
Automatica 117 (2020) 109002

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Rao-Blackwellized sampling for batch and recursive Bayesian
inference of Piecewise Affinemodels✩

Dario Piga a,∗, Alberto Bemporad b, Alessio Benavoli c
a Dalle Molle Institute for Artificial Intelligence Research - USI/SUPSI, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
b IMT School for Advanced Studies Lucca, Piazza San Francesco 19, 55100 Lucca, Italy
c University of Limerick, 13657 Limerick, Ireland

a r t i c l e i n f o

Article history:
Received 22 April 2019
Received in revised form 2 February 2020
Accepted 5 April 2020
Available online xxxx

Keywords:
Piecewise-affine regression
Bayesian inference
Markov Chain Monte Carlo
Recursive identification
Particle filters

a b s t r a c t

This paper addresses batch (offline) and recursive (online) Bayesian inference of Piecewise Affine (PWA)
regression models. By exploiting the particular structure of PWA models, efficient Rao-Blackwellized
Monte Carlo sampling algorithms are developed to approximate the joint posterior distribution of
the model parameters. Only the marginal posterior of the parameters used to describe the regressor-
space partition is approximated, either in a batch mode using a Metropolis–Hastings Markov-Chain
Monte Carlo (MCMC) sampler, or sequentially using particle filters, while the conditional distribution
of the other model parameters is computed analytically. Probability distributions for the predicted
outputs given new test inputs are derived and modifications of the proposed approaches to address
maximum-a-posteriori estimate are discussed. The performance of the proposed algorithms is shown via
a numerical example and through a benchmark case study on data-driven modelling of the electronic
component placement process in a pick-and-place machine.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. PieceWise Affine modelling

PieceWise Affine (PWA) model formalism provides a powerful
and flexible tool to describe complex nonlinear regressor-to-
output mappings as the collection of simple affine submodels,
each associated to a polyhedral region of the regressor domain.
They can be then used to describe systems which change their dy-
namics due, for example, to: saturations, thresholds, dead-zones,
abrupt changes of the working environment (like manipulators
which alternate between free and contact motion), etc.

Thanks to their universal approximation property, PWA maps
are able to approximate any sufficiently smooth nonlinear func-
tion with arbitrary accuracy (Breiman, 1993). Moreover, because
of the equivalence between PWA and hybrid linear models
(Heemels, De Schutter, & Bemporad, 2001), well settled tools for
modelling, analysis and control of hybrid systems can be ap-
plied to systems represented in a PWA form (Bemporad, Ferrari-
Trecate, & Morari, 2000; Bemporad & Morari, 1999).

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Adrian
George Wills under the direction of Editor Torsten Söderström.
∗ Corresponding author.

E-mail addresses: dario.piga@supsi.ch (D. Piga),
alberto.bemporad@imtlucca.it (A. Bemporad), alessio.benavoli@ul.ie
(A. Benavoli).

1.2. Algorithms for PWA regression

Learning PWA models from regressor/output data is an NP-
hard problem (Lauer, 2015), which needs to estimate both the
parameters defining the local affine models and the partition of
the regressor space. Several algorithms/heuristics have been de-
veloped in the last years for PWA regression or, more in general,
for data-driven modelling of hybrid systems, which are character-
ized by the interaction between discrete (logic) and continuous
(physical) states.

Multi-stage clustering-based approaches are proposed in Bako,
Boukharouba, Duviella, and Lecoeuche (2011), Bemporad, Garulli,
Paoletti, and Vicino (2005), Breschi, Piga, and Bemporad (2016),
Ferrari-Trecate, Muselli, Liberati, and Morari (2003), Juloski, Wei-
land, and Heemels (2005) and Naik, Mejari, Piga, and Bemporad
(2017). The main idea behind these methods is to first cluster the
training regressors according to a certain criterion and then esti-
mate the parameters of the local affine functions using standard
methods for identification of linear systems (e.g., least squares).
In Ferrari-Trecate et al. (2003), the regressors are clustered using
a k-means algorithm and the parameters of the local affine maps
are estimated through weighted least squares. The approaches
in Bako et al. (2011), Breschi et al. (2016), Juloski et al. (2005) and
Naik et al. (2017) are based on a greedy strategy where training
data is processed sequentially. At each iteration, clustering is per-
formed by assigning the current regressor to the local model that

https://doi.org/10.1016/j.automatica.2020.109002
0005-1098/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2020.109002
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2020.109002&domain=pdf
mailto:dario.piga@supsi.ch
mailto:alberto.bemporad@imtlucca.it
mailto:alessio.benavoli@ul.ie
https://doi.org/10.1016/j.automatica.2020.109002

2 D. Piga, A. Bemporad and A. Benavoli / Automatica 117 (2020) 109002

‘‘best describes’’ the current regressor-output sample. The param-
eters of this submodel are simultaneously updated via recursive
least squares in Bako et al. (2011), Breschi et al. (2016) and Naik
et al. (2017), and through particle approximation in Juloski et al.
(2005). Least squares are used at a second stage to estimate the
parameters of the local affine maps. In Bemporad et al. (2005),
PWA regression is formulated in a bounded-error identification
framework. Clustering, parameter identification, and estimation
of the number of local affine submodels are performed simul-
taneously by partitioning a suitable set of linear complementary
inequalities into a minimum number of feasible subsystems. All
the approaches in Bako et al. (2011), Bemporad et al. (2005),
Breschi et al. (2016), Ferrari-Trecate et al. (2003) and Juloski et al.
(2005) compute the polyhedral partition of the regressor space at
a second stage, once the regressors are clustered.

Optimization-based approaches are proposed in Bako (2011),
Ohlsson and Ljung (2013), Piga and Tóth (2013) and Roll, Bempo-
rad, and Ljung (2004). Piecewise affine regression is formulated
in Roll et al. (2004) as a mixed-integer linear or quadratic pro-
gramming problem and solved by branch-and-bound. The contri-
butions (Bako, 2011; Ohlsson & Ljung, 2013; Piga & Tóth, 2013)
address identification of switching systems and formulate an
over-parametrized least-squares problem with a LASSO-like reg-
ularization term penalizing the number of switches.

1.3. Paper contribution

In this work, PWA regression is addressed in a Bayesian set-
ting, deriving the posterior distribution of the model parameters
and of the predicted output. Efficient Rao-Blackwellized sampling
algorithms tailored for PWA regression are developed to approx-
imate the posterior distribution of the parameters characterizing
the PWA model. More specifically, the following two problems
are addressed:

• batch (offline) learning through Rao-Blackwellized
Metropolis–Hastings Markov-Chain Monte Carlo (MCMC)
sampling;
• recursive (online) learning through Rao-Blackwellized parti-

cle filters.

By exploiting the peculiar structure of PWA functions, only the
marginal posterior of the parameters used to define the regressor-
space partition is approximated through MCMC simulation or
particle filters, while the conditional posterior distribution of the
other parameters (given the regressor-space partition) is com-
puted analytically. Modifications of the proposed algorithms to
address both batch and recursive Maximum-A-Posteriori (MAP)
estimates are also discussed.

For the sake of completeness, it is worth mentioning that
Markov-Chain Monte Carlo algorithms have been already em-
ployed in Pillonetto (2016) and Wågberg, , Lindsten, and Schön
(2015) for batch PWA regression. Both Pillonetto (2016) andWåg-
berg et al. (2015) employ a Gibbs sampler to approximate the
marginal distribution of the whole sequence of the active lo-
cal submodels in the training set. As a consequence, the sam-
pling space increases with the number of training data. On the
other hand, the dimension of the space sampled by the Rao-
Blackwellized algorithms proposed in this paper does not depend
on the size of the training set.

Another important difference with respect to Pillonetto (2016)
is that our approach estimates the local submodels and the parti-
tion of the regressor domain in one shot, while Pillonetto (2016)
proposes a two-step procedure tailored to identification of hybrid
dynamical systems. Specifically, Gibbs sampling is used at the
first stage to compute the sequence of active submodels through
maximum likelihood. This information is used at a second stage

to estimate the affine submodels via stable spline kernels and
to partition the regressor space via linear separations methods.
The advantage in using stable spline kernels is that the regressor
(implicitly described in Pillonetto (2016) by the order of the linear
dynamical submodels and past inputs) is not a-priori specified.
On the other hand, the approach in the present paper does
not address automated feature selection and, when applied to
the identification of dynamical systems, the order of the local
submodels has to be specified a priori.

1.4. Paper outline

The paper is organized as follows. After formally introduc-
ing PWA models and prior modelling assumptions, the prob-
lem of Bayesian inference for PWA models is formulated in
Section 2. Batch learning is discussed in Section 3, where the
developed Rao-Blackwellized Metropolis–Hastings MCMC algo-
rithm tailored for PWA regression is presented. Recursive learn-
ing through Rao-Blackwellized particle filters is presented in
Section 4. The effectiveness of the proposed algorithms is il-
lustrated in Section 5 by means of a numerical example and
a benchmark case study. Conclusions are drawn in Section 6.
Detailed proofs of the main results of the paper are reported in
the Appendix.

1.5. Notation

The following notation is used throughout the paper. Let R+
be the set of positive real numbers, Rn be the set of real vectors
of dimension n, Rn,m be the set of real matrices with n rows and
m columns, and In be the identity matrix of size n. Given a matrix
A ∈ Rn,m, A′ and A(j) denote the transpose and the jth column of
A, respectively. If A is square, |A| denotes its determinant.

The Dirac delta function centred at x̄ is denoted by δx̄(x) and
I denotes the indicator function defined, for a given statement S,
as I(S) = 1 is S is true, 0 otherwise.

Given two positive parameters α, β ∈ R+, Γ (x;α, β) denotes
the probability density function of a Gamma-distributed positive
random variable x ∈ R+, i.e., Γ (x;α, β) = βα

Γ (α)x
α−1e−βx, where

Γ (α) is the Gamma function evaluated at α. For a random matrix
A ∈ Rn,m, we refer to p(A) as the probability distribution of
vec(A), where vec(A) ∈ Rnm is the vector obtained by stacking
the columns of A on top of one another. Thus, when referring to
the covariance matrix of A, we mean the covariance matrix of the
vector vec(A).

2. Problem formulation

2.1. PWA model

Consider a training set of inputs X = {xt}Tt=1 and outputs
Y = {yt}Tt=1, where t denotes the index (e.g., time) of the data
sequence, xt ∈ X ⊆ Rnx is the regressor or input and yt ∈ Y ⊆ Rny

is the output. The observation model is:

yt = f (xt)+ vt , (1a)

where vt ∈ Rny is a multivariate zero-mean white Gaussian noise
statistically independent of the input xt . For clarity of exposition
and in order not to heavy the notation, we assume a diagonal
noise covariance matrix σ 2

v Iny , with σ 2
v ∈ R+. This corresponds

to the assumption that the noises on each output channel are
statistically independent of each other and they share the same
variance σ 2

v .

D. Piga, A. Bemporad and A. Benavoli / Automatica 117 (2020) 109002 3

The function f : X → Y is PWA and defined by

f (xt) =

⎧⎪⎨⎪⎩
θ ′1
[

1
xt

]
if xt ∈ X1,

...

θ ′s
[

1
xt

]
if xt ∈ Xs,

(1b)

where θi ∈ Rnθ ,ny , with nθ = nx + 1 and i = 1, . . . , s, are
used to parametrize the local affine functions; s ∈ N denotes
the number of modes (i.e., number of affine functions θ ′i

[
1
xt

]
describing f) and Xi ⊆ X , i = 1, . . . , s, are polyhedra that form
a complete polyhedral partition1 of the regressor domain X . We
further stress that, based on the definition (1b), the function f is
locally affine in the region Xi and it has the form f (xt) = θ ′i

[
1
xt

]
.

We assume that the polyhedra Xi are generated by a piecewise-
linear separator function (Bennett & Mangasarian, 1994) and are
defined in terms of s− 1 linear inequalities as

Xi =
{
x ∈ Rnx : ω′i

[
1
x

]
≥ ω′j

[
1
x

]
, j = 1, . . . , s, j ̸= i

}
. (2)

The vectors ωi ∈ Rnω (with nω = nθ = nx + 1 and i = 1, . . . , s)
define the separator function φ(x) = maxi=1,...,s ω′i

[
1
x

]
and are

used to parametrize Xi in (2).

2.2. Learning problem

The PWA regression function f in (1) is described by the
following parameters:

• s, the number of modes;
• Θ = [θ1 . . . θs] ∈ Rnθ ,nys, the collection of parameters

defining the local affine functions in (1b);
• Ω = [ω1 . . . ωs] ∈ Rnω ,s, the collection of parame-

ters defining the polyhedra {Xi}
s
i=1 according to the linear-

inequality representation (2). In the rest of the paper, the
partition of the regressor space X generated by the param-
eters Ω is denoted as X [Ω], and {Xi[Ω]}

s
i=1 denotes the

corresponding polyhedral regions. To simplify the notation,
the dependence of Xi on Ω will be stressed only if needed;
• σ 2

v , the variance of the noise on each output channel. In the
rest of the paper, model (1) is parametrized as a function of
the noise precision σ−2v .

In this work, the number of modes s is fixed a priori and the
object of interest is the posterior distribution p(Θ, Ω, σ−2v |X, Y)
of the parameters given the training data X, Y . The posterior
distribution can be then used, for instance, to make point or
interval predictions on the output y⋆ for a new test input x⋆.
In case the parameter s is not known a priori, s can be chosen
by cross validation, with an upper-bound smax dictated by the
maximum tolerated complexity of the PWA function f .

2.3. Priors over the parameters

In order to compute the posterior distribution of the parame-
ters Θ, Ω, σ−2v , the following priors are assumed.

A1. The parameters ωi, i = 1, . . . , s, follow a zero-mean Gaus-
sian distribution with covariance matrix σ 2

ω Inω , i.e.,

ωi ∼ p(ωi) = N (ωi; 0, σ 2
ω Inω), (3)

where σω > 0 is a hyper-parameter characterizing the prior
on ωi. Furthermore, the parameters Ω are assumed to be
mutually independent, i.e., Ω ∼ p(Ω) =

∏s
i=1 p(ωi).

1 {Xi}
s
i=1 is a complete partition of X if

⋃s
i=1 Xi = X and

◦

Xi∩
◦

Xj = ∅, ∀i ̸= j,
where

◦

Xi denotes the interior of Xi .

A2. The parameters Θ, Ω, σ−2v are statistically independent of
the input data X . Furthermore, Ω is statistically independent
of Θ and σ−2v , i.e.,

p(Θ, Ω, σ−2v |X) = p(Θ, Ω, σ−2v) = p(Θ, σ−2v)p(Ω).

A3. The joint prior probability distribution of θi and σ−2v is a
Normal-Gamma which factorizes as p(θ (j)

i , σ−2v) =

p(θ (j)
i |σ

−2
v)p(σ−2v), with

p(θ (j)
i |σ

−2
v) = N

(
θ
(j)
i ; 0,

1
σ−2v

λ2Inθ

)
, (4a)

p(σ−2v) = Γ
(
σ−2v ;α0, β0

)
, (4b)

where λ > 0 is a hyper-parameter characterizing the prior
distribution p(θ (j)

i |σ
−2
v), and θ

(j)
i , j = 1, . . . , ny, denotes

the jth column of matrix θi (namely, the set of parameters
θi characterizing the jth output y(j)t of the ith local model).
Furthermore, for simplicity, the parameters Θ are assumed
to be mutually independent given σ−2v , i.e.,

Θ|σ−2v ∼ p(Θ|σ−2v) =
s∏

i=1

ny∏
j=1

p(θ (j)
i |σ

−2
v)

=
(λ−2σ−2v)

nynθ s
2

(2π)
nynθ s

2

s∏
i=1

ny∏
j=1

e−
1
2 λ−2σ−2v θ

(j)′
i θ

(j)
i . (5)

A Normal-Gamma prior is assumed in [A3] as it represents the
conjugate prior of a Gaussian likelihood with unknown mean and
variance (Bishop, 2006, Ch. 2). This choice will allow us to obtain
an analytical expression for the conditional posterior of Θ and
σ−2v given the parameters Ω .

2.4. Posterior distribution

Using Bayes’ rule, p(Θ, Ω, σ−2v |X, Y) is given by:

p(Θ, Ω, σ−2v |X, Y) =
p(Y |Θ, Ω, σ−2v , X)p(Θ, Ω, σ−2v)

p(Y |X)
. (6)

Since the noise samples vt in (1a) are assumed to be independent
and identically distributed, the likelihood p(Y |Θ, Ω, σ−2v , X) is
thus given by

p(Y |Θ, Ω, σ−2v , X) =
T∏

t=1

p(yt |Θ, Ω, σ−2v , xt)

=N
(
yt; θ ′st

[
1
xt

]
,

1
σ−2v

Iny

)
, (7)

where st denotes the active mode at index t , i.e., st = i ⇔ xt ∈
Xi[Ω].

Borrowing the notation from Pillonetto (2016), the likeli-
hood (7) can be written as

p(Y |Θ, Ω, σ−2v , X)

=
(σ−2v)

nyT
2

(2π)
nyT
2

s∏
i=1

ny∏
j=1

e−
1
2 σ−2v

(
Y(j)
i −X

′
iθ

(j)
i

)′(
Y(j)
i −X

′
iθ

(j)
i

)
, (8)

where Y(j)
i , i = 1, . . . , s and j = 1, . . . , ny, is the column vector

associated to the ith mode and to the jth output channel, whose
components are taken from the sequence {yt}Tt=1 as follows:
y′t is a row of Yi ⇔ st = i, with Yi = [Y

(1)
i . . . Y(ny)

i]. The
regressor matrix Xi is constructed accordingly, i.e.,[

1
xt

]
= kth column of Xi ⇔ yt = kth row of Yi. (9)

In other words, Yi and Xi are constructed by stacking all and only
output and input samples associated to mode i.

4 D. Piga, A. Bemporad and A. Benavoli / Automatica 117 (2020) 109002

Note that the matrices Yi, and consequently Xi, depend on the
partition of the regressor space.

The following sections present the developed Rao-
Blackwellized sampling algorithms, tailored to PWA models, to
compute (an approximation of) the posterior distribution p(Θ, Ω,
σ−2v |X, Y) both in a batch mode (Section 3) and recursively
(Section 4).

3. Rao-Blackwellised Metropolis–Hastings MCMC for batch
learning

When batch learning is addressed, the posterior distribution
p(Θ, Ω, σ−2v |X, Y) can be approximated through MCMC algo-
rithms, which attempt to simulate draws from a complex distri-
bution of interest (Andrieu, de Freitas, Doucet, & Jordan, 2003).

A naive application of MCMC to the considered PWA regres-
sion problem consists in generating a sequence of M random
samples Θ[k], Ω[k], σ−2v [k], k = 1, 2, . . . ,M , from an irreducible
and aperiodic Markov chain whose stationary distribution is the
target posterior distribution p(Θ, Ω, σ−2v |X, Y). The posterior is
then approximated with the empirical point-mass distribution

p(Θ, Ω, σ−2v |X, Y) ≈
1
M

M∑
k=1

δ(Θ[k],Ω[k],σ−2v [k])
(Θ, Ω, σ−2v).

3.1. Rao-Blackwellised approach

Instead of using naive MCMC methods, which would require
to draw samples from the high-dimensional parameter space
(Θ, Ω, σ−2v), a hybrid approach is exploited, where part of the
posterior is computed analytically and the other part is approxi-
mated using an MCMC sampler. Specifically, after factorizing the
joint posterior distribution as

p(Θ, Ω, σ−2v |X, Y) = p(Θ, σ−2v |Ω, X, Y)p(Ω|X, Y),

the structure of PWAmodels is exploited to compute an analytical
expression for p(Θ, σ−2v |Ω, X, Y), while the marginal posterior
p(Ω|X, Y) is approximated with the point mass distribution

p(Ω|X, Y) =
1
M

M∑
k=1

δΩ[k](Ω) (10)

through MCMC simulation, thus avoiding sampling over the pa-
rameter space (Θ, σ−2v). Summarizing, the posterior will be fi-
nally approximated by

p(Θ, Ω, σ−2v |X, Y) ≈ p(Θ, σ−2v |Ω, X, Y)
1
M

M∑
k=1

δΩ[k](Ω). (11)

Approximating only a marginal of the distribution of interest
in Monte Carlo sampling methods (such as MCMC, importance
sampling, or particle filtering) is commonly referred to as Rao-
Blackwellised approach, and has the advantage of reducing the
variance of Monte Carlo estimates (Casella & Robert, 1996).

The following proposition provides the analytical expression
for the conditional distribution p(Θ, σ−2v |Ω, X, Y). The compu-
tation of the marginal p(Ω|X, Y) through Metropolis–Hastings
MCMC is discussed in Section 3.2.

Proposition 1. The posterior conditional distribution p(Θ, σ−2v |Ω,

X, Y) is a Normal-Gamma given by

p(Θ, σ−2v |Ω, X, Y) = Γ (σ−2v ;α, β)
p(σ−2v |Ω,X,Y)

s∏
i=1

ny∏
j=1

N (θ (j)
i ;µ

(j)
i , σ 2

v Fi)
p(Θ|σ−2v ,Ω,X,Y)

,

(12a)

with

Fi =
(
XiX′i + λ−2Inθ

)−1
, (12b)

µi =
(
XiX′i + λ−2Inθ

)−1
XiYi = FiXiYi, (12c)

α = α0 +
nyT
2

, (12d)

β = β0 +
1
2

s∑
i=1

ny∑
j=1

(
Y(j)′

i Y(j)
i − Y(j)′

i X′iµ
(j)
i

)
. (12e)

Proposition 1 follows because of conjugacy between likelihood
and prior. A detailed proof is in Appendix A.1.

3.2. Approximation of p(Ω|X, Y) through MCMC

Let us now focus on the approximation of the marginal pos-
terior p(Ω|X, Y) through MCMC simulation. The well known
Metropolis–Hastings MCMC algorithm (Chib & Greenberg, 1995)
is used to draw samples from p(Ω|X, Y).

The Metropolis–Hastings MCMC sampler is reviewed in Algo-
rithm 1. The algorithm simulates a Markov Chain with stationary
distribution p(Ω|X, Y), and it requires to specify: an initial sam-
ple Ω[0]; a random-walk proposal distribution q(Ω∗|Ω[k]); the
length of the Markov Chain (namely, number of iterations) M . At
each iteration k, a proposal Ω∗ is drawn from the distribution
q(Ω∗|Ω[k]) (Step 1.1) and accepted with probability A(Ω∗, Ω[k])
(Steps 1.2 and 1.3). If the proposal Ω∗ is accepted then Ω[k +
1] is set to Ω∗ (Step 1.4), otherwise Ω[k + 1] is set to Ω[k]
(Step 1.5). The output is the sequence of samples {Ω[k]}Mk=1
generated during the execution of the algorithm.

Implementing Algorithm 1 only requires the acceptance prob-
ability A(Ω∗, Ω[k]) to be computed (Step 1.2). Since the pro-
posal is chosen by the user, the only challenge in evaluating

A(Ω∗, Ω[k]) is to compute
p(Ω∗|X, Y)
p(Ω[k]|X, Y)

, whose value is given

by the following proposition.

Proposition 2. For given Ω∗ and Ω[k], the ratio
p(Ω∗|X, Y)
p(Ω[k]|X, Y)

is

equal to

(β[k])α

(β∗)α

∏s
i=1|X

∗

i (X
∗

i)
′
+ λ−2Inθ

|
−

ny
2∏s

i=1|Xi[k]X′i[k] + λ−2Inθ
|
−

ny
2

p(Ω∗)
p(Ω[k])

, (13)

where p(Ω) is the prior on Ω given in (3), and Xi[k] (resp. β[k]) are
defined as in (9) (resp. (12e)) based on the partition X [Ω[k]].2

See Appendix A.2 for a proof of Proposition 2.

Remark 1. The proposal distribution q(Ω∗|Ω[k]) is the main
tuning parameter in MCMC simulation. Indeed, for small-variance
proposal distributions the proposal samples move around the
space slowly, with slow convergence of the stationary distribu-
tion of the Markov chain to the target distribution. On the other
hand, for high-variance proposal distributions the acceptance rate
can be very low because the proposal samples are likely to belong
to regions with low probability density, and again convergence to
the target distribution can be slow. In the examples discussed in
Section 5, we use isotropic Gaussian proposals q(Ω∗|Ω[k]), with
variance chosen through trial-and-error.

2 Since the matrix Xi in (9), and thus the parameter β in (12e), depends
on the partition X [Ω] of the regressor space X . It is thus important to specify
in (13) and in the rest of the paper which partition is used to compute Xi
and β .

D. Piga, A. Bemporad and A. Benavoli / Automatica 117 (2020) 109002 5

Algorithm 1 Metropolis-Hastings MCMC for p(Ω|X, Y)
Input: initial value Ω[0]; proposal distribution q(Ω∗|Ω[k]); number

of iterations M .

1. for k = 0, . . . ,M − 1 do

1.1. draw proposal Ω∗ from q(Ω∗|Ω[k]);
1.2. set acceptance probability

A(Ω∗, Ω[k])← min
{
1, p(Ω∗|X,Y)q(Ω[k]|Ω∗)

p(Ω[k]|X,Y)q(Ω∗|Ω[k])

}
with ratio p(Ω∗|X,Y)

p(Ω[k]|X,Y) in (13);

1.3. accept proposal Ω∗ with probability A(Ω∗, Ω[k]);
1.4. if the proposal Ω∗ is accepted, set Ω[k+ 1] ← Ω∗;
1.5. else, set Ω[k+ 1] ← Ω[k];

2. end for;
3. end.

Output: Samples {Ω[k]}Mk=1.

3.3. Making inference

Once an approximation of the posterior p(Θ, Ω, σ−2v |X, Y) is
computed as in (11), we can make a prediction of the output y⋆

given a new test input x⋆. According to Bayesian estimation, we
look for the distribution p(y⋆

|x⋆, X, Y) of y⋆ given the input x⋆ and
the training data X, Y .

The distribution of interest p(y⋆
|x⋆, X, Y) is written as

p(y⋆
|x⋆, X, Y) =

∫
p(y⋆
|x⋆, Ω, X, Y)p(Ω|X, Y)dΩ

and then approximated using the empirical mass distribution (10)
by

p(y⋆
|x⋆, X, Y) ≈

1
M

M∑
k=1

p(y⋆
|x⋆, Ω[k], X, Y). (14)

Thus, only the conditional distribution p(y⋆
|x⋆, Ω[k], X, Y) is

needed in (14). Its expression is provided by the following propo-
sition.

Proposition 3. Consider the regressor-space partition X [Ω[k]] and
let i⋆[k] be the index of the polyhedron where x⋆ belongs to.3 The
output distribution p(y⋆

|x⋆, Ω[k], X, Y) is the multivariate Student
distribution

p(y⋆
|x⋆, Ω[k], X, Y) = St(y⋆

;µ′i⋆ [k]x
⋆, Vi⋆ [k], 2α)

∝

(
1+

1
2α

(y⋆
− µ′i⋆ [k]x

⋆)′V−1i⋆ [k](y
⋆
− µ′i⋆ [k]x

⋆)
)− ny+2α

2

(15)

with mean µ′i⋆ [k]x
⋆, diagonal covariance matrix α

α−1Vi⋆ [k] and de-
grees of freedom 2α, where

Vi⋆ [k] =
β[k]
α

(x⋆′ (Xi⋆ [k]X′i⋆ [k] + λ−2Inθ
)−1x⋆

+ 1)Iny (16)

and µi⋆ [k] is defined analogously to (12c) based on the partition
X [Ω[k]], i.e.,

µi⋆ [k] =
(
Xi⋆ [k]X′i⋆ [k] + λ−2Inθ

)−1
Xi⋆ [k]Y′i⋆ [k].

See Appendix A.3 for a proof of Proposition 3.
The probability distribution p(y⋆

|x⋆, X, Y) in Eq. (14) is thus a
mixture of Student distributions. The conditional expected value

3 The dependence of i⋆[k] on k will be omitted to simplify notation.

and covariance matrix of y⋆ can be derived using standard results
for mixtures of distributions, and they are given by:

E
[
y⋆
|x⋆, X, Y

]
=

1
M

M∑
k=1

µ′i⋆[k][k]x
⋆,

Cov
(
y⋆
|x⋆, X, Y

)
=

1
M

M∑
k=1

α

α − 1
Vi⋆[k][k]

+
1
M

M∑
k=1

(
(µ′i⋆[k][k]x

⋆
−

1
M

M∑
h=1

µ′i⋆[k][h]x
⋆)

(µ′i⋆[k][k]x
⋆
−

1
M

M∑
h=1

µ′i⋆[k][h]x
⋆)′
)

.

3.4. Maximum-a-posteriori estimate

In case one is not interested in the posterior distribution
p(Θ, Ω, σ−2v |X, Y) but only in seeking for the maximum-
a-posteriori (MAP) estimate of the parameters Θ, Ω, σ−2v , the
samples generated by Algorithm 1 can be used to approximate
the MAP estimate as

Θ̂, Ω̂, σ̂−2v = argmax
Θ,Ω,σ−2v

p(Ω|X, Y)p(Θ, σ−2v |Ω, X, Y)

≈ arg max
{Ω[k]}Mk=1

p(Ω[k]|X, Y) max
Θ,σ−2v

p(Θ, σ−2v |Ω[k], X, Y). (18)

The values of the parameters Θ̂, Ω̂, σ̂−2v solving problem (18) are
provided in the following proposition.

Proposition 4. The MAP estimate for the parameter Ω is given by:

Ω̂ = argmax
{Ω[k]}Mk=1

β[k]1−
snynθ

2 −αp(Ω[k]). (19)

Furthermore, let µ̂i (resp. β̂) be the parameter µi (resp. β) in (12c)
(resp. in (12e)) associated to the partition X [Ω̂] generated by the
parameter Ω̂ in (19). Then, the MAP estimate for the parameters θi
and σ−2v is given by:

θ̂i = µ̂i, σ̂−2v =
α +

snynθ

2 − 1

β̂
. (20)

See Appendix A.4 for a proof of Proposition 4.
The MAP estimate provided in Proposition 4 is based on the

outcome {Ω[k]}Mk=1 of Algorithm 1. This strategy is not efficient,
as some samples are generated by exploring regions which might
not be around the maximizer of p(Θ, Ω, σ−2v |X, Y). Based on the
expression of the MAP parameter estimate Ω̂ in (19), a more effi-
cient approach is to generate samples Ω[k] simulating a Markov
chain with invariant probability distribution proportional to

max
Θ,σ−2v

p(Θ, Ω, σ−2v |X, Y) = β1−
snynθ

2 −αp(Ω). (21)

The intuitive idea of generating samples Ω[k] using (21) in-
stead of the marginal posterior p(Ω|X, Y) is to approximate,
instead of the posterior p(Θ, Ω, σ−2v |X, Y), only the manifold
max

Θ,σ−2v
p(Θ, Ω, σ−2v |X, Y). Furthermore, (21) can be also

embedded into a simulated annealing strategy to simulate a time-
heterogeneous Markov chain with invariant probability distribu-
tion at iteration k proportional to(

max
Θ,σ−2v

p(Θ, Ω, σ−2v |X, Y)

) 1
h[k]

=

(
β1−

snynθ
2 −αp(Ω)

) 1
h[k]

, (22)

where h[k] is a decreasing cooling schedule with limk→∞ h[k] =
0. Simulated annealing is a well known strategy to compute

6 D. Piga, A. Bemporad and A. Benavoli / Automatica 117 (2020) 109002

the maximum of probability distributions and it is motivated by
the fact that, as h[k] → 0, all the mass of (max

Θ,σ−2v
p(Θ, Ω,

σ−2v |X, Y))
1

h[k] is concentrated on the parameters Ω maximizing
max

Θ,σ−2v
p(Θ, Ω, σ−2v |X, Y).

Summarizing, the computation of a maximum-a-posteriori es-
timate with simulated annealing can be carried out by consider-
ing the following acceptance probability A(Ω∗, Ω[k]) at Step 1.2
of Algorithm 1:

A(Ω∗, Ω[k])← min

⎧⎪⎨⎪⎩1,

(
(β∗)1−

snynθ
2 −αp(Ω∗)

) 1
h[k]

q(Ω[k]|Ω∗)(
(β[k])1−

snynθ
2 −αp(Ω[k])

) 1
h[k]

q(Ω∗|Ω[k])

⎫⎪⎬⎪⎭ .

4. Rao-Blackwellised particle filters for iterative learning

This section discusses the iterative computation of the poste-
rior distribution p(Θ, Ω, σ−2v |X, Y) through an incremental learn-
ing algorithm. By denoting with X1:t (resp. Y1:t) the set containing
regressors (resp. outputs) from index 1 to index t , the goal is to
recursively update p(Θ, Ω, σ−2v |X1:t−1, Y1:t−1) in order to obtain
the posterior distribution p(Θ, Ω, σ−2v |X1:t , Y1:t).

A Rao-Blackwellised version of particle filters is proposed. In
order to allow for an implementation based on particle filters, the
parameter Ω defining the partition of the input space X is not
assumed to be a constant, but it is allowed to vary from index
t − 1 to t . To this end, the variable Ωt at time t is assumed to
be conditionally independent of past X1:t−1, Y1:t−1, Ω1:t−2 given
Ωt−1, i.e.,

p(Ωt |Ω1:t−1, X1:t−1, Y1:t−1) = p(Ωt |Ωt−1). (23)

The variation of the parameter Ω from time t−1 to t is modelled
by the stochastic rule

Ωt = Ωt−1 + EΩ , (24)

where EΩ ∈ Rnω,s is a Gaussian random matrix with zero mean
and covariance σ 2

Ω Inωs. The matrix EΩ acts as a fictitious process
noise on the variable Ωt . The parameter σ 2

Ω should be tuned to
trade off between exploration over the domain of the parameter
Ω and exploitation. Indeed, if Ω is treated as a constant parameter
(i.e., Ωt = Ωt−1, or equivalently σ 2

Ω = 0) then there is no explo-
ration in the particle filter algorithm and the variable Ωt [k] will
be equal to the initial guess Ω0[k] made at the first iteration of
the particle filter algorithm. On the other hand, large values of the
variance σ 2

Ω may move particles in regions with low likelihood.
The goal is to recursively compute the joint and the marginal

posterior distributions p(Θ, σ−2v , Ω1:t |X1:t , Y1:t) and p(Θ, σ−2v ,

Ωt |X1:t , Y1:t), with Ω1:t denoting the sequence of the parameters
Ω from index 1 to index t .

4.1. Rao-Blackwellised approach

Similarly to the batch Rao-Blackwellised MCMC algorithm dis-
cussed in Section 3.1, the posterior distribution is first factorized
as

p(Θ, σ−2v , Ω1:t |X1:t , Y1:t)
=p(Θ, σ−2v |Ω1:t , X1:t , Y1:t)p(Ω1:t |X1:t , Y1:t). (25)

The conditional distribution p(Θ, σ−2v |Ω1:t , X1:t , Y1:t) is updated
(recursively) analytically, while only the marginal posterior
p(Ω1:t |X1:t , Y1:t) is approximated through particle filters.

Let st|t be the active mode, at the index t , defined based
on the regressor-space partition X [Ωt], i.e., st|t = i ⇔ xt ∈
Xi[Ωt]. The matrices Yi,t and Xi,t at index t can be redefined
as: y′t is a row of Yi,t ⇔ st|t = i and

[
1
xt

]
= kth column of Xi,t

⇔ y′t = kth row of Yi,t . These matrices can be constructed
recursively as follows

Yi,t =

⎧⎨⎩
[

Yi,t−1
y′t

]
if st|t = i,

Yi,t−1 otherwise.
(26a)

Xi,t =

{ [
Xi,t−1

1
xt

]
if st|t = i,

Xi,t−1 otherwise.
(26b)

Note that the matrices Yi,t and Xi,t depend on the regressor-space
partitions X [Ω1], . . . ,X [Ωt]. If necessary, this dependence will
be made explicit as Yi,t [Ω1:t] and Xi,t [Ω1:t].

The conditional distribution p(Θ, σ−2v |Ω1:t , X1:t , Y1:t) can be
computed straightforwardly using the same derivations in
Proposition 1, taking into account the index-dependence of the
parameter Ω . More specifically,

p(Θ, σ−2v |Ω1:t , X1:t , Y1:t)

= Γ (σ−2v ;αt , βt)
p(σ−2v |Ω1:t ,X1:t ,Y1:t)

s∏
i=1

ny∏
j=1

N (θ (j)
i ;µ

(j)
i,t , σ

2
v Fi,t)

p(Θ|σ−2v ,Ω1:t ,X1:t ,Y1:t)

, (27)

with Fi,t , µi,t , αt and βt defined similarly to (12). Specifically,

Fi,t [Ω1:t] =
(
Xi,tX′i,t + λ−2Inθ

)−1
, (28a)

µi,t [Ω1:t] =
(
Xi,tX′i,t + λ−2Inθ

)−1
Xi,tYi,t , (28b)

αt =α0 +
nyt
2

, (28c)

βt [Ω1:t] =β0 +
1
2

s∑
i=1

ny∑
j=1

(
Y(j)′

i,t Y
(j)
i,t − Y(j)′

i,t X
′

i,tµ
(j)
i,t

)
, (28d)

where the dependence on the parameters Ω1:t is made explicit in
the definitions above.

The following proposition provides the formulas to recur-
sively update the parameters Fi,t , µi,t and βt that characterize the
conditional distribution p(Θ, σ−2v |Ω1:t , X1:t , Y1:t) in (27).

Proposition 5. The parameters Fi,t (and F−1i,t), µi,t and βt defined
in (28a), (28b) and (28d) can be recursively updated as follows:

F−1i,t =F
−1
i,t−1 +

[
1
xt

]
[1 xt] I(st|t = i), (29a)

Fi,t =Fi,t−1 −
Fi,t−1

[
1
xt

]
[1 xt] Fi,t−1

1+ [1 xt] Fi,t−1
[

1
xt

] I(st|t = i), (29b)

µi,t =µi,t−1 + Fi,t
[

1
xt

]
(y′t − [1 x′t]µi,t−1)I(st|t = i) (29c)

βt =βt−1 +
1
2

s∑
i=1

ny∑
j=1

(y(j)t y(j)t − y(j)t [1 x′t]µ
(j)
i,t)I(st|t = i)

−
1
2

s∑
i=1

ny∑
j=1

µ
(j)′
i,t−1

(
Inθ
−
[

1
xt

]
[1 xt] Fi,t

) [
1
xt

]
× (y(j)t − [1 x′t]µ

(j)
i,t−1)I(st|t = i). (29d)

See Appendix A.5 for a proof of Proposition 5.

4.2. Update of p(Ω1:t |X1:t , Y1:t) through particle filters

We discuss now the recursive update of the marginal poste-
rior p(Ω1:t |X1:t , Y1:t). According to particle filter algorithms, the
distribution p(Ω1:t |X1:t , Y1:t) is approximated by the empirical
point-mass distribution

p(Ω1:t |X1:t , Y1:t) ≈
Np∑
k=1

wt [k]δΩ1:t [k](Ω1:t),
Np∑
k=1

wt [k] = 1, (30)

D. Piga, A. Bemporad and A. Benavoli / Automatica 117 (2020) 109002 7

Algorithm 2 Updating particles’ position {Ωt [k]}
Np
k=1 and weights

{wt [k]}
Np
k=1

Input: previous particles’ position {Ωt−1[k]}
Np
k=1 and weights

{wt−1[k]}
Np
k=1; proposal distribution q(Ωt |Ωt−1); current output yt and

input xt .

1. for k = 1, . . . ,Np do

1.1. resample Ω̃t−1[k] from probability distribution
Np∑
k=1

wt−1[k]δΩt−1[k](Ω̃t−1);

1.2. set w̃t−1[k] = 1
Np

;

2. end for;
3. for k = 1, . . . ,Np do

3.1. set wt−1[k] ← w̃t−1[k], Ωt−1[k] ← Ω̃t−1[k];
3.2. generate sample Ωt [k] from q(Ωt |Ωt−1[k]);
3.3. set weights

w̃t [k]←p(yt |Ω1:t [k],X1:t−1,xt ,Y1:t−1)
p(Ωt |Ωt−1[k])
q(Ωt |Ωt−1[k])

wt−1[k]

with p(yt |Ω1:t [k],X1:t−1,xt ,Y1:t−1) in (31);

4. end for;
5. normalize weights wt [k] ← w̃t [k]∑Np

j=1 w̃t [j]
, k = 1, . . . ,Np;

6. end.

Output: current particles’ position {Ωt [k]}
Np
k=1 and weights {wt [k]}

Np
k=1.

where Np is the number of particles, Ω1:t [k] is the trajectory of the
kth particle from index 1 to index t , and wt [k] is a non-negative
weight associated to the particle.

The marginal posterior distribution p(Ω1:t |X1:t , Y1:t) is factor-
ized (up to the scaling factor 1

p(yt |Y1:t−1)
) as

p(Ω1:t |X1:t , Y1:t) ∝
p(yt |Ω1:t , X1:t , Y1:t−1)p(Ωt |Ωt−1)p(Ω1:t−1|X1:t−1, Y1:t−1),

and p(Ω1:t−1|X1:t−1, Y1:t−1) is approximated as in (30) based on
the trajectory of the particles up to t − 1, i.e.,

p(Ω1:t−1|X1:t−1, Y1:t−1) ≈
Np∑
k=1

wt−1[k]δΩ1:t−1[k](Ω1:t−1).

The particles’ weights wt [k] are computed recursively based on
the weights wt−1[k] using a standard particle filter approach
outlined in Algorithm 2. At Steps 1.1–1.2, equally-weighted par-
ticles are generated by resampling the variable Ωt−1[k], k =
1, . . . ,Np, from the previous approximation of the marginal dis-
tribution p(Ωt−1|X1:t−1, Y1:t−1). A new sample Ωt [k] is then gen-
erated from a proposal distribution q(Ωt |Ωt−1[k]) (Step 3.2) and
the particles’ weights wt [k] are updated and finally normalized
(Steps 3.3 and 5). The generated samples {Ωt [k]}

Np
k=1 and nor-

malized weights {wt [k]}
Np
k=1 are then used to approximate the

distribution p(Ω1:t |X1:t , Y1:t) as in (30). As a common practice
in particle filtering, the proposal q(Ωt |Ωt−1[k]) is chosen to be
p(Ωt |Ωt−1[k]). Thus, based on the assumptions on the evolution
of the parameter Ωt in (24), the new matrix Ωt [k] is generated by
a Gaussian distribution with mean Ωt−1[k] and covariance σ 2

Ω Inωs.

Implementing Algorithm 2 requires computing the marginal
likelihood p(yt |Ω1:t [k], X1:t−1, xt , Y1:t−1) at Step 3.3, whose ex-
pression is provided (up to a proportionality constant) in the
following proposition.

Proposition 6. The marginal likelihood p(yt |Ω1:t [k], X1:t−1,
xt , Y1:t−1) is proportional to

(βt−1[k])
αt−1

(βt [k])αt

⏐⏐Fst|t [k],t−1[k]⏐⏐− ny
2
⏐⏐⏐F−1st|t [k],t

[k]
⏐⏐⏐− ny

2
, (31)

where st|t [k] is the active mode at index t associated to the partition
X [Ωt [k]], i.e., st|t [k] = i⇔ xt ∈ Xi[Ωt [k]].

In (31), Fi,t [k] and βt [k] are used as a short notation for
Fi,t [Ω1:t [k]] and βt [Ω1:t [k]] in (28).

A proof of the proposition is provided in Appendix A.6.
Once the particles’ weights {wt [k]}

Np
k=1 are computed through

Algorithm 2, the joint posterior distribution p(Θ, σ−2v ,
Ω1:t |X1:t , Y1:t) is finally obtained from (25), (27) and (30), i.e.,

p(Θ, σ−2v , Ω1:t |X1:t , Y1:t)

=

Np∑
k=1

wt [k]p(Θ, σ−2v |Ω1:t [k], X1:t , Y1:t)δΩ1:t [k](Ω1:t)

=

Np∑
k=1

wt [k]Γ (σ−2v ;αt , βt [k])

×

s∏
i=1

ny∏
j=1

N (θ (j)
i ;µ

(j)
i,t [k], σ

2
v Fi,t [k])δΩ1:t [k](Ω1:t), (32)

where µi,t [k] is a short for µi,t [Ω1:t [k]] in (28b).
The marginal distribution p(Θ, σ−2v , Ωt |X1:t , Y1:t) is derived

from p(Θ, σ−2v , Ω1:t |X1:t , Y1:t) and approximated as

p(Θ, σ−2v , Ωt |X1:t , Y1:t)

≈

Np∑
k=1

wt [k]p(Θ, σ−2v |Ω1:t [k], X1:t , Y1:t)δΩt [k](Ωt)

=

Np∑
k=1

wt [k]Γ (σ−2v ;αt , βt [k])

×

s∏
i=1

ny∏
j=1

N (θ (j)
i ;µ

(j)
i,t [k], σ

2
v Fi,t [k])δΩt [k](Ωt). (33)

4.3. Making inference

The distribution p(y⋆
|x⋆, X1:t , Y1:t) of a predictor y⋆ given a new

test input x⋆ can be computed using the marginal distribution
p(Θ, σ−2v , Ωt |X1:t , Y1:t) in (33). Specifically, let us consider the
partition X [Ωt [k]] and let i⋆t [k] be the index of the region where
x⋆ belong to, i.e.,

i⋆t [k] : x
⋆
∈ Xi⋆t [k][Ωt [k]].

The dependence of i⋆t [k] on t and k will be omitted in the follow-
ing. Based on the same arguments in Section 3.3, the distribution
p(y⋆
|x⋆, X1:t , Y1:t) is approximated by

p(y⋆
|x⋆, X1:t , Y1:t) ≈

1
Np

Np∑
k=1

p(y⋆
|x⋆, Ωt [k], X1:t , Y1:t),

where p(y⋆
|x⋆, Ωt [k], X1:t , Y1:t) is the multivariate t-Student dis-

tribution

p(y⋆
|x⋆, Ωt [k], X1:t , Y1:t) = St(y⋆

;µ′i⋆,t [k]x
⋆, Vi⋆,t [k], 2αt)

∝

(
1+

1
2αt

(y⋆
− µ′i⋆,t [k]x

⋆)′V−1i⋆,t [k](y
⋆
− µ′i⋆,t [k]x

⋆)
)− ny+2αt

2

,

8 D. Piga, A. Bemporad and A. Benavoli / Automatica 117 (2020) 109002

with Vi⋆,t [k] defined as in (16) based on the polyhedral partitions
X [Ω1[k]] , . . . ,X [Ωt [k]], i.e.,

Vi⋆,t [k] =
βt [k]
αt

(x⋆′ (Xi⋆,t [k]X′i⋆,t [k] + λ−2Inθ
)−1x⋆

+ 1)Iny .

4.4. Maximum-a-posteriori estimate

In case the final objective is only to seek for the maximum-a-
posteriori estimate

Θ̂t , σ̂
−2
v,t , Ω̂1:t = argmax

Θ,σ−2v ,Ω1:t

p(Θ, σ−2v , Ω1:t |X1:t , Y1:t), (34)

an approach similar to the one discussed in Section 3.4 can
be used. Specifically, the value of the MAP parameter estimate
Θ̂t , σ̂

−2
v,t , Ω̂1:t solving problem (34) is provided in the following

proposition.

Proposition 7. The MAP estimate for the parameters Ω1:t , θi,t , σ
−2
v,t

is given by:

Ω̂1:t = argmax
Ω1:t

p(Ω1:t |X1:t , Y1:t)β
1−

snynθ
2

t

s∏
i=1

|F−1i,t |
ny
2 , (35a)

θ̂i,t = µi,t [Ω̂1:t], σ̂−2v,t =
α +

snynθ

2 − 1

βt [Ω̂1:t]
, (35b)

where µi,t [Ω̂1:t] (resp. βt [Ω̂1:t]) is defined in (28b) (resp. in (28d))
for Ω1:t = Ω̂1:t .

See Appendix A.7 for a derivation of the results in
Proposition 7.

The following proposition provides a recursive formula to
iteratively update the objective function in (35a).

Proposition 8. To compact the notation, let us denote the objective
function in (35a) with p̃(Ω1:t |X1:t , Y1:t), i.e.,

p̃(Ω1:t |X1:t , Y1:t) = p(Ω1:t |X1:t , Y1:t)β
1−

snynθ
2

t

s∏
i=1

|F−1i,t |
ny
2

The following formula provides a recursive formula to compute
p̃(Ω1:t |X1:t , Y1:t) (up to a normalization constant) starting from
p̃(Ω1:t−1|X1:t−1, Y1:t−1):

p̃(Ω1:t |X1:t , Y1:t)

∝
(βt)1−

snynθ
2 −αt

(βt−1)1−
snynθ

2 −αt−1
p(Ωt |Ωt−1)p̃(Ω1:t−1|X1:t−1, Y1:t−1). (36)

See Appendix A.8 for a proof of Proposition 8.
Using the recursive formula in (36), the MAP estimation prob-

lem (35a) is solved by approximating its objective function
p̃(Ω1:t |X1:t , Y1:t) via particle filters:

Ω̂1:t ≈ arg max
{Ω1:t [k]}

Np
k=1

p̃(Ω1:t [k]|X1:t , Y1:t). (37)

The particles’ trajectory {Ω1:t [k]}
Np
k=1 and the associated weights

{wt [k]}
Np
k=1 approximating p̃(Ω1:t [k]|X1:t , Y1:t) are computed

through Algorithm 2, by simply replacing the (unnormalized)
weight update at Step 3.3 with

w̃t [k] ←
(βt [k])1−

snynθ
2 −αt

(βt−1[k])1−
snynθ

2 −αt−1

p(Ωt |Ωt−1[k])
q(Ωt |Ωt−1[k])

wt−1[k].

Then, an approximation of the MAP estimate Ω̂1:t can be finally
computed as

Ω̂1:t ≈ arg max
{Ω1:t [k]}

Np
k=1

p̃(Ω1:t [k]|X1:t , Y1:t). (38)

Once the polyhedral partition X [Ω̂t] is computed, the MAP es-
timates θ̂i,t and σ̂−2v,t are from (35b) and using the recursive
formulas (28).

5. Examples and applications

The algorithms presented in the previous sections are tested
via a numerical example using synthetic data and through a
benchmark case study. The tests are run on an i7 2.40-GHz Intel
core processor in MATLAB R2016b. MATLAB codes of the algo-
rithms can be found at http://dariopiga.com/Software/PWABay.
rar.

In both examples the hyper-parameters σ 2
ω, α0, β0, λ

2 defin-
ing the priors over the PWA model parameters Ω, Θ, σ−2v (see
Section 2.3) are set to σ 2

ω = 100, α0 = 1, β0 = 0.001, λ2
= 1000.

These hyper-parameters correspond to broad (large variance)
‘‘uninformative’’ prior distributions.

The performance of the estimated models is assessed on a test
dataset (separated from the training set) in terms of the Best Fit
Rate (BFR) defined as

BFR = 1−

√∑Tv
t=1(y

⋆
t − ŷ⋆

t)′(y⋆
t − ŷ⋆

t)∑Tv
t=1(y

⋆
t − ȳ⋆)′(y⋆

t − ȳ⋆)
,

where Tv is the length of the test sequence, ŷ⋆
t is the estimated

expected value of the output, y⋆
t and ȳ⋆ are the true output and

its sample mean, respectively.

5.1. Numerical example

Data description
Data is generated by a discontinuous multi-input multi-output

PWA function as in (1), with s = 3 modes, yt ∈ R4 and xt ∈ R10.
The matrices θ1, θ2, θ3 ∈ R11,4 are randomly generated and the
regions X1,X2,X3 partitioning the regressor space are defined as
in (2), with equation in Box I.
Two disjoint sets of length T = 20, 000 and Tv = 1, 000 are
generated and used to train the model and assess its perfor-
mance. The output noise vt ∈ R4 is generated by a zero-mean
Gaussian white noise process with covariance matrix σ 2

v I4, with
σ 2

v = 4. This corresponds to the signal-to-noise ratio SNR =

10 log10

∑T
t=1 y

′
tyt∑T

t=1 v′tvt
= 18.5 dB. To better assess the quality of the

estimated model, test data is not corrupted by noise.

Batch learning
First, a batch Bayesian inference problem is addressed. The

conditional posterior distribution p(Ω|X, Y) is approximated by
running Algorithm 1 for M = 5, 000 iterations, with a random
initial guess Ω[0] and an isotropic Gaussian proposal distribution
q(Ω∗|Ω[k]) with mean Ω[k] and covariance matrix 0.25Inωs.

Once the posterior distribution p(Θ, Ω, σ−2v |X, Y) is com-
puted, the distribution p(y⋆

t |x
⋆
t , X, Y) of the output y⋆

t given a
test input x⋆

t is derived as discussed in Section 3.3. Fig. 1 shows
the expected value ŷ⋆

t of the output, along with the 99%-credible
intervals4 and the true output y⋆

t . For the sake of space and for a
better visualization, only a subset of test data on the first output
is plotted. Similar results are obtained for the other three outputs.
The achieved BFR is 93%.

The mean value of the parameters Ω defining the polyhedral
partition of the input domain is approximated from the computed
marginal posterior p(Ω|X, Y) and used to estimate the sequence

4 The credible intervals are computed by approximating the distribu-
tions (14)–(15) through numerical sampling.

http://dariopiga.com/Software/PWABay.rar
http://dariopiga.com/Software/PWABay.rar
http://dariopiga.com/Software/PWABay.rar

D. Piga, A. Bemporad and A. Benavoli / Automatica 117 (2020) 109002 9

Ω = [ω1 ω2 ω3] =[
−0.8 0.0 0.2 3.0 0.3 0.2 0.0 1.0 5.0 −0.5 −0.6
−1.0 −0.4 0.4 2.0 0.6 0.2 −0.4 0.4 −0.3 0.3 0.5
−0.5 0.2 0.7 1.5 1.0 −0.2 0.7 −0.2 0.2 0.5 0.8

]′

Box I.

Fig. 1. Batch learning. True output yt (red); expected value of the output ŷ⋆
t

(blue); 99%-credible intervals (grey regions). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 2. Batch learning. CPU time required to run Algorithm 1 vs length T of the
training dataset.

of active modes {ŝ⋆t }
Tv
t=1. This sequence is compared with the true

mode sequence {s⋆t }
Tv
t=1, which is assumed to be provided by an

oracle only for validation purposes. The accuracy in reconstruct-
ing the hidden mode s⋆t is measured by the mode-fit (MFs) index,

defined as MFs =
1
Tv

Tv∑
t=1

I(s⋆t = ŝ⋆t). The resulting MFs is 98%

(namely, 98% of regressor samples x⋆
t are assigned to the ‘‘true’’

local submodel).

Computational complexity analysis
In order to analyse the computational complexity of the pro-

posed learning algorithm, the training phase is performed using
training sets of different lengths T . Fig. 2 shows the CPU time
required by Algorithm 1 to process the training datasets as a
function of T (for a fixed simulation length M = 5, 000). As
expected, the CPU time increases linearly with the length T of
the training set. This is due to the fact that the number of opera-
tions needed to compute the acceptance probability A(Ω∗, Ω[k])
(Algorithm 1, Step 1.2), or equivalently the ratio p(Ω∗|X,Y)

p(Ω[k]|X,Y) , in-
creases linearly with T . In fact, computing p(Ω∗|X,Y)

p(Ω[k]|X,Y) requires to
construct X⋆

i , Xi[k], β⋆ and β[k] (Proposition 2, Eq. (13)). The cost
of constructing these parameters increases linearly with T .

Monte Carlo analysis
In order to provide more representative results, a Monte Carlo

analysis of 100 runs is performed. At each run, new realizations

Fig. 3. Batch learning. Monte Carlo analysis: box-plots of achieved BFR and
mode-fit index MFs .

of the input and noise are generated, and the model parame-
ters Θ and Ω previously considered are randomly perturbed.
Furthermore, in order to assess the sensitivity of the algorithm
with respect to the hyper-parameters σ 2

ω, α0, β0, λ
2 defining the

priors on Ω, Θ, σ−2v (see Section 2.3), σ 2
ω, α0, β0, λ

2 are randomly
generated at each run from uniform distributions in the intervals
[50 150], [1 10], [0.0005 0.0015], and [500 1500], respec-
tively. The width of these intervals is chosen to maintain broad
uninformative prior distributions. The proposal q(Ω∗|Ω[k]) is not
tuned, and the same isotropic Gaussian proposal q(Ω∗|Ω[k]),
with diagonal covariance matrix 0.25Inωs is used at each run.

At each Monte Carlo run, themaximum-a-posteriori estimate of
the model parameters is computed. The box-plots of the achieved
BFR and mode-fit index MFs are reported in Fig. 3, where it can
be seen that, except for few outliers, the BFR is between 81% and
91%, with a mode-fit index MFs between 91% and 98%.

Recursive learning
The recursive learning approach based on particle filters pre-

sented in Section 4 is applied next. The samples of the 20, 000-
length training set previously used for batch learning are now
processed sequentially, thus simulating a scenario where data
is gathered and processed in real time. At each index t , the
marginal posterior p(Ω1:t |X1:t , Y1:t) is updated by Algorithm 2
using Np = 250 particles. A proposal distribution q(Ωt |Ωt [k −
1]) = p(Ωt |Ωt [k − 1]) is chosen. According to the modelling
assumption (24), p(Ωt |Ωt [k−1]) is an isotropic Gaussian distribu-
tion centred at Ωt [k−1] with diagonal covariance matrix σ 2

Ω Isnω ,
with σ 2

Ω = 0.25 chosen through trial-and-error.
The average CPU time required by Algorithm 2 to process

an input–output pair {xt , yt} is 18.8 ms. Thus, 20,000 training
samples are processed in 354 s.

Inferences on test outputs y⋆
t are made according to the re-

sults discussed in Section 4.3, using the ‘‘last’’ marginal dis-
tribution p(ΩT |X1:T , Y1:T) and the corresponding joint posterior
p(Θ, σ−2v , ΩT |X1:T , Y1:T) in (33). The expected value of the first
output ŷ⋆

t , the 99%-credible intervals and the true output y⋆
t are

plotted in Fig. 4. The resulting BFR and mode-fit index MFs are
equal to 89% and 96%, respectively.

The obtained results show that the models estimated using
the batch and the recursive learning approach achieve similar
performance in reconstructing the input-to-output relation. In
terms of CPU time required to process a given set of training

10 D. Piga, A. Bemporad and A. Benavoli / Automatica 117 (2020) 109002

Fig. 4. Iterative learning. True output yt (red); expected value of the output ŷ⋆
t

(blue); 99%-credible intervals (grey regions). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

data, the batch algorithm is 1.8× faster than the recursive one.
However, the recursive approach has the advantages of being
suitable for online applications, in which a new data is processed
as soon as it becomes available, without the need of storing and
reprocessing the entire past data sequence.

5.2. Experimental case study

System description
We consider the case study proposed in Juloski, Heemels, and

Ferrari-Trecate (2004) concerning data-driven modelling of the
placement process in a pick-and-place machine. The process is
characterized by two main operating modes, the free and the
impact mode. In free mode the machine moves the component
in an unconstrained environment, while in the impact mode
the mounting head is in contact with the board. This process
is commonly used as a benchmark to assess the effectiveness
of learning algorithms for hybrid dynamical systems (Bemporad,
Breschi, Piga, & Boyd, 2018; Bemporad et al., 2005; Juloski et al.,
2005; Ohlsson & Ljung, 2013; Pillonetto, 2016).

A data record over an interval of 15 s is gathered at a sampling
frequency of 800 Hz. The data record is split into two disjoint sub-
sets: a training set with T = 8, 800 samples gathered in the first
11 s of the experiment, and a test set with Tv = 3, 200 samples,
gathered in the remaining 4 s. The input ut is the voltage applied
to the motor driving the mounting head, while the output yt of
interest is the vertical position of the mounting head.

A 2-mode PWA dynamical model with regressor
xt = [1 yt−1 yt−2 ut−1 ut−2]′ is used to describe the process
behaviour.

Bayesian inference
First, the problem is addressed in a Bayesian setting and the

posterior distribution p(Θ, Ω, σ−2v |X, Y) is approximated. Data is
processed in batch mode running Algorithm 1 for M = 5, 000
iterations, using a Gaussian proposal distribution q(Ω∗|Ω[k])
with mean Ω[k] and diagonal covariance matrix 0.16Inωs. For
an exhaustive analysis of the proposed methods, training data
is also processed iteratively running Algorithm 2 with Np =

250 particles and proposal distribution q(Ωt |Ωt [k − 1]) equal to
p(Ωt |Ωt [k − 1]). The variance σ 2

Ω of the fictitious process noise
EΩ in (24) is set equal to 0.16.

1000 different parameters Θ, Ω, σ−2v are drawn from the
computed posterior distribution p(Θ, Ω, σ−2v |X, Y) and the out-
put of the corresponding PWA models is simulated. Fig. 5 shows
the mean of the output over the 1000 simulations ±3 times the
standard deviation.

Table 1
Achieved BFR and CPU time required for training.
Approach BFR time

Batch learning 84.9% 20 s
Recursive learning 81.7% 21 s
Clustering-based approach (Ferrari-Trecate et al., 2003) 76.7% 1133 s
Opt.-based approach (Bemporad et al., 2018) 82.4% 0.14 s

Maximum-a-posteriori estimate
The batch and recursive learning algorithms are also used

to compute a maximum-a-posterior estimate of the model pa-
rameters. A simulated annealing strategy is implemented (with
cooling schedule h[k] = log(k) in (22)) and Algorithms 1 and
2 are modified as discussed in Section 3.4 and 4.4. The other
algorithms’ settings are the same as the ones described in the
previous paragraph.

For comparison, the same PWA regression problem is also
solved via the clustering approach5 in Ferrari-Trecate et al. (2003)
and the optimization-based method in Bemporad et al. (2018).

The open-loop predicted outputs of the PWA models esti-
mated using the different learning algorithms are plotted in Fig. 6.
The resulting BFRs are reported in Table 1, along with the CPU
time required to process the entire dataset for fixed tuning pa-
rameters. It can be observed that the approach in Ferrari-Trecate
et al. (2003) is more than 53x slower than the batch and the
iterative learning algorithms proposed in this paper, while the
method in Bemporad et al. (2018) is the fastest one. However,
we remark that Bemporad et al. (2018) can only process data in
a batch mode, while the particle-filter based algorithm proposed
in this paper can also process streams of data in an iterative way.

6. Conclusions

This paper has discussed a unified framework for batch and re-
cursive Bayesian inference of PieceWise Affine models using Rao-
Blackwellized Monte Carlo sampling. Instead of approximating
the joint posterior distribution of the model parameters through
naive Monte Carlo sampling, the structure of PWA models is
exploited to develop Rao-Blackwellized versions of the sampling
algorithms. Only the marginal distribution of the parameters
defining the regressor-space partition is approximated offline
(resp. online) through MCMC simulation (resp. particle filters),
while the conditional distribution of the other parameters given
the regressor-space partition is computed (resp. updated) analyt-
ically.

The main strengths of the proposed Bayesian inference frame-
work are: (i) one-shot learning of the regressor-space partition
and of the local affine models; (ii) derivation of the posterior
distribution of the model parameters and of the predicted output;
(iii) the possibility of processing large datasets with a reasonable
computational time that increases linearly with the length of
the training data sequence; (iv) an incremental version of the
learning algorithm for processing streaming data.

The approach can be generalized to: (i) estimate piecewise-
nonlinear models by simply manipulating the regressors/inputs
through nonlinear basis functions (e.g., polynomials); (ii) handle
output noises with full positive definite covariance matrix by
considering a Gaussian–Wishart distribution as a prior on the
parameters Θ and on inverse of the noise covariance matrix.

5 The Hybrid Identification Toolbox (HIT) toolbox (Ferrari-Trecate, 2005) has
been employed.

D. Piga, A. Bemporad and A. Benavoli / Automatica 117 (2020) 109002 11

Fig. 5. Pick and place machine: true output (blue line); estimated mean ± 3 standard deviation (grey region). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. Top: actual (blue line) and open-loop simulated output (red line); bottom: estimated mode sequence..

Appendix

A.1. Proof of Proposition 1

Before proving Proposition 1, a set of results useful for its
detailed derivation is first provided.

Result 1. Given three generic vectors Y ∈ RN , θ ∈ Rnθ and θ̄ ∈ Rnθ ,
a matrix X ∈ Rnθ ,N , and two symmetric positive definite matrices
Σv ∈ RN,N and Σθ ∈ Rnθ ,nθ , the following statements hold:

1. the expression

e−
1
2

[
(Y−X ′θ)

′
Σ
−1
v (Y−X ′θ)+(θ−θ̄)′Σ−1

θ
(θ−θ̄)

]
(39)

is equal to

(2π)
nθ
2 |A|

1
2× (40)

×e
−

1
2

(
Y ′Σ−1v Y+θ̄ ′Σ−1

θ
θ̄−

(
XΣ
−1
v Y+Σ

−1
θ

θ̄

)′
µ

)
N (θ;µ, A),

with

A = (XΣ−1v X ′ +Σ−1θ)−1, µ = A
(
XΣ−1v Y +Σ−1θ θ̄

)
.

2. the integral∫
e−

1
2

[
(Y−X ′θ)

′
Σ
−1
v (Y−X ′θ)+(θ−θ̄)′Σ−1

θ
(θ−θ̄)

]
dθ

is equal to

(2π)
nθ
2 |A|

1
2 e
−

1
2

(
Y ′Σ−1v Y+θ̄ ′Σ−1

θ
θ̄−

(
XΣ
−1
v Y+Σ

−1
θ

θ̄

)′
µ

)
.

Proof. Let us consider the exponent in (39) up to the constant
−

1
2 and let us complete the square as follows(
Y − X ′θ

)′
Σ−1v

(
Y − X ′θ

)
+ (θ − θ̄)′Σ−1θ (θ − θ̄)

=θ ′(XΣ−1v X ′ +Σ−1θ)θ − 2θ ′
(
XΣ−1v Y +Σ−1θ θ̄

)
+ Y ′Σ−1v Y + θ̄ ′Σ−1θ θ̄

=θ ′A−1θ − 2θ ′A−1A
(
XΣ−1v Y +Σ−1θ θ̄

)
+ Y ′Σ−1v Y + θ̄ ′Σ−1θ θ̄

=
(
θ − A

(
XΣ−1v Y +Σ−1θ θ̄

))′
A−1

(
θ − A

(
XΣ−1v Y +Σ−1θ θ̄

))
−
(
XΣ−1v Y +Σ−1θ θ̄

)′
A
(
XΣ−1v Y +Σ−1θ θ̄

)
+ Y ′Σ−1v Y + θ̄ ′Σ−1θ θ̄ .

Using the above equation, Eq. (39) can be rewritten as

e
−

1
2

(
Y ′Σ−1v Y+θ̄ ′Σ−1

θ
θ̄−

(
XΣ
−1
v Y+Σ

−1
θ

θ̄

)′
µ

)
e−

1
2 (θ−µ)′A−1(θ−µ)

=(2π)
nθ
2 |A|

1
2 e
−

1
2

(
Y ′Σ−1v Y+θ̄ ′Σ−1

θ
θ̄−

(
XΣ
−1
v Y+Σ

−1
θ

θ̄

)′
µ

)
N (θ;µ, A).

This proves the first statement. The second statement simply
follows by integrating (40) w.r.t. θ . ■

Proposition 1 is now proved. Using Bayes’ rule, let us rewrite
the conditional distribution p(Θ, σ−2v |Ω, X, Y) as

p(Θ, σ−2v |Ω, X, Y) =
p(Y |Θ, σ−2v , Ω, X)p(Θ, σ−2v |Ω)

p(Y |Ω, X)
(41a)

=
p(Y |Θ, σ−2v , Ω, X)p(Θ|σ−2v)p(σ−2v)∫

p(Y |Θ, σ−2v , Ω, X)p(Θ|σ−2v)p(σ−2v)dΘdσ−2v

(41b)

Based on the priors (4) and (5) on the parameters (Θ, σ−2v), and
the likelihood in (8), the numerator in (41b) becomes

p(Y |Θ, Ω, σ−2v , X)p(Θ|σ−2v)p(σ−2v) (42a)

=
(σ−2v)

ny(T+nθ s)
2

(2π)
ny(T+nθ s)

2

(λ−2)
nynθ s

2 Γ
(
σ−2v ;α0, β0

)
(42b)

×

s∏
i=1

ny∏
j=1

e
−

1
2 σ−2v

((
Y(j)
i −X

′
iθ

(j)
i

)′(
Y(j)
i −X

′
iθ

(j)
i

)
+λ−2θ

(j)′
i θ

(j)
i

)
(42c)

12 D. Piga, A. Bemporad and A. Benavoli / Automatica 117 (2020) 109002

Then, based on Result 1 [part 1], Eq. (42) is written as

p(Y |Θ, Ω, σ−2v , X)p(Θ|σ−2v)p(σ−2v)

=
(σ−2v)

ny(T+nθ s)
2

(2π)
ny(T+nθ s)

2

(λ−2)
nynθ s

2 Γ
(
σ−2v ;α0, β0

)
× (2π)

nynθ s
2

s∏
i=1

|σ 2
v Fi|

ny
2

×

s∏
i=1

ny∏
j=1

e
−

1
2 σ−2v

(
Y(j)′
i Y(j)

i −Y
(j)′
i X′iµ

(j)
i

)
N (θ (j)

i ;µ
(j)
i , σ 2

v Fi),

with Fi and µi defined in (12b) and (12c). Using the definition of
Gamma distributions and simple algebraic manipulations, Eq. (44)
is also equal to

p(Y |Θ, Ω, σ−2v , X)p(Θ|σ−2v)p(σ−2v)

=
(λ−2)

nynθ s
2

(2π)
nyT
2

s∏
i=1

|XiX′i + λ−2Inθ
|
−

ny
2

s,ny∏
i,j=1

N (θ (j)
i ;µ

(j)
i , σ 2

v Fi)

×
β

α0
0

Γ (α0)
(σ−2v)α0+

nyT
2 −1e

−σ−2v

(
β0+

1
2
∑s,ny

i,j=1

(
Y(j)′
i Y(j)

i −Y
(j)′
i X′iµ

(j)
i

))

Γ (α)
βα Γ (σ−2v ;α,β)

(44)

with α and β in (12d) and (12e), respectively.
The denominator in (41b) can be obtained by integrating (44)

w.r.t. θ (j)
i and σ−2v , thus obtaining

p(Y |Ω, X) =
∫

p(Y |Θ, σ−2v , Ω, X)p(Θ|σ−2v)p(σ−2v)dΘdσ−2v

=
(λ−2)

nynθ s
2

(2π)
nyT
2

s∏
i=1

|XiX′i + λ−2Inθ
|
−

ny
2

β
α0
0

Γ (α0)
Γ (α)
βα

. (45)

Taking the ratio of (44) to (45), Proposition 1 follows.

A.2. Proof of Proposition 2

Proposition 2 follows by rewriting
p(Ω∗|X, Y)
p(Ω[k]|X, Y)

as

p(Ω∗|X, Y)
p(Ω[k]|X, Y)

=
p(Y |Ω∗, X)p(Ω∗)

p(Y |Ω[k], X)p(Ω[k])
(46)

and by substituting the analytical expression of p(Y |Ω, X) pro-
vided in Eq. (45).

A.3. Proof of Proposition 3

Based on the modelling assumptions (1) and the conditional
posterior distribution p(Θ|σ−2v , Ω, X, Y) in (12a), the distribution
p(y⋆
|x⋆, Ω[k], σ−2v , X, Y) is given by

p(y⋆
|x⋆, Ω[k], σ−2v , X, Y) = (47a)

=N
(
y⋆
;µ′i⋆ [k]x

⋆, σ 2
v (x

⋆′ (Xi⋆ [k]X′i⋆ [k] + λ−2Inθ
)−1x⋆

+ 1)Iny
)

.

(47b)

Furthermore, from Proposition 1, we have that

p(σ−2v |Ω[k], X, Y) = Γ (σ−2v ;α, β[k]). (48)

By combining Eq. (47) and (48), one obtains:

p(y⋆
|x⋆, Ω[k], X, Y) (49a)

=

∫
p(y⋆
|x⋆, Ω[k], σ−2v , X, Y)p(σ−2v |Ω[k], X, Y)dσ−2v (49b)

∝

∫
(σ−2v)

ny
2 +α−1e−σ−2v [β[k]+ 1

2 (y
⋆
−ȳ[k])′H−1i⋆ [k](y

⋆
−ȳ[k])]dσ−2v (49c)

with Hi⋆ [k] = (x⋆′ (Xi⋆ [k]X′i⋆ [k] + λ−2Inθ
)−1x⋆

+ 1)Iny and ȳ[k] =
µ′i⋆ [k]x

⋆.
Note that term inside the integral in (49c) is a Gamma distri-

bution of σ−2 up to the normalizing factor

Γ (ny2 + α)(
β[k] + 1

2 (y
⋆ − µi⋆ [k]′x⋆)′H−1i⋆ [k](y⋆ − µ′i⋆ [k]x⋆)

) ny
2 +α

The integral in (49c) can be easily computed and Eq. (49) becomes

p(y⋆
|x⋆, Ω[k], X, Y)

∝

(
1+

1
2β[k]

(y⋆
− µ′i⋆ [k]x

⋆)′H−1i⋆ [k](y
⋆
− µ′i⋆ [k]x

⋆)
)− ny+2α

2

=

(
1+

1
2α

(y⋆
− µ′i⋆ [k]x

⋆)′V−1i⋆ [k](y
⋆
− µ′i⋆ [k]x

⋆)
)− ny+2α

2

=St(y⋆
;µ′i⋆ [k]x

⋆, Vi⋆ [k], 2α),

with Vi⋆ [k] = Hi⋆ [k]
β[k]
α

as in (16).

A.4. Proof of Proposition 4

For given Ω[k], the term max
Θ,σ−2v

p(Θ, σ−2v |Ω[k], X, Y) can be

computed analytically based on the expression of p(Θ,

σ−2v |Ω[k], X, Y) in Eq. (12a). Specifically, the maximum over Θ

and σ−2v of p(Θ, σ−2v |Ω[k], X, Y) is achieved for

θi = µi[k], σ−2v =
α +

snynθ

2 − 1
β[k]

. (51)

Substitution of (51) into the definition of p(Θ, σ−2v |Ω[k], X, Y)
(Eq. (12a)) leads to

max
Θ,σ−2v

p(Θ, σ−2v |Ω[k], X, Y)

=
β[k]
Γ (α)

(α +
snynθ

2
− 1)α−1

(α+
snynθ

2 −1
β[k])

snynθ
2

(2π)
snynθ

2

e1−α−
snynθ

2

×

s∏
i=1

|Xi[k]X′i[k] + λ−2Inθ
|
ny
2 . (52)

Substituting (52) into Eq. (18) and ignoring the terms which do
not depend on the partition X [Ω[k]], we obtain

Ω̂ = argmax
{Ω[k]}Mk=1

p(Ω[k]|X, Y)(β[k])1−
snynθ

2

×

s∏
i=1

|Xi[k]X′i[k] + λ−2Inθ
|
ny
2

= argmax
{Ω[k]}Mk=1

p(Y |Ω[k], X)p(Ω[k])(β[k])1−
snynθ

2

×

s∏
i=1

|Xi[k]X′i[k] + λ−2Inθ
|
ny
2

By substituting the expression of the marginal likelihood
p(Y |Ω[k], X) (Eq. (45)) into the above equation, Eq. (19) follows.
Eq. (20) follows from (51) and by constructing the parameters µi
and β based on the partition X [Ω̂].

A.5. Proof of Proposition 5

Eq. (29a) follows from the definition of Fi,t in (28a) and
the construction of the regressor matrix Xi,t in (26b). Eq. (29b)
follows by applying the Matrix Inversion Lemma to Eq. (29a).

D. Piga, A. Bemporad and A. Benavoli / Automatica 117 (2020) 109002 13

Eq. (29c) can be derived from the following algebraic manipu-
lations

µi,t =Fi,tXi,tYi,t = Fi,t
(
Xi,t−1Yi,t−1 +

[
1
xt

]
y′tI(st|t = i)

)
=Fi,t

(
F−1i,t−1µi,t−1 +

[
1
xt

]
y′tI(st|t = i)

)
=µi,t−1 + Fi,t

[
1
xt

]
(y′t − [1 x′t]µi,t−1)I(st|t = i).

As for Eq. (29d), we have

βt =β0 +
1
2

s∑
i=1

ny∑
j=1

(
Y(j)′

i,t Y
(j)
i,t − Y(j)′

i,t X
′

i,tµ
(j)
i,t

)
=β0 +

1
2

s∑
i=1

ny∑
j=1

Y(j)′
i,t−1Y

(j)
i,t−1 + y(j)t y(j)t I(st|t = i)

−
1
2

s∑
i=1

ny∑
j=1

Y(j)′
i,t−1X

′

i,t−1µ
(j)
i,t + y(j)t [1 x′t]µ

(j)
i,tI(st|t = i)

=βt−1 +
1
2

s∑
i=1

ny∑
j=1

(y(j)t y(j)t − y(j)t [1 x′t]µ
(j)
i,t)I(st|t = i)

−
1
2

s∑
i=1

ny∑
j=1

µ
(j)′
i,t−1F

−1
i,t−1Fi,t

[
1
xt

]
× (y(j)t − [1 x′t]µ

(j)
i,t−1)I(st|t = i) (54)

By substituting F−1i,t−1 = F−1i,t −
[

1
xt

]
[1 xt] I(st|t = i) into (54),

Eq. (29d) follows.

A.6. Proof of Proposition 6

To simplify the notation, the index [k] is dropped from: the
particle’s trajectory Ω1:t [k]; the active state st|t [k]; and the pa-
rameters Fi,t [k] and βt [k]. Furthermore, the conditional depen-
dence of p(yt |Ω1:t [k], X1:t−1, xt , Y1:t−1) on the past input sequence
X1:t−1 is omitted. Let us rewrite the likelihood p(yt |Ω1:t , xt , Y1:t−1)
as∫

p(yt |Θ, σ−2v , Ω1:t , xt , Y1:t−1)p(Θ, σ−2v |Ω1:t−1, Y1:t−1)dΘdσ−2v .

(55)

Note that the conditional likelihood p(yt |Θ, σ−2v , Ω1:t , xt , Y1:t−1)
is equal to

p(yt |Θ, σ−2v , Ωt , xt) = N
(
yt; θ ′st|t

[
1
xt

]
, σ 2

v Iny
)

. (56)

By substituting (27) and (56) into (55), we obtain∫
p(yt |Θ, σ−2v , Ω1:t , xt , Y1:t−1)p(Θ, σ−2v |Ω1:t−1, Y1:t−1)dΘdσ−2v

=

∫
N
(
yt; θ ′st|t

[
1
xt

]
, σ 2

v Iny
)

Γ (σ−2v ;αt−1, βt−1)

×

ny∏
j=1

N (θ (j)
st|t ;µ

(j)
st|t ,t−1

, σ 2
v Fst|t ,t−1)dθ

(j)
st|t dσ

−2
v .

From definitions of Normal and Gamma distributions, the integral
above reads

1

(2π)
ny+nθ ny

2

(βt−1)
αt−1

Γ (αt−1)

⏐⏐Fst|t ,t−1⏐⏐− ny
2

×

∫
(σ−2v)αt−1+

ny+nθ ny
2 −1e−βt−1σ−2v

×

ny∏
j=1

e−
1
2 σ−2v (y(j)t −

[
1
xt

]′
θ
(j)
st|t)
′(y(j)t −

[
1
xt

]′
θ
(j)
st|t)

×

ny∏
j=1

e
−

1
2 σ−2v (θ (j)st|t−µ

(j)
st|t ,t−1

)′F−1st|t ,t−1
(θ (j)st|t−µ

(j)
st|t ,t−1

)
dθ (j)

st|t dσ
−2
v . (57)

Using Result 1 [part 2] to compute the above integral w.r.t. θ
(j)
st|t

and noticing (from (29a) and (28b)) that([
1
xt

]
[1 x′t]+ F−1st|t ,t−1

)−1

Fst|t ,t

([
1
xt

]
y(j)t + F−1st|t ,t−1

µ
(j)
st|t ,t−1

)

Xst|t ,tYst|t ,t

= µ
(j)
st|t ,t ,

Eq. (57) then reads as follows

1

(2π)
ny
2

(βt−1)αt−1

Γ (αt−1)

⏐⏐Fst|t ,t−1⏐⏐− ny
2
⏐⏐⏐[1

xt

]
[1 x′t]+ F−1st|t ,t−1

⏐⏐⏐− ny
2

×

∫
(σ−2v)αt−1+

ny
2 −1e−βt−1σ−2v

×

ny∏
j=1

e
−

1
2 σ−2v

(
y(j)t y(j)t +µ

(j)′
st|t ,t−1

F−1st|t ,t−1
µ
(j)
st|t ,t−1

)

× e
1
2 σ−2v

([
1
xt

]
y(j)t +F

−1
st|t ,t−1

µ
(j)
st|t ,t−1

)′
µ
(j)
st|t ,t dσ−2v (58a)

=
1

(2π)
ny
2

(βt−1)αt−1

Γ (αt−1)

⏐⏐Fst|t ,t−1⏐⏐− ny
2 |
[

1
xt

]
[1 x′t]+ F−1st|t ,t−1

F−1st|t ,t

|
−

ny
2

×

∫
(σ−2v)αt−1+

ny
2 −1e−βtσ

−2
v dσ−2v (58b)

where the last equation comes from the following algebraic ma-
nipulations of the exponents in (58a):

βt−1 +
1
2

ny∑
j=1

(
y(j)t y(j)t + µ

(j)′
st|t ,t−1

F−1st|t ,t−1
µ

(j)
st|t ,t−1

)
−

1
2

ny∑
j=1

([
1
xt

]
y(j)t + F−1st|t ,t−1

µ
(j)
st|t ,t−1

)′
µ

(j)
st|t ,t

=βt−1 +
1
2

ny∑
j=1

y(j)t y(j)t − y(j)t [1 x′t]µ
(j)
st|t ,t

−
1
2

ny∑
j=1

(
µ

(j)′
st|t ,t−1

F−1st|t ,t−1
Fst|t ,t

[
1
xt

]
(y(j)t − [1 x′t]µ

(j)
st|t ,t−1

)
)

=βt .

The last equation comes from (54). Going back to (58b) and
noticing that the term in the integral is a Gamma distribution
Γ (σ−2v ;αt , βt) up to the scaling constant (βt)αt

Γ (αt)
, Eq. (58b) can be

easily solved and we finally obtain that p(yt |Ω1:t , xt , Y1:t−1) is
equal to

1

(2π)
ny
2

(βt−1)
αt−1

Γ (αt−1)
Γ (αt)
(βt)αt

⏐⏐Fst|t ,t−1⏐⏐− ny
2 |F−1st|t ,t |

−
ny
2

∝
(βt−1)

αt−1

(βt)αt−1

⏐⏐Fst|t ,t−1⏐⏐− ny
2 |F−1st|t ,t |

−
ny
2 .

A.7. Proof of Proposition 7

First, the maximization problem in (34) is factorized as

Θ̂t , σ̂
−2
v,t , Ω̂1:t =

= argmax
Θ,σ−2v ,Ω1:t

p(Ω1:t |X1:t , Y1:t)p(Θ, σ−2v |Ω1:t , X1:t , Y1:t)

= argmax
Ω1:t

p(Ω1:t |X1:t , Y1:t) max
Θ,σ−2v

p(Θ, σ−2v |Ω1:t , X1:t , Y1:t). (59)

For a given trajectory Ω1:t , the maximum of the conditional
posterior p(Θ, σ−2v |Ω1:t , X1:t , Y1:t) can be computed analytically
from (27). Specifically, its maximum is achieved for

θi,t = µi,t [Ω1:t], σ−2v,t =
αt +

snynθ

2 − 1
βt [Ω1:t]

. (60)

14 D. Piga, A. Bemporad and A. Benavoli / Automatica 117 (2020) 109002

Substitution of the maximizers (60) into (27) leads to

max
Θ,σ−2v

p(Θ, σ−2v |Ω1:t , X1:t , Y1:t)

=
βt [Ω1:t]

Γ (αt)
(αt +

snynθ

2
− 1)αt−1

(αt+
snynθ

2 −1
βt [Ω1:t]

)
snynθ

2

(2π)
snynθ

2

× e1−αt−
snynθ

2

s∏
i=1

|F−1i,t [Ω1:t]|
ny
2 . (61)

By substituting (61) into (59) and by removing the terms which
do not depend on Ω1:t , Eq. (35a) follows.

Eq. (35b) follows by substituting the MAP estimate Ω̂1:t into
(60).

A.8. Proof of Proposition 8

Let us rewrite p̃(Ω1:t |X1:t , Y1:t) as

p̃(Ω1:t |X1:t , Y1:t) = p(Ω1:t |X1:t , Y1:t)β
1−

snynθ
2

t

s∏
i=1

|F−1i,t |
ny
2

= p(yt |Ω1:t , X1:t , Y1:t−1)β
1−

snynθ
2

t

s∏
i=1

|F−1i,t |
ny
2

× p(Ωt |Ωt−1)p(Ω1:t−1|X1:t−1, Y1:t−1).

= p(yt |Ω1:t , X1:t , Y1:t−1)
β

1−
snynθ

2
t

β
1−

snynθ
2

t−1

∏s
i=1|F

−1
i,t |

ny
2∏s

i=1|F
−1
i,t−1|

ny
2

× p(Ωt |Ωt−1)p̃(Ω1:t−1|X1:t−1, Y1:t−1). (62)

Then, from Proposition 6 and Eq. (62), we obtain

p̃(Ω1:t |X1:t , Y1:t)

∝
(βt−1)αt−1

(βt)αt

⏐⏐Fst|t ,t−1⏐⏐− ny
2
⏐⏐⏐F−1st|t ,t

⏐⏐⏐− ny
2

×
(βt)1−

snynθ
2

(βt−1)1−
snynθ

2

∏s
i=1|F

−1
i,t |

ny
2∏s

i=1|F
−1
i,t−1|

ny
2

× p(Ωt |Ωt−1)p̃(Ω1:t−1|X1:t−1, Y1:t−1)

=
(βt)1−

snynθ
2 −αt

(βt−1)1−
snynθ

2 −αt−1
p(Ωt |Ωt−1)p̃(Ω1:t−1|X1:t−1, Y1:t−1).

This completes the proof.

References

Andrieu, C., de Freitas, N., Doucet, A., & Jordan, M. I. (2003). An introduction to
MCMC for machine learning. Machine Learning, 50(1–2), 5–43.

Bako, L. (2011). Identification of switched linear systems via sparse optimization.
Automatica, 47(4), 668–677.

Bako, L., Boukharouba, K., Duviella, E., & Lecoeuche, S. (2011). A recursive
identification algorithm for switched linear/affine models. Nonlinear Analysis.
Hybrid Systems, 5(2), 242–253.

Bemporad, A., Breschi, V., Piga, D., & Boyd, S. (2018). Fitting jump models.
Automatica, 96, 11–21.

Bemporad, A., Ferrari-Trecate, G., & Morari, M. (2000). Observability and con-
trollability of piecewise affine and hybrid systems. IEEE Transactions on
Automatic Control, 45(10), 1864–1876.

Bemporad, A., Garulli, A., Paoletti, S., & Vicino, A. (2005). A bounded-error
approach to piecewise affine system identification. IEEE Transactions on
Automatic Control, 50(10), 1567–1580.

Bemporad, A., & Morari, M. (1999). Control of systems integrating logic,
dynamics, and constraints. Automatica, 35(3), 407–427.

Bennett, K. P., & Mangasarian, O. L. (1994). Multicategory discrimination via
linear programming. Optimization Methods & Software, 3(1–3), 27–39.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Breiman, L. (1993). Hinging hyperplanes for regression, classification, and
function approximation. IEEE Transactions on Information Theory, 39(3),
999–1013.

Breschi, V., Piga, D., & Bemporad, A. (2016). Piecewise affine regression via re-
cursive multiple least squares and multicategory discrimination. Automatica,
73, 155–162.

Casella, G., & Robert, C. P. (1996). Rao-blackwellisation of sampling schemes.
Biometrika, 83(1), 81–94.

Chib, S., & Greenberg, E. (1995). Understanding the metropolis-hastings
algorithm. The American Statistician, 49(4), 327–335.

Ferrari-Trecate, G. (2005). Hybrid identification toolbox.
Ferrari-Trecate, G., Muselli, M., Liberati, D., & Morari, M. (2003). A clustering

technique for the identification of piecewise affine systems. Automatica,
39(2), 205–217.

Heemels, W., De Schutter, B., & Bemporad, A. (2001). Equivalence of hybrid
dynamical models. Automatica, 37(7), 1085–1091.

Juloski, A., Heemels, W., & Ferrari-Trecate, G. (2004). Data-based hybrid mod-
elling of the component placement process in pick-and-place machines.
Control Engineering Practice, 12(10), 1241–1252.

Juloski, A. L., Weiland, S., & Heemels, W. (2005). A Bayesian approach to
identification of hybrid systems. IEEE Transactions on Automatic Control,
50(10), 1520–1533.

Lauer, F. (2015). On the complexity of piecewise affine system identification.
Automatica, 62, 148–153.

Naik, V. V., Mejari, M., Piga, D., & Bemporad, A. (2017). Regularized moving-
horizon piecewise affine regression using mixed-integer quadratic program-
ming. In 25th mediterranean conference on control and automation (pp.
1349–1354). Valletta, Malta.

Ohlsson, H., & Ljung, L. (2013). Identification of switched linear regression
models using sum-of-norms regularization. Automatica, 49(4), 1045–1050.

Piga, D., & Tóth, R. (2013). An SDP approach for ℓ0-minimization: Application to
ARX model segmentation. Automatica, 49(12), 3646–3653.

Pillonetto, G. (2016). A new kernel-based approach to hybrid system
identification. Automatica, 70, 21–31.

Roll, J., Bemporad, A., & Ljung, L. (2004). Identification of piecewise affine
systems via mixed-integer programming. Automatica, 40(1), 37–50.

Wågberg, J., Lindsten, F., & Schön, T. B. (2015). Bayesian nonparametric
identification of piecewise affine ARX systems. IFAC-PapersOnLine, 48(28),
709–714.

Dario Piga received his Ph.D. in Systems Engineering
from the Politecnico di Torino (Italy) in 2012. He was a
Postdoctoral Researcher at the Delft University of Tech-
nology (The Netherlands) in 2012 and at the Eindhoven
University of Technology (The Netherlands) in 2013.
From 2014 to early 2017 he was Assistant Professor
at the IMT School for Advanced Studies Lucca (Italy)
and since March 2017 he has been Senior Researcher at
the IDSIA Dalle Molle Institute for Artificial Intelligence
in Lugano (Switzerland) and Lecturer at the SUPSI
University of Applied Sciences and Arts of Southern

Switzerland. His main research interests include system identification, robust
control, Bayesian filtering and non-convex optimization, with applications to
process control and smart manufacturing.

Alberto Bemporad received his Master’s degree in
Electrical Engineering in 1993 and his Ph.D. in Control
Engineering in 1997 from the University of Flo-
rence, Italy. In 1996/97 he was with the Center for
Robotics and Automation, Department of Systems Sci-
ence & Mathematics, Washington University, St. Louis.
In 1997–1999 he held a postdoctoral position at the
Automatic Control Laboratory, ETH Zurich, Switzerland,
where he collaborated as a senior researcher until
2002. In 1999–2009 he was with the Department of
Information Engineering of the University of Siena,

Italy, becoming an Associate Professor in 2005. In 2010–2011 he was with the
Department of Mechanical and Structural Engineering of the University of Trento,
Italy. Since 2011 he is Full Professor at the IMT School for Advanced Studies
Lucca, Italy, where he served as the Director of the institute in 2012–2015.

http://refhub.elsevier.com/S0005-1098(20)30200-4/sb1
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb1
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb1
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb2
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb2
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb2
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb3
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb3
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb3
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb3
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb3
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb4
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb4
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb4
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb5
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb5
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb5
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb5
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb5
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb6
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb6
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb6
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb6
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb6
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb7
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb7
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb7
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb8
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb8
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb8
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb9
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb10
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb10
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb10
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb10
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb10
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb11
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb11
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb11
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb11
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb11
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb12
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb12
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb12
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb13
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb13
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb13
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb14
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb15
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb15
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb15
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb15
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb15
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb16
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb16
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb16
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb17
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb17
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb17
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb17
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb17
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb18
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb18
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb18
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb18
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb18
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb19
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb19
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb19
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb21
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb21
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb21
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb22
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb22
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb22
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb23
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb23
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb23
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb24
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb24
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb24
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb25
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb25
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb25
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb25
http://refhub.elsevier.com/S0005-1098(20)30200-4/sb25

D. Piga, A. Bemporad and A. Benavoli / Automatica 117 (2020) 109002 15

He spent visiting periods at Stanford University, University of Michigan, and
Zhejiang University. In 2011 he cofounded ODYS S.r.l., a company specialized
in developing model predictive control systems for industrial production. He
has published more than 350 papers in the areas of model predictive control,
hybrid systems, optimization, automotive control, and is the co-inventor of
16 patents. He is author or coauthor of various MATLAB toolboxes for model
predictive control design, including the Model Predictive Control Toolbox (The
Mathworks, Inc.) and the Hybrid Toolbox. He was an Associate Editor of the IEEE
Transactions on Automatic Control during 2001–2004 and Chair of the Technical
Committee on Hybrid Systems of the IEEE Control Systems Society in 2002–2010.
He received the IFAC High-Impact Paper Award for the 2011–2014 triennial and
the IEEE CSS Transition to Practice Award in 2019. He is an IEEE Fellow since
2010.

Alessio Benavoli received his Master’s degree (2004)
and his Ph.D. (2008) in Computer and Control Engi-
neering from the University of Florence, Italy. From
2007 to 2008, he worked for the international company
SELEX-Sistemi Integrati as system analyst. From 2008
to 2019, he was at the Dalle Molle Institute for Artificial
Intelligence (IDSIA) in Lugano, Switzerland, becoming
professor in 2018. He is currently Senior Lecturer at
the Department of Computer Science and Information
Systems (CSIS), University of Limerick, Ireland. His
research interests are in the areas of probabilistic AI,

Bayesian nonparametrics, and state estimation for dynamical systems. He has
co-authored about 90 peer reviewed publications.

	Rao-Blackwellized sampling for batch and recursive Bayesian inference of Piecewise Affine models
	Introduction
	PieceWise Affine modelling
	Algorithms for PWA regression
	Paper contribution
	Paper outline
	Notation

	Problem formulation
	PWA model
	Learning problem
	Priors over the parameters
	Posterior distribution

	Rao-Blackwellised Metropolis–Hastings MCMC for batch learning
	Rao-Blackwellised approach
	Approximation of p(X,Y) through MCMC
	Making inference
	Maximum-a-posteriori estimate

	Rao-Blackwellised particle filters for iterative learning
	Rao-Blackwellised approach
	Update of p(1:tX1:t,Y1:t) through particle filters
	Making inference
	Maximum-a-posteriori estimate

	Examples and applications
	Numerical example
	Data description
	Batch learning
	Computational complexity analysis
	Monte Carlo analysis
	Recursive learning

	Experimental case study
	System description
	Bayesian inference
	Maximum-a-posteriori estimate

	Conclusions
	Appendix
	Proof of prop:conditional
	Proof of prop:acc-ratio
	Proof of prop:postystar
	Proof of prop:MAP-estimate
	Proof of prop:PF-matrixupdate
	Proof of Prop:PF-likelihood
	Proof of prop:MAP-estimate-PF
	Proof of prop:PF-refp

	References

