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Abstract—This paper copes with the problem of satisfying input
and/or state hard constraints in set-point tracking problems.
Stability is guaranteed by synthesizing a Lyapunov quadratic
function for the system, and by imposing that the terminal state
lies within a level set of the function. Procedures to maximize the
volume of such an ellipsoidal set are provided, and interior-
point methods to solve on-line optimization are considered.
@ 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

The necessity of satisfying input/state constraints is a feature
that frequently arises in control applications. Constraints are
dictated, for instance, by physical limitations of the actuators or
by the necessity to keep some plant variables within safe limits.
In recent years, several control techniques have been developed
which are able to handle hard constraints, (see e.g. Mayne and
Polak, 1993, Sussmann et al., 1994). In particular, in the last
decades industry has been attracted by predictive controllers
{Sanchez, 1976; Richalet et al., 1978; Clarke er al., 1987 Garcia
et al., 1989; Richalet, 1993; Mosca, 1995). These approaches are
based on the so-called receding horizon strategy. This consists in
determining a future control input sequence that optimizes an
open-loop performance index, according to a prediction of the
system evolution from the current time f. Then, the sequence is
actually applied to the system, until another sequence based on
more recent data is newly computed. The involved prediction
depends on the current state and the selected control input.
Several strategies (Keerthi and Gilbert, 1988; Zheng and Morari,
1995; Mayne and Michalska, 1990; Mosca et al., 1990; Clarke
and Scattolini, 1991) based on receding horizon have been
developed during recent years; see e.g. the survey paper (Lee and
Cooley, 1997).

More recently, Bemporad and Mosca (1994, 1998), Bemporad
et al. (1997), Bemporad (1998) and Gilbert and Kolmanovsky
(1995) have individually developed computationally efficient
techniques for solving constrained problems, by adding to
a precompensated system a reference governor, which enforces
the constraints by manipulating the reference trajectory.

Besides (Polak and Yang, 1993), where a contraction con-
straint on the state norm is imposed, in order to prove stability,
typically in the predictive control literature the values attained by
the performance index at the minimizer, as a function of the
current state, is used as a Lyapunov function for the overall
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system (Bemporad et al., 1994; Keerthi and Gilbert, 1988). This
method, however, traditionally requires either a terminal state
constraint or an infinite output horizon. The former has been
shown to lead to poor tracking performance, especially when
a small control horizon is selected in order to reduce computa-
tions. The latter requires in principle the fulfillment of an infinite
number of constraints, which however can be reduced to a (pos-
sibly large) finite number by adding a steady-state input con-
straint (Bemporad et al, 1997, Bemporad and Mosca, 1998;
Bemporad, 1998; Gilbert and Tan, 1991). In this paper, we
“artificially” impose that a quadratic function is a Lyapunov
function for the overall closed-loop system by introducing some
additional constraints. A fixed output horizon is adopted, and
the classical zero terminal-state constraint is relaxed in an ellip-
soid membership constraint, where the ellipsoid is the level set of
the Lyapunov function which has maximum volume within the
set of feasible states. Off-line procedures are also provided to
choose the Lyapunov function so as to “orient” its level sets
along the set of feasible states.

The paper is organized as follows. In Section 2 we formulate
the constrained predictive control problem and propose the
receding horizon controller. The properties of the resulting
closed-loop are analyzed in Section 3. Section 4 is devoted to the
selection of the Lyapunov function. Computational issues are
discussed in Section 5, and simulation results are reported in
Section 6.

2. Problem formulation
Consider the following discrete-time system:

x(t + 1) = Ax(t) + Bul(r),
y{t) = Cx(t) + Dult). (1)
¢(t) = Px(t) + Rulr).

along with a desired output reference r(t) € R”, where x(t) € R" is
the state vector, y(f) € R” the output, u(t) € R” the input, c(f) € R’
the vector to be constrained within the given (possibly un-
bounded) polyhedron

#LelceR" 4, c < B, B.eR“

This is supposed to satisfy the following assumption.
Assumption 1. # has a nonempty interior.

By defining the polyhedral set

% é{[x]eﬂ?"*'": A(Px + Ru) < BC},
u

the problem is to generate the input u(t) to system (1) so as to

satisfy the constraint
x{t)
R 2
[u m:le (2)
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for all t > 0, without destabilizing the system, and minimize the
tracking error y(t) — r(t). We assume that equation (1) satisfies
the following stability property

Assumption 2. A is asymptotically stable.

We underline that Assumption 2 is non-restrictive. In fact,
equation (1) might consist of a linear system which has been
precompensated via standard control techniques without consid-
ering the constraints. In this case, because of feedback loops, the
command input to the actuator becomes state-dependent. How-
ever, in equation (1) the constrained vector () can be any linear
combination of inputs and states, and therefore possible saturat-
ing actuators can be still tackled.

Constraint (2) imposes limitations on the inputs ¥ which can
be supplied in steady state, and therefore on the set-points
r which can be tracked. For reasons that will be clearer soon, we
fix a small scalar 3 > 0 and define the set

Caé{[x:le R"*™: A.(Px + Ru) < B, — (SI}
u

where 12[1 ...1]" has suitable dimensions. For a given set-
point r, let

argmin|(CH + D)u — r||?

ueiR™

H
s.t. |: u]e C;.
u

where H2(I — A)"'B is the input-to-state DC-gain, and
(CH + D) is assumed to be full rank. Note that the constraint in
equation (3) imposes that the predicted steady-state constrained
vector, corresponding to the constant input level u,, lies inside
# by at least a fixed distance away from the border.

We adopt the following receding horizon control law. Let

u 2 3

L’(Nu -1

ve s RNm 4)

()

be the future input sequence to be selected in order to minimize
the performance function

N.—1 N, 1
Jv, x(,u) 3 fyki) — CHu 3, + Y dotk) — w3, (5)
k=0 k=0
where W, >0 and ¥, >0 are symmetric weight matrices,
I¥l§2 ¥ ¥y, N, < oo is the output horizon, N, < x the input
horizon, and y(k|t) is the evolution of the output vector at time
t + k predicted at time ¢, according to model (1), initial state x(t),
and input (Rawlings and Muske, 1993)

v(k) fO<k<N,—1

ue+ky = {v(N,, ~1) if k=N,

(the same notation will be used hereafter for the predicted
evolution of the state x(k|z) and the constrained vector ¢ (k|r)).

In order to prove later stability results in the case of constant
references r(t) = r, we impose that the function

V(X)EX Y5, (6)

(where ¥2x — x,, x,2Hu,) is a Lvapunov function for the
overall closed-loop system. This is achieved by introducing the
constraints

X'k + 1) L%k + 1) < X'(kjt) LK)ty — Z(k|r) Qx(kl|r),

Vk=0,...,N,—1, @
and
x(NneQ,, (8)
where Q, is the ellipsoid
Q e{xeR"(x - x)Lx~x)<7y), 9
and L satisfies the Lyapunov equation
L =ALA+Q (10)

for some matrix @ = Q' > 0, whose selection will be the topic of
Section 4. Notice that the ellipsoid membership condition (8)
replaces the more usual zero terminal-state constraint
x(NJt)=0.

In order to have equation (8) as less stringent as possible, the
parameter 7, is chosen on line as

y2sup {p:Q, < A, (1)
p=0
where Q,2 Ixe R":(x — x,JL(x — x,) < p}. and
x4 1xe R": A{Px + Ru,) < B} (12)

is the section of ¢ generated by the hyperplane u = u,. By using
the Lagrangian function and first-order conditions, the param-
eter y, can be easily computed as

B — AiR Px,)1?
= min {[ L « li']+ ‘x,/)] 1, (i3)
L APy TPy

J=1.

where ()7 denotes the jth row of () . Note that the condition
4 > 0 implies that each section #', has a nonempty interior, and
therefore 7, > 0. Vice versa, d = 0 and Px, + Ru, € 64 (bound-
ary of #) would lead to 7, = 0 and the ellipsoid membership
condition would degenerate in a zero-terminal state condition.
Moreover, if the problem is non trivial (ie. .2 # R, which
implies rank A, > 0), and the constraints involve state compo-
nents such that rank(4.P) > 1. then «#, # R", which implies
v+ oo

Finally, constraint fulfillment ¢(r)e .# is enforced by adding
the constraints

AJLPx(jIn) + Re()] < B.. Vj=0, ..
Define

SN =1 (19)

[(D2 {ve R¥":equations (7), (8), and (14) are satisfied}

and, for I'(r) # 0,

vi(ty&arg min J(v, x{1), t,)).
el

Then, at each time : the optimal vector v(1)=[z)(N, —
1), ..., (0] is selected as

2 JYHO) T E()#0,
v(r)_{v,[{) otherwise, (3

where v (t) is a one-step shifted version of v(r — 1) and is defined
as

Upie 1)

vr- (N = 1)

vi(ne (16)

Uy 1(”

Finally, according to the receding horizon strategy described
above,

u(®&[0 ...0 I,.]v.. (17)

The entire procedure is then repeated at time ¢ + 1. The above
scheme is completed by the following hypothesis on x(0).

Assumption 3. At time r =0 there exists an inpul sequence
v(—1) and a reference r_ | such that the sequence v,(0)) obtained
by equation (16) satisfies equations (7). (8), and (14) from the
initial state x(0).

Forinstance, Assumption 3 is verified for x(0) = 0, v(—1) = 0,
ro;=0,0e.2

3. Feasibility and stability

In principle. any symmetric positive-definite matrix ¥ might
be used to define the artificial Lyapunov function (6). However,
the particular structure (10) allows the proof of the following
feasibility lemma.
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Lemma 1. Let Assumption 3 hold, ¢ satisfy equation (10), and
r(t) = r. Then I['(t) # 0, Yt > 0.

Proof. The lemma can be easily proved by induction. Suppose
that at time t — 1 a feasible v(r — 1) exists. and consider at time
¢ the sequence v2yv(f) as in equation (16). Since, by equation
(17), ()= X(1|t — 1), for the chosen v it holds that
%(k|r) = Xk + 1t = 1),Vk =0,1, ..., N, — 2. Then, constraints
(7) and (14) are satisfied Vk =0, 1, ..., N, — 2. Since by equa-
tion (10)

FNJt) LN = RN, — 1) A LAIN, — 1))
= (Nt — 1) LK(N,Jt — 1)
— F(NJt — 1) QRN )t — 1), (18)

constraints (8) is satisfied, as well as equation (7) fork = N, — L.
Because the ellipsoid Q, = X,, fulfillment of equation (14) for
k=N, —1follows. 0

Remark 1. Lemma | proved that, for constant reference trajec-
tories r(r), a feasible solution exists at each time t > 0. However,
besides the case of nonconstant r(t), the second instance in
equation (15), might be verified because of numerical issues. This
will be discussed in Remark 3.

Next Theorem 1 describes the asymptotical behavior of the
overall control scheme.

Theorem 1. Consider system (1) along with Assumptions 1-3,
and let r(t) = r, Vt > t, > 0. Then, the control strategy (15)—(17),
based on the optimization of the performance function (5) in the
presence of constraints (7), (8), and (14), guarantees stability of
the overall control loop, in that

(1) im,. , x(n
(1) hm, -, u(r)

=X,
= Uy
Moreover, if ¥, = 0. there exists a finite time t, > 1, such that

(i) u(t) = u,, vVt > 1,

Proof. (i) By Lemma 1 the solution v(f) = v*{(t) in equation (15)
exists at each time r > 0, and hence the trajectories x{t) are
defined, ¥t > 0, for all the initial states x(0) which satisfy As-
sumption 3. Since discrete-time trajectories are bounded in any
finite interval, without loss of generality assume ¢, =0,
x(0) = x(t,). The function V defined in equation (6} is
a Lyapunov function for X(t) = x(f) — x,. Since ¥ >0, V is
radially unbounded. Hence, by (LaSalle 1986, Proposition 2.3),
the trajectories X(t) are bounded. Since AV (1=
V() — Vit — 1) = 0 iff X(t) =0, by (LaSalle, 1986, Proposition
(2.6)) x, is asymptotically stable, the domain of attraction being
the set of initial states x(0) such that Assumption 3 holds.

(ii) Since 7, > 0, by (i) after a finite time 1, x(t)e Q, . Vi > t,.
Consider the vector v,2£[u, ... ;] at time 1 > t,. By applying
(k) =u, fork =0,1, ..., N, — 1, constraint (7) is satisfied, and
hence the predicted trajectory x(k|t}e Q, . Vk =0,1, ... ,N,. In
particular, equation (8) is fulfilled, and since Q_x{u,} €%,
constraints (14) are fulfilled as well. Then, v, is admissible at each
time 1 > t,. Consequently, J(v(t), x(2), 4,) < J(v,, x(2), 4,). Since
J is continuous in x({t), by (i) it follows lim,. J(v,
x(t), u,) = J(¥,, x,, it,) = 0, and hence, lim,_._ J(¥(t). x(t), u,}) = 0.
Therefore, lim,_. fg;‘ llo(k) — u,| ?,, = (), and since ¥, > 0 it
follows lim,_, . ¥{(t) = v,.

(ii) Consider again ¢ > t,. The performance function (5) is
minimized by v,, which is feasible. Hence, ¥(t) = v,, and u(t) = u,,
vt > t,. O

Remark 2. When W, = 0, (ii1) implies that the original asymp-
totical properties of system (1) are not modified by the predictive
controller (15)-(17).

4. Selection of the Lyapunov function

As mentioned above, we relax the classical zero terminal state
constraint in the ellipsoid membership condition (9). Therefore,
for each set-point r to be tracked, we wish to provide a terminal
ellipsoid ., which is as large as possible. The basic idea is to

select off line matrices Q, % so as to “orient” £, as the sections
Z, of the constraint set %, which are defined in equation
(12). This is achieved by choosing the matrices Q, & which
provide the maximum volume ellipsoid centered in x, and
inscribed in X,.

By setting S2 AP, T2 B, — A,[PH + R]u,, it results

A, ={ReR:ST<Ti=1,...q}.

Since [H' 1]'u, € Cs, it follows that 0 € Int 2, and hence T >0,
Vi =1, ....q. Therefore, by setting W £ S"/T', it results

X, =1%eR:WE<l,i=1 ..,q). (18)

Then, chosen a scalar ¢ > 0, % can be determined by solving the
following optimization problem (Khanchiyan and Todd, 1993).

argmin, log(det(¥))

¥ —AFA>cl

L _ (19)
SLWYZ ' Wil Yi=1,...q
¥ =% >0

The inscribed ellipsoid provided by equation (19) has the form
Q ={f:Xv¥igly, (21

The constraint Q > ¢l in equation (19) determines a lower
bound for the desired rate of decreasing of the Lyapunov func-
tion (6), and prevents that the inscribed ellipsoid degenerates in
a cylinder in the case that X, is unbounded in some direction.
Moreover, the constraint in equation (19) can be rewritten in the
form of linear matrix inequalities (LMIs) (Boyd et al., 1993)

Y —ALA-¢l >0,

1w -
[Wi y]>0,‘v‘|-1,...,q. (22)

Note that the strict positivity required in the second constraint
in equation (21) amounts to inscribe the ellipsoid in the open set
Int7, = {X: Wit <1,i=1, ...,q}, and consequently there are
no numerical differences with the results provided by equation
(19).

The solution of equations (19) and (21) provides matrices Q,
# which depend on u,. Therefore, in principle one should solve
the optimization problem on line for each current reference r(r).
In order to shift off-line the selection of Q, ¥, we define an
“average” vector u, and evaluate Q. ¢ for such a vector. Then,
the same matrices Q, ¥ will be used for any u,, the volume of the
ellipsoid being maximized by choosing y, in equation (11) ac-
cording to equation (13). The selection of uy proceeds as follows.
Consider a section .2, of % at a fixed u, the hyperplane x = Hu,
and the polytope .4’ % HR, where R is the hyperrectangle

AL ueR™ W <M i=1 ...,m}

and the components M’ of the vector M € R™ are arbitrarily
large and fixed. The situation is depicted in Fig. 1. We define the
vector u, in such a manner that the vector z, 2 [H'I,,)'u, is “as
far as possible” from the boundary &% of %, namely by requiring
that the minimum distance of z, from the faces of % is maxi-
mized. Accordingly,

(Aiu — B

wooq AP 12 + I ALR)?
q (22)

I, M
s.t. A,u < B, u< s
Im M

where 4,2 A(PH + R). The constraint u € # guarantees that
u, is finite. Notice that this constraint is not kept into account in
detérmining the optimal sequence ¥(t) in equation (15).

arg min - min
ueR™

>
i

5. Computations

In this section we shall consider computational issues in-
volved in the minimization of equation (5) subject to the con-
straints (7), (8), and (14) with respect to the optimization vector
v defined in eqution (4). This will be referred to as on-line
optimization problem (OLOP). In general, OLOP is a nonconvex
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x-space (u=u,)

-10 -5 Q0 5 10

Fig. 1. Sets #.0, #'x and hyperplane x = Hu; point u, and
ellipsoid generated, respectively by equations (22) and (19)—(21).

quadratically constrained quadratic program (QCQP). In fact,
despite equation (5) is a (strictly) convex quadratic function,
equation (14) are linear, and equation (8) are convex quadratic,
constraints (7) are in general nonconvex. An exception is the case
N, = 1, which renders the controller described in the previous
sections close to the reference governor technique developed in
Bemporad et al. (1997), Bemporad and Mosca (1998) and Be-
mporad (1998). In this case, equation (7) is convex quadratic as
well, and OLOP can be recast as a convex second-order cone
programming (SOCP) problem (Mehrotra and Sun, 1991), for
which efficient solvers are available (Lobo er al., 1997a; Alizadeh
et al., 1997).

For the general case N, > 1, we address two alternative com-
putational tools, viz. sequential quadratic programming (SQP)
and SOCP, being the investigation of other branch-and-bound
algorithms for nonconvex QCQP beyond the scope of this paper
(the reader may refer for instance to (Al-Khayyal ez al., 1995).

5.1. Sequential quadratic programming (SQP) methods. By solv-
ing OLOP via SQP methods, which are the most commonly
used algorithms for generic nonlinear constrained optimization,
as the one adopted in the Matlab Optimization Toolbox (Grace,
1992), finite available computational time may lead to subopti-
mal local minima. However, in this paper, the stability proof in
Theorem 1 is not affected by local minima, since the existence of
a Lyapunov function is guaranteed by equation (7), and feasibil-
ity at each time ¢ > 0 is ensured. Therefore, as soon as Assump-
tion 3 is satisfied, SQP-based solutions to the OLOP problems
preserve stability and feasibility, despite they might lead to
tracking-performance deterioration.

5.2. Interior-Point Methods. In very recent years, as reliable
public-domain and commercial software packages became
available, interior-point methods (Nesterov and Nemirovskii,
1994) have gained popularity as efficient tools to solve certain
classes of convex problems.

In order to solve OLOP via interior point methods, let us
investigate the nature of equation (7) for N, > 1. By equation
(19), BB is positive definite, and hence admits a Cholesky
factorization B'#’B = §'S, with S nonsingular. Consider k > 1
and let z; 2 Su(k), s, 2 [v'(k — 1) ... v(0)]. By equation (10}, con-
straint equation (7) is equivalent to

v'(k) B¢ Bu(k) + 23(kjt) A ¥ Bu(k) < 0,
and hence can be rewritten in the form
2z 4+ Mz +22Ns <0, (23)

where the index k has been omitted for clarity, and M, N are
constant matrices dependent of A, B, and ¢. equation (23) is

a bilinear (or biaffine) inequality (Goh et al., 1994), and makes the
global minimization OLOP an NP-hard problem (Boyd and
Vandenberghe, 1997). In fact, by considering for the sake of
simplicity the SISO case, and by introducing a new scalar
variable w, equation (23) can be rewritten in the form

2w
2z + M + 2Ns

{-M—ZNS for 0 <z < — (M + 2Ns),

24
M + 2Ns for —(M +2Ns) <z <. @4

Then, each constraint (7) gives rise to two cases, leading the
global minimization of OLOP to the propagation through a de-
cision binary-tree which, in the worst case, involves the solution
of 2(2%~1 — |) SOCP problems.

In alternative, we propose a modified version of OLOP which
can be solved by only one SOCP. Consider the inequality

2z + Mz +2-Ns< —s'N'Ns, (25)

which is a stronger condition than equation (23). Equation (25)
can be rewritten as

(z+ Ns)Y(z+ Ns)+ M'z<0
or, equivalently, as the second-order cone constraint
2(z + Ns)
1+ Mz

Then, by changing equation (7) in the form

| <l—-M-: (26)

Xk + 1ty Lx(k + 1ty < K(K|ty LR(K|t) — F(K|t) Qx(k|t)
—~ 85y R'WRysy, Vhk=1,...,N,— 1, 27

where
R&EB LA[L,|A]... |4 1B,

the resulting modified OLOP can be solved via one SOCP.
Notice that the proof of Theorem 1 still holds with the new
constraints (27). However, implementation simplicity is obtained
at the price of a diminished feasibility, and hence of performance,
(27) being more stringent than equation (7).

6. Simulation Results

Example 1. The proposed control strategy has been investigated
by simulations on the following second order discrete-time SISO

system
1.5910 —0.7261 1
X(t+1)= |: | 0 :'x(r) + [O:I u(t),

¥(t) = [0.1351 0] x(z),
(28)
—1.5952 1.7303
cft)=| —0.1384 —0.1595 | x(z),
0.2 0.1

and the reference

M) = 1 if t<20,
o if 1> 20.

The y- and c-responses of system (28) in the absence of con-
straints are depicted in Fig. 2. The transfer function from the
input u to the constrained variable ¢ is underdamped, and
nonminimum phase for the first component ¢'. In order to
compress the dynamics of ¢ within the set

P={ceR: —15<el <2 —3<c?2<3, -31<? <31

and improve the tracking output properties, we adopt the con-
trol law described in the previous sections along with the para-
meters W, =¥, =1, N, =N,=10, 6=1075 § = 1078, and
solve on-line optimization by using SQP methods. Figure 3
shows the resulting trajectories. Equation (22) generates the
“average” vector u, = 0.25, for which the Lyapunov matrix & is
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constrained vector c(r)

R T S AR N N W T

2
0
s J B —=
Pl oA o R R FE I Y
4
0 5 10 15 20 25 30 35 40

input u(z) output y(t) and reference r(t)

1.5

1
: AT,
¢ : \
\d

0 20 40 0 20 40
time steps (1) time steps (1)

Fig. 2. Unconstrained response of system (28). Thick solid line:
c'(t); dashed line: c2(2); thin solid line: ¢3(¢); shaded area: admiss-
ible range for c!(r).

constrained vector c(f)

s T € G I

B s SRR PP

e E R ) R e s e s beaesa N e wl

0 5 10 15 20 25 30 35 40

input u(t) output y(¢) and reference r(t)

1.5
1 /
0.5

0s \\ g \

-0.5
0 20 40 0 20 40

time steps (1) time steps ()

Fig. 3. Response of the system (28) with constraints. Same line
styles as in Fig. 2.

selected. The behavior of the Lyapunov function V defined in
equation (6) is shown in Fig. 4. Finally, Fig. 5 depicts the
ellipsoid generated on line for r = 1 and r = 0. Note that since
¢ does not depend on u, the sections 2, coincide for any u,.

6.1. Terminal ellipsoid vs zero terminal state constraint. In order
to assess the improvements which derive by having a terminal
ellipsoidal constraint rather than a zero terminal state con-
straint, consider again the previous example. For the set-point
r(t) =0.75 and the constraint horizon N, = 3, the constraint
X(N.Jt) = 0 produces infeasibility at each t > 0. On the other
hand, for the same setup, the on-line optimization problem
(OLOP) (5), (7), (8), (14) is feasible at each t > 0. For large
constraint horizons N,, both methods are feasible and behave in
a comparable manner. In fact, as N, increases, during the transi-
ent the active constraints become equation (14), which are com-
mon to both procedures.

6.2. Off-line vs on-line selection of £. In order to investigate the
degradation of performance caused by moving the solution of
equation (19) off line (via the definition of uo in equation (22)),

Lyapunov function [r(#)=1) Lyapunov function [r(t)=0)

N
1\

0
0 2 4 6 8 8 10 12 14 16
time steps (1) time steps ()
Fig. 4. Lyapunov function for the evolution in Fig. 3.
x-space (u=u,)
- —(I.AY'B
X {=A)-D
\\
S
0 \
S . | %70
o 4 ‘iuu
-10
-10 -5 0 5 10

Fig. 5. Ellipsoids computed on-line via equation (13) for r = 0
andr = 1.

simulations have been run by solving equation (19) on line for
each u,. The results are indistinguishable from those ones where
L is computed off-line. This can be explained by two reasons.
First, it is clear that the “orientation” in the x-space of the
maximal ellipsoid obtained by equation (19) is related on the
shape of the admissible set Z', defined in equation (12), which for
R = 0 does not depend on ,, and in general mainly depends on
the matrix A.P. Second, the size of the ellipsoid is always
maximized on-line, and therefore the sensitivity with respect to
the orientation is low, at least when the condition number of L is
small (i.e. the ellipsoid is not flattened out in any direction).

6.3. SQP vs SOCP. Simulations have been performed to com-
pare sequential quadratic programming (SQP) against second
order cone programming (SOCP) interior-point methods. For
the first, the standard CONSTR.M routine provided in the
Matlab Optimization Toolbox has been used, while SOCP has
been solved by using the package [Lobo et al., 1997a]. Simula-
tion tests have been run on a 486DX4/100 with Matlab 4.2 and
Simulink 1.3. No appreciable feasibility and performance differ-
ences were noticed by replacing constraints (7) by equation (27),
as described in Section 5, which is needed to implement SOCP.
Figure 6 reports average computational times for different
values of N, (same system and control parameters of Example 1).
We point out that computational times should not be directly
compared, since SQP was executed by interpreted code, while
SOCP by compiled code.

Remark 3. During some simulations, we observed that SOCP
interior-point methods were failing, while SQP were performing
correctly. The reason for this might be that interior-point
methods much more suffer from “flat” domains. In fact, despite
no equality constraint is present, the feasible domain might
become flatter, for instance when the only admissible control
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Fig. 6. SQP vs SOCP solver. Average simulation time per
sample step (s).

moves at time ¢ are obtained by shifting the previous optimal
solution v(t — 1). Note that in this case a failure of the interior-
point method leads to the second case in equation (15), and
hence v(t) = v,(t) is safely applied (constraint fulfillment follows
by the proof of Lemma 1), without even sacrificing optimality.

7. Conclusions

In this paper we have presented a predictive control approach
to satisfy input and/or state hard constraints. Stability is guaran-
teed by imposing an ellipsoid membership constraint, and that
a certain quadratic function is a Lyapunov function for the
system. Procedures are provided to optimally select such a func-
tion. Future research will concern criteria to select control
horizons N, such that the system can be moved to the desired
equilibrium point from any initial state within a given set, and
when this is possible. Moreover, an extension of the method to
linear systems with disturbances and nonlinear systems will be
considered, as constraint (7) might be generalized to different
settings.
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