0, i0) + ρi0

[
inf
u1
ℓ(x1, u1, i1)

+ ρi1

[
inf
u2
ℓ(x2, u2, i2) + · · ·

+ ρiN−1 [ℓN (xN , iN ); iN ] · · · ; i2
]
; i1

]
, (7)

where xk+1 = f (xk, uk, ik), for all k ∈ N[0,N−1]. As it will become
evident in what follows, each one of the infima at stage k in (7) is
parametric in xk and ik, that is, the minimization takes place over
causal control laws u0, . . . , uN−1. Note that under assumptions A1
and A2, we may interchange the Markov risk measures with the
infima (Shapiro et al., 2014, Prop. 6.60) leading to risk-averse mul-
tistage formulations discussed in Shapiro et al. (2014, Sec. 6.8.4).

Problem (7) can be described by a DP recursion. Inspired by
Shapiro et al. (2014, Sec. 6.8), for a V ∈ fcns(Rnx ,N ) we define
the DP operator T : fcns(Rnx ,N ) → fcns(Rnx ,N ) so that

(TV )(x, i) = inf
u

{ℓ(x, u, i) + ρi [V (f (x, u, i), j); j]}

= inf
u
ℓ(x, u, i) + max

µ∈A(Pi)

∑
j∈N

µjV (f (x, u, i), j).

Let (SV )(x, i) be the corresponding set of minimizers for the op-
timization problem involved in the definition of (TV )(x, i). This
defines the following DP recursion

V ⋆k+1 = TV ⋆k , (8a)
U
⋆
k+1 = SV ⋆k , (8b)

for k ∈ N[0,N−1] with V ⋆0 (x, i) := ℓN (x, i), i ∈ N . For C = {Ci}i∈N
withCi ⊆ Rnx ,wedefine themode-dependent predecessor operator
R(C) = {Ri(C)}i∈N with Ri(C) = {x ∈ Rnx | ∃u ∈ Rnu , (x, u) ∈

Yi, f (x, u, i) ∈
⋂

j∈cov(i)Cj}. Next, we present some fundamental
properties of the DP operator T.

Proposition 2. If ℓN (·, i) are proper, lsc and ℓ(·, ·, i) are proper, lsc
and level bounded in u locally uniformly in x for all i ∈ N , then for all
i ∈ N : (i) TV ∈ fcns(Rnx ,N ) for V ∈ fcns(Rnx ,N ), (ii) V ⋆k (·, i) are
lsc, (iii) dom V ⋆k (·, i) = domU⋆k(·, i) ̸= ∅, (iv) U⋆k is compact-valued,
(v) dom (V ⋆k+1) = R(dom (V ⋆k )).

Proof. The proof goes along the lines of Patrinos et al.
(2014, Thm. 11a) using (Rockafellar & Wets, 2011, Prop. 1.17,
Prop. 1.26(a)).

We may easily verify the monotonicity property TV ≤ TV ′,
for all V , V ′ with V ≤ V ′, following Bertsekas (2012). An observa-
tion that will prove useful in what follows is that if TℓN ≤ ℓN , then
V ⋆k+1 ≤ V ⋆k . The above risk-averse optimal control problem leads
naturally to the statement of a risk-averse MPC problem where
control actions are computed by a control law κ⋆N (x, i) ∈ U⋆N (x, i). In
Section 3we state an appropriate risk-based notion of stability and
provide conditions on ℓN for the MPC-controlled system xk+1 =

f (xk, κ⋆N (xk, ik), ik) to be stable.

3. Risk-averse stability

Consider the following Markovian switching system which is
controlled by some control law uk = κ(xk, ik)

xk+1 = f κ (xk, ik) := f (xk, κ(xk, ik), ik), (9)

subject to the constraints (xk, ik) ∈ Xκ := {(x, i) | (x, κ(x, i)) ∈ Yi}.
For convenience, we introduce the notation Xκi = {x | (x, κ(x, i)) ∈

Yi}, for i ∈ N . Let i[k] = (i0, i1, . . . , ik) denote an admissible path
of length k of the Markov chain {it}t∈N, that is, it+1 ∈ cov(it ) for
t ∈ N[0,k−1]. For a given initial state x0, the solution of (9) at time k
is denoted as φ(k, x0, i[k−1]).

In order to be able to define risk-based notions of stability,
we must first introduce an appropriate notion of invariance for
Markovian switching systems (Patrinos et al., 2014).

Definition 3 (Uniform Invariance). Let X = {Xi}i∈N be a collection
of nonempty closed subsets of Rnx and Xi ⊆ Xκi . X is called
uniformly invariant (UI) for (9) subject to constraints x ∈ Xκi if
f κ (x, i) ∈

⋂
j∈cov(i)Xj,whenever x ∈ Xi for all i ∈ N .
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For the controlled system (9), the predecessor operator is now
defined as Ri(C) = {x ∈ Xκ | f κ (x, i) ∈

⋂
j∈cov(i)Cj}. We have that C

is UI if and only if Ci ⊆ Ri(C) for all i ∈ N (Patrinos et al., 2014).
Given a coherent risk measure ρ and a random variable ψ

(i0, i1, . . . , ik), let ρ̄1[ψ] = ρi0 [ψ(i0, i1, . . . , ik); i1] and recursively
define ρ̄k = ρ̄k−1 ◦ ρik−1 [·; ik], that is ρ̄k[ψ] = ρi0

[
ρi1

[
· · · ρik−1

[ψ(i0, i1, . . . , ik); ik] · · · ; i2] ; i1] (Shapiro et al., 2014, Sec. 6.8.2).
We may now give the following stability notion (Chow &

Pavone, 2014).

Definition 4 (Risk-square Exponential Stability). We say that the
origin is risk-square exponentially stable (RSES) for system (9) over
a set X = {Xi}i∈N if X is UI and for x0 ∈ Xi0

ρ̄k−1
[
∥φ(k, x0, i[k−1])∥2]

≤ λβk
∥x0∥2,

for all k ∈ N, for some β ∈ [0, 1), λ ≥ 0.

RSES entails that the origin is exponentiallymean-square stable
for system (9) not only for the nominal probability distribution,
but also for those probability distributions in the ambiguity set
of the risk measure. In the unconstrained case, RSES corresponds
to the notion of uniform global risk-sensitive exponential stability
which is defined using the notion of dynamic risk measures (Chow
& Pavone, 2014). If the underlying risk measure is the expectation
operator, then RSES reduces to mean-square exponential stability,
whereas, if it is the essential supremum operator, it yields the
definition of robust exponential stability. Additionally, since all
coherent risk measures are lower bounded by the expectation,
RSES is a stronger notion of stability compared to mean-square
stability. The following lemma provides Lyapunov-type stability
conditions for RSES.

Lemma 5 (RSES Conditions). Suppose there is a V ∈ fcns(Rnx ,N ),
proper, lsc function such that

(i) dom V is a UI set
(ii) ρi [V (f κ (x, i), j); j] − V (x, i) ≤ −c∥x∥2, for some c > 0 for all

(x, i) ∈ dom V .

Then, ρ̄k−1
[∑k

t=0∥φ(t, x0, i[t−1])∥2
]
, is uniformly bounded in k for

(x0, i0) ∈ dom V . If, additionally,

(iii) for all (x, i) ∈ dom V , α1∥x∥2
≤ V (x, i) ≤ α2∥x∥2, for some

α1, α2 > 0,

then, the origin is RSES for system (9) over dom V .

Proof. The proof can be found in the Appendix.

The uniform boundedness condition in Lemma 5 is reminiscent
of the notion of stochastic stability in Costa et al. (2005, Sec. 3.3.1).
In fact, if the risk measure in Lemma 5 is the expectation operator,
then the uniform boundedness condition is equivalent to mean-
square stability (Costa et al., 2005, Thm. 3.9(6)).

We call a function V ∈ fcns(Rnx ,N ) which satisfies all re-
quirements of Lemma 5, a (mode-dependent) risk-averse Lyapunov
function. We may now state conditions on the stage cost ℓ and
the terminal cost ℓN which entail RSES for the risk-averse MPC-
controlled system.

4. Risk-averse MPC

4.1. Risk-averse MPC stability

Theorem 6 (RSES of MPC). Suppose that
(i) c∥x∥2

≤ ℓ(x, u, i) for some c > 0 for all (x, u) ∈ Yi, i ∈ N (ii)
ℓN (x, i) ≤ d∥x∥2, for some d > 0 for all x ∈ X f

i , (iii) X
f
i contain the

origin in their interiors (iv) V ⋆N is locally bounded over its domain, that

is, for every compact set X̄ ⊆ dom V ⋆N , there is an M ≥ 0 so that
V ⋆N (x, i) ≤ M for all (x, i) ∈ X̄ and

TℓN ≤ ℓN . (10)

Then, the origin is RSES for the risk-averse MPC-controlled system
xk+1 = f (xk, κ⋆N (xk, ik), ik) over all compact uniformly invariant
subsets of dom V ⋆N .

Proof. The proof can be found in the Appendix.

In Theorem 6we show that V ⋆N is amode-dependent risk-averse
Lyapunov function over compact uniformly invariant subsets of
dom V ⋆N . We shall use this result in the following sections to de-
sign risk-averse stabilizing MPC controllers for MJLS as well as
nonlinear Markovian switching systems. Note that Condition (iv)
in Theorem 6 holds if the following assumption is satisfied (see
Rawlings et al. (2018, Prop. 2.15))

Assumption 7 (Local Boundedness of V ⋆N ). For all i ∈ N , functions
ℓ(·, ·, i) and ℓN (·, i) are continuous on their domains, and the sets
Ui(x) := {u ∈ Rnu | (x, u) ∈ Yi} are compact and bounded
uniformly in x.

Additionally, because of the monotonicity property of T and
sinceTℓN ≤ ℓN , condition (10) impliesV ⋆k+1 ≤ V ⋆k , thusdom (V ⋆k ) ⊆

dom (V ⋆k+1) = R(dom V ⋆k ) (Proposition 2), thus dom V ⋆k is UI.

4.2. Risk-averse MPC design for MJLS

Herewe provide RSES conditions and design guidelines for risk-
averseMPC ofMJLS (Costa et al., 2005), that is f (x, u, i) = Aix+Biu,
using a quadratic stage cost ℓ(x, u, i) = x⊤Qix + u⊤Riu + δYi (x, u),
with Qi ∈ Snx

+ , Ri ∈ Snu
++ and Yi are polytopes with the origin in

their interiors. The terminal cost function is taken to be ℓN (x, i) =

x⊤P f
i x + δX f

i (x) with P f
i ∈ Snx

++ and X f
i . We shall derive conditions

on P f
i and X f

i so that the stabilizing conditions of Theorem 6 are
satisfied. Condition TℓN ≤ ℓN is equivalent to

minu{x⊤Qix + u⊤Riu + ρi

[
x+⊤P f

j x
+
; j

]
} ≤ x⊤P f

i x, (11a)

dom (TℓN ) ⊇ dom ℓN ⇔ R(X f ) ⊇ X f , (11b)

where x+
= f (x, u, i) and the minimization in (11a) is over the

space of admissible causal control laws u = κ(x, i) so that (x, i) ∈

Xκ . An upper bound to the left hand side of (11a) is obtained by
parametrizing u = Kix. We introduce the shorthand notation
Āi = Ai + BiKi and Q̄i = Qi + K⊤

i RiKi, for i ∈ N . Condition (11b)
means that X f is a UI set for the system xk+1 = (Aik +BikKik )xk under
the prescribed constraints. Such a set can be determined by the
fixed-point iteration Ok+1 = R(Ok) with O0 = {(x, i) | (x, Kix) ∈

Yi}. If this iteration converges in a finite number of iterations – a
sufficient condition for which is given in Patrinos et al. (2014, Lem.
21) – to a set O∞, this is a polytopic UI set.

Assuming that ρ is a polytopic Markov risk measure with am-
biguity set A(Pi) = conv{µ(l)

i }l∈N[1,si]
and using its dual representa-

tion, condition (11a) becomes Q̄i +
∑

j∈cov(i)µ
(l)
ij (Ā⊤

i P
f
j Āi) ≼ P f

i for
all i ∈ N and l ∈ N[1,si]. This condition can be cast as a linearmatrix
inequality (LMI) by a change of variables (P f

i )
−1

= Mi, Ki = YiM−1
i ,

F l
i =

[√
µ

(l)
i1 I . . .

√
µ

(l)
in I

]
and M = blkdiag(M1, . . . ,Mn):⎡⎣Mi (AiMi + BiYi)⊤F l

i MiQ
1/2
i Y⊤

i R1/2
i

∗ M 0 0
∗ ∗ I 0
∗ ∗ ∗ I

⎤⎦ ≽ 0, (12)

for all i ∈ N and l ∈ N[1,si]. The left hand side of (12) is a symmetric
matrix, therefore, we show only its upper block triangular part and
replace the lower block triangular part by asterisks (∗) to simplify
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the notation. Solving this LMI for Mi ∈ Snx
+ and Yi ∈ Rnu×nx yields

the linear gains Ki and the cost matrices P f
i . LMI (12) has to be

solved once offline to determine matrices P f
i .

4.3. Risk-averse MPC design for nonlinear Markovian switching sys-
tems

For nonlinear systems, an obvious choice for the terminal cost
function would be ℓN (x, i) = δ{0}(x) – meaning, X f

i = {0} for
i ∈ N – but that would lead to a very conservative design. Here
we exploit the system linearization at the origin to determine
a terminal cost function and terminal constraints which render
the origin RSES for the MPC-controlled system. We first draw the
following assumption for the nonlinear dynamics:

Assumption 8. For each i ∈ N , f (·, ·, i) is differentiable with Li-
Lipschitz Jacobian matrix.

We use a parametric controller of the form κ(x, i) = Kix and
define the associated closed-loop function f κ (x, i) = f (x, Kix, i),
i ∈ N . Function f κ (·, ·, i) can be written as a composition of
f (·, ·, i) with the linear mapping Wi : (x, u) ↦→ (x, Kix), therefore,
its Jacobian matrix will be Lipschitz-continuous with Lipschitz
constant Li∥Wi∥

2 which is bounded above by

βi := Li(1 + ∥Ki∥
2). (13)

The linearization of the nonlinear system at the origin is an MJLS
xk+1 = f̂ (xk, uk, ik) := Aikxk + Bikuk with Aik and Bik given by the
Jacobian matrices, with respect to x and u respectively, of f at the
origin. That is, Ai = Jxf (0, 0, i), Bi = Juf (0, 0, i). For notational
convenience, we define the following quantities

f̂ κ (x, i) :=(Ai + BiKi)x = Āix,
LℓN (x, i) :=ρi [ℓN (f κ (x, i), j); j] − ℓN (x, i),

L′ℓN (x, i) :=ρi

[
ℓN (f̂ κ (x, i), j); j

]
− ℓN (x, i),

∆(x, i) :=LℓN (x, i) − L′ℓN (x, i).

The objective is to design the terminal cost and terminal con-
straints for the risk-averseMPCproblemusingL′ℓN to yield an LMI.
While our designwill be based on the linearizeddynamics,weneed
to account for the linearization error. To this end, we shall derive a
quadratic upper bound for |∆(xk, ik)| over X f .

Theorem 9. Suppose that Assumptions 7 and 8 hold, the terminal
cost has the form ℓN (x, i) = x⊤P f

i x + δX f
i
(x) with P f

i ∈ Snx
++ and for

some Q̄i ∈ Snx
+

L′ℓN (x, i) ≤ −x⊤(Q̄i + miI)x, (14)

for i ∈ N , mi > 0. Suppose ℓ and X f satisfy the requirements of
Theorem 6 and X f

i ⊆ Bδi for some δi > 0, i ∈ N ,

σi := maxj∈cov(i)∥P
f
j ∥ ( β

2
i δ

2
i

4 + βi∥Āi∥δi) < mi, (15)

and ℓ(x, Kix, i) ≤ x⊤(Q̄i + (mi − σi)I)x for x ∈ X f
i . If X f is a

UI set for (9), then the origin is RSES for the MPC-controlled system
xk+1 = f (xk, κ⋆N (xk, ik), ik) over the compact UI subsets of dom V ⋆N .

Proof. The proof can be found in the Appendix.

According to Theorem 9, one first needs to select mi > 0 for
each i ∈ N such that (14) holds true. In the common case where
ℓ(x, u, i) = x⊤Qix + u⊤Riu + δYi (x, u), with Qi ∈ Snx

+ , Ri ∈ Snu
++,

(14) is an LMI of the form (12) with Qi + miI in place of Qi solving
whichwe obtainmatrices Ki and P f

i and determine the constants βi
and find δi > 0 so that (15) holds. In that case, ℓ(x, Kix, i) ≤ x⊤(Q̄i+

Fig. 1. (Left) A Markov chain with three modes and the corresponding transition
probabilities, (Right) The corresponding tree with i0 = 1.

(mi−σi)I)x is immediately satisfiedwith Q̄i = Qi+K⊤

i RiKi. In order
to determine a UI set X f for the nonlinear system xk+1 = f κ (xk, ik)
we may cast the nonlinear system as a linear one with bounded
additive disturbance xk+1 = Āikxk + e(xk, ik) — indeed, as we show
in the proof of Theorem 9, ∥e(x, i)∥ ≤ βi/2∥x∥2. We may follow the
approach of Schaich and Cannon (2015) in order to determine a
polytopic robustly invariant set.

5. Computationally tractable formulation of risk-averse opti-
mal control problems

Starting from an initial state x0 and initial mode i0 and comput-
ing control actions according to a causal control law uk, the future
states of the Markovian system, up to some future time N , span a
scenario tree— a tree-like structure such as the one shown in Fig. 1.
Note that the state at a node ı, the input and mode leading to that
node are denoted as xı, uı and iı respectively.

The possible realizations of the system state at time k define the
nodes of the tree. The set of all nodes at stage k defines the setΩk.
The set of nodes in Ωk+1 which are reachable from a node ı ∈ Ωk
is called the set of children of ı and is denoted by ch(ı) which is a
subset of Ωk+1. The space ch(ı) becomes a probability space with
P[{η}] = piı iη for η ∈ ch(ı). As illustrated in Fig. 1, the system
dynamics on the scenario tree is described by xη = f (xı, uη, iη),
for η ∈ ch(ı) and x0 = x0, i1 = i0.

On the scenario tree, we define a process Φ as follows: for
ı ∈ ΩN we defineΦ ı

:= ρiı [ℓN (xı, iη); η] = maxµı∈A(Piı )
∑

η∈ch(ı)µ
ı
η

ℓN (xı, iη). Moreover, ℓN (x, i) = infℓN (x,i)≤τ τ . When the underlying
risk measure is polytopic with A(p) = {µ ∈ Rn

|
∑n

i=1µi =

1, F (p)µ ≤ b(p)} with b(p) ∈ Rq, then

Φ ı
= max
µı∈A(Piı )

inf
ℓN (xı,iη )≤τ ıη,

l∈ch(ı)

∑
η∈ch(ı)

µı
ητ

ı
η

= inf
ℓN (xı,iη )≤τ ıη,

l∈ch(ı)

max
µı∈A(Piı )

∑
η∈ch(ı)

µı
ητ

ı
η

= inf
τ ı,yı≥0,λı∈R,

ℓN (xı,iη )≤τ ıη, l∈ch(ı)
τ ı=F (Piı )

⊤yı+λı1q

b(Piı )⊤yı + λı,

where in the first equation we interchanged max with inf using
(Bertsekas, Nedić, & Ozdaglar, 2003, Prop. 2.6.4) using the fact that
the level sets of the mapping τ ı ↦→ maxµı∈A(Piı )

∑
η∈ch(ı)µ

ı
ητ

ı
η are

bounded because A(Piı ) is compact. The last equality is because of
LP duality. Traversing indices k from N − 1 back to 1, we define
Φ ı

:= ρiı [ℓ(xı, uη, iη) +Φη
; η], which boils down to

Φ ı
= inf

τ ı,yı≥0,λı∈R
ℓ(xı,uη,iη )+Φη≤τ ıη, l∈ch(ı)

τ ı=F (Piı )
⊤yı+λı1q

b(Piı )⊤yı + λı,

for ı ∈ Ωk. This formulation allows us to deconvolve the nested
Markov riskmeasures. Indeed, V ⋆N (x0, i0) is the optimal value of the
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following minimization problem

minimize
x,u,y≥0,λ,τ

ℓ(x0, u1, i0) + b(Pi1 )
⊤y1 + λ1

subjectto ℓN (xı, iη) ≤ τ ıη, η ∈ ch(ı), ı ∈ ΩN ,

τ ı = F (Piı )⊤yı + λı1q,

ℓ(xı, uη, iη) + b(Piη )⊤yη + λη ≤ τ ıη,

xη = f (xı, uη, iη),
η ∈ ch(ı), ı ∈ Ωk, k ∈ N[0,N].

Note that this formulation does not require the enumeration of the
vertices ofA(p) which, for instance, in the case of AV@Rα increases
exponentially with the number of modes. The above optimization
problem is solved at every time instantwith x0, i0 being the current
state and mode of the system. Solving this problem yields the
optimal control actions uı⋆ at each node of the scenario tree. The
first value, u1⋆, defines the risk-averse MPC controller κ⋆N (x, i) =

u1⋆(x, i). Note that in the particular case of an MJLS where stage-
wise and terminal costs are quadratic and the constraints are poly-
hedral and/or ellipsoidal, we obtain a quadratically constrained
quadratic program (QCQP) which can be solved very efficiently
online as we show in Section 6. The above reformulation can be
applied to risk measures whose ambiguity set is described by a
set of conic inequalities (using conic duality) such as the entropic
value-at-risk (Ahmadi-Javid, 2012).

6. Illustrative example

Here we demonstrate the design of stabilizing risk-averse MPC
controllers for a nonlinear system.We consider the following non-
linear Markovian switching system with three modes:[ xk+1
yk+1

]
= Aik

[
xk
yk

]
+ cik

[
1 − eyk
1 − exk

]
+ Bikuk. (16)

The system matrices are

A1 =

[
1 0.1
0.2 0.5

]
, A2 =

[
0.1 −0.5

−0.5 0.5

]
, A3 =

[
0.1 −0.6
0.6 0.1

]
,

B1 =

[
1.6
0.6

]
, B2 =

[
0.1
0.9

]
, B3 =

[
1
0

]
,

and parameters c1 = 0.2, c2 = −0.1, c3 = −0.3. Stage-wise cost
matrices are Qi = I and Ri = 100 · i for i ∈ {1, 2, 3}. The nominal
and actual transition matrices are given by

P =

[
0.4 0.0 0.6
0.6 0.0 0.4
0.4 0.6 0.0

]
, P ′

=

[
0.33 0.0 0.67
0.56 0.0 0.44
0.33 0.67 0.0

]
.

The nonlinear system is constrained to be inside the box Y1 =

[−2.5, 2.5]2 × [−0.5, 0.5] for all three modes. Using m = 0.5
we compute the controller design parameters of Theorem 9 which
are shown in Table 1. We take the terminal sets to be ellipsoidal
X f
i = {x⊤P f

i x ≤ ri}. Finally, we simulate the system for different
values of parameter α of AV@Rα after we formulate the problem
as described in Section 2.4, with initial condition x0 = (2,−2)
and i0 = 1. Resulting system trajectories are reported in Fig. 2.
The proposed methodology successfully stabilizes the nonlinear
system in the presence of uncertainty in the Markov transition
matrix.

A similar effect is observed when inspecting the distribution of
ℓ(xk, uk, ik) for three MPC controllers. MPC controllers with higher
α (closer to stochastic MPC) allow for higher costs, albeit with low
probability. On the other hand, the risk-averse controller with α =

0.5 (closer to minimax MPC) tends to produce cost distributions
with shorter right tails. Interestingly, the point x0 is not feasible
for the worst case controller (α = 0). The cost distributions are
shown in Fig. 3.

Table 1
Controller design parameters.

i βi δi

α = 1.0 α = 0.9 α = 0.5

1 0.4421 0.2407 0.1783 0.1563
2 0.2210 0.3775 0.4121 0.3556
3 0.6631 0.1668 0.1130 0.0973

Fig. 2. Trajectories of the closed-loop system with risk-averse MPC for N = 6 with
(Left) α = 0.9 and (Right) α = 0.5. The green lines correspond to 1000 random
simulations.

Fig. 3. Distribution of ℓ(xk, uk, ik) estimated using 1000 randomly generated
switching sequences. The cost of trajectories corresponding to higher α values are
more spread out compared to α = 0.5 and have a noticeably longer right tail.

7. Conclusions

We proposed a control methodology for constrained nonlin-
ear Markovian switching systems. The proposed stability analysis
framework hinges on dynamic programming and leads to the
formulation of risk-based Lyapunov-type conditions. These condi-
tions can be translated into an LMI when the dynamics is linear,
while, when the system is nonlinear a design methodology was
proposed. In the case of MJLS, the resulting optimization problem
can be formulated as a QCQP and can be solved efficiently online
enabling its use in embedded applications.

We believe that risk-averse problems possess a favorable struc-
ture which can be further exploited to lead to parallelizable imple-
mentations akin to ones already developed for stochastic optimal
control problems (Sampathirao, Sopasakis, Bemporad, & Patrinos,
2015, 2017, 2018). We plan to investigate risk-constrained for-
mulations where we impose acceptable risk of violating the con-
straints instead of hard state/input constraints. This has a potential
to make the overall design much less conservative.
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Appendix

Proof of Lemma 5. Define Vk := V (xk, ik) and, for fixed x0 ∈

dom V ⋆N (·, i0) let xt := φ(t, x0, i[t−1]). We have

ρ̄k

[
Vk − V0 + c

k−1∑
t=0

∥xt∥2
]

= ρ̄k

[ k−1∑
t=0

Vt+1 − Vt + c∥xt∥2
]

≤

k−1∑
t=0

ρ̄k
[
Vt+1 − Vt + c∥xt∥2]

=

k−1∑
t=0

ρ̄t+1
[
Vt+1 − Vt + c∥xt∥2], (A.1)

where the inequality is because of the subadditivity of ρ (A1
and A4) and the last equality is because Vt+1 − Vt + c∥xt∥2 is
independent of it+2, . . . , ik. In light of Cond. (ii) and given that
ρ̄t+1[Vt+1−Vt+c∥xt∥2

] = ρi0◦. . .◦ρit
[
Vt+1 − Vt + c∥xt∥2

; it+1
]

=

ρi0 ◦ . . . ◦ ρit
[
V (f κ (xt , it ), it+1) − V (xt , it ) + c∥xt∥2

; it+1
]

≤ 0,
and because of (A.1) and property A2 we have that ρ̄k[−V0 +

c
∑k−1

t=0∥xt∥
2
] ≤ ρ̄k[Vk − V0+ c

∑k−1
t=0∥xt∥

2
] ≤ 0. Using properties

A3 and A4, ρ̄k[
∑k−1

t=0∥xt∥
2
] ≤ V0/c which proves the first part of

Lemma 5.
By Cond. (ii), ρik [Vk+1 − Vk; ik+1] ≤ −c∥xk∥2

≤ −cα−1
2 Vk ≤

−ηVk for some η ∈ (0, 1), so ρik [Vk+1; ik+1] ≤ βVk with β :=

1 − η ∈ (0, 1). We have ρi0 [V1; i1] ≤ βV0 and ρi1 [V2; i2] ≤ βV1 ,
so ρi0

[
ρi1 [V2; i2] ; i1

]
≤ βρi0 [V1; i1] ≤ β2V0. Then, ρ̄2[V2] ≤ β2V0

and recursively

ρ̄k [Vk] ≤ βkV0. (A.2)

By the left hand side of Cond. (iii), ∥xk∥2
≤ 1/α1Vk and applying ρ̄k

and using (A.2) and, subsequently the right hand side of Cond. (iii),
ρ̄k(∥xk∥2) ≤ ρ̄k(Vk/α1) ≤

1
α1
ρ̄k(Vk) ≤

1
α1
βkV0 ≤

α2
α1
βk

∥x0∥2. □

Proof of Theorem 6. Let X̄ ⊆ dom V ⋆N be a compact UI set.
By (8),V ⋆N (x, i) = ρi

[
V ⋆N−1(f

κ⋆N (x, i), j); j
]
+ℓ(x, κ⋆N (x, i), i). Then, for

(x, i) ∈ X̄ ,

ρi

[
V ⋆N (f

κ⋆N (x, i), j); j
]

− V ⋆N (x, i)

=ρi

[
V ⋆N (f

κ⋆N (x, i), j); j
]

− ℓ(x, κ⋆N (x, i), i)

− ρi

[
V ⋆N−1(f

κ⋆N (x, i), j); j
]

≤ − ℓ(x, κ⋆N (x, i), i) ≤ −c∥x∥2.

The first inequality is because V ⋆N ≤ V ⋆N−1 and property A2. We
have that V ⋆N (x, i) ≤ ℓN (x, i) ≤ d∥x∥2 for all x ∈ X f

i . Because of

Cond. (iii), we may find ϵ > 0 such that Bϵ ⊆ X f
i , for i ∈ N .

By Cond. (iv), there is an M > dϵ2. Then, for all x ∈ X̄i \ X f
i ,

M
ϵ2

∥x∥2
≥ M ≥ V ⋆N (x, i). Because of Cond. (i) and the definition of T,

we have that V ⋆t (x, i) ≥ c∥x∥2 for all (x, i) ∈ dom V ⋆t for t ∈ N[1,N].
The proof is complete since V = V ⋆N + δX̄ satisfies all conditions of
Lemma 5. □

Proof of Theorem 9. Define e(x, i) = f κ (x, i) − f̂ κ (x, i). By
Assumption 8 and since f κ (0, i) = 0 for all i ∈ N , ∥e(x, i)∥ ≤

βi/2∥x∥2. It is∆(x, i) = ρi

[
f κ (x, i)⊤P f

j f
κ (x, i); j

]
−ρi

[
x⊤Ā⊤

i P
f
j Āix; j

]
.

Since ρi[·] is convex andmonotone, it is nonexpansivewith respect

to the infinity norm (Shapiro et al., 2014, p. 302), thus for x ∈ X f
i

|∆(x, i)| ≤ max
j∈cov(i)

|f κ (x, i)⊤P f
j f
κ (x, i) − x⊤Ā⊤

i P
f
j Āix|

= max
j∈cov(i)

|e(x, i)⊤P f
j e(x, i) + 2x⊤Ā⊤

i P
f
j e(x, i)|

≤ max
j∈cov(i)

∥P f
j ∥(

β2i
4 ∥x∥4

+ βi∥Āi∥∥x∥3) ≤ σi∥x∥2.

Therefore,LℓN (x, i) = L′ℓN (x, i)+∆(x, i) ≤ −x⊤(Q̄i+(mi−σi))x ≤

−ℓ(x, κ(x, i), i), for all x ∈ X f
i and since X f is UI, TℓN ≤ ℓN . The

assertion follows from Theorem 6. □
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