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a b s t r a c t

In nonlinear regression choosing an adequate model structure is often a challenging problem. While
simple models (such as linear functions) may not be able to capture the underlying relationship among
the variables, over-parametrized models described by a large set of nonlinear basis functions tend to
overfit the training data, leading to poor generalization on unseen data. Piecewise-affine (PWA) models
can describe nonlinear and possible discontinuous relationships while maintaining simple local affine
regressor-to-output mappings, with extreme flexibility when the polyhedral partitioning of the regressor
space is learned from data rather than fixed a priori. In this paper, we propose a novel and numerically
very efficient two-stage approach for PWA regression based on a combined use of (i) recursive multi-
model least-squares techniques for clustering and fitting linear functions to data, and (ii) linear multi-
category discrimination, either offline (batch) via a Newton-like algorithm for computing a solution of
unconstrained optimization problems with objective functions having a piecewise smooth gradient, or
online (recursive) via averaged stochastic gradient descent.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Regression analysis is a supervised learningmethodwhich aims
at reconstructing the relationship between feature vectors x 2
Rnx and continuous-valued target outputs y 2 Rny from a set of
training data. PieceWise Affine (PWA) functions provide simple
yet flexible model structures for nonlinear regression, as they
can describe nonlinear and possible discontinuous relationships
between the regressor x and the output y. They are defined by
partitioning the regressor space into a finite number of polyhedral
regions with non-overlapping interiors and by considering an
affine model on each polyhedron.

The PWA regression problem amounts to learning, from a set
of training data, both the partition of the regressor space and
the parameters defining each affine submodel. PWA regression
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is an NP-hard problem in general (see Lauer, 2015 for a detailed
analysis on the complexity of PWA regression), and several
algorithms to estimate PWA maps from data are available in
the literature (see Garulli, Paoletti, & Vicino, 2012; Paoletti,
Juloski, Ferrari-Trecate, & Vidal, 2007 for an overview). A convex
relaxation, based on `1 regularization, is proposed in Ohlsson
and Ljung (2013) to approximate the underlying combinatorial
problem arising from PWA regression. In Roll, Bemporad, and
Ljung (2004) the authors solve the PWA regression problem via
mixed-integer programming. As the number of integer variables
increases with the number of training samples, the approach
is limited to problems with a small number of observations in
which global optimality is sought. The algorithms proposed in
Bemporad, Garulli, Paoletti, and Vicino (2005), Ferrari-Trecate,
Muselli, Liberati, andMorari (2003), Juloski,Weiland, and Heemels
(2005) and Nakada, Takaba, and Katayama (2005) first compute
the parameters of the affine local models, then partition of the
regressor space. The observations are clustered by assigning each
datapoint to a submodel according to a certain criterion, estimating
at the same time the parameters of the affine submodels. In a
second stage, linear separation techniques are used to compute
the polyhedral partition. These algorithms have shown good
performance in practice, but can be numerically inefficient. The
greedy algorithm of Bemporad et al. (2005) to partition infeasible
sets of linear inequalities can be computationally heavy in case of
large training sets. The Expectation Maximization (EM) algorithm
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used to numerically implement the statistical clustering method
of Nakada et al. (2005) can become inefficient in case of PWA
maps with many parameters. In Juloski et al. (2005), the submodel
parameters are described through probability density functions,
which are iteratively updated throughparticle filtering algorithms;
however, an accurate approximation of the probability density
functions might require a high number of particles. In Ferrari-
Trecate et al. (2003), the regressor vectors are clustered through
a K -means-like algorithm and the submodel parameters are
obtained via weighted least-squares. Although Ferrari-Trecate
et al. (2003) is able to handle large training sets both in
the clustering and in the parameter estimation phase, poor
results might be obtained when the affine local submodels are
over-parametrized (i.e., the local models depend on redundant
regressors), since the distances in the regressor space (i.e., the
only criterion used for clustering) turns out to be corrupted by
redundant, thus irrelevant, information.

Another limitation affecting the PWA regression algorithms
mentioned above is that they can be executed only in a batch
mode and thus they are not suitable for online applications, in
which the PWA model must be updated in real-time when new
data are acquired. A computationally efficient algorithm for online
PWA regressionwas proposed in Bako, Boukharouba, Duviella, and
Lecoeuche (2011), where training samples are clustered iteratively
and model parameters are updated through recursive least-
squares. A main limitation of the approach is that the polyhedral
partition of the regressor space is given by the Voronoi diagram of
the clusters’ centroids, a less flexible structure than general linear
separation maps that may limit regression capabilities.

This paper describes a novel approach for approximating
vector-valued, and possibly discontinuous, functions in PWA form,
trying to overcome the aforementioned limitations of existing
methods. The proposed algorithm consists of two stages: (S1)
simultaneous clustering of the regressor vectors and estimation
of the model parameters, performed recursively by processing
the training pairs {x(k), y(k)} sequentially; (S2) computation of a
polyhedral partition of the regressor space through efficient multi-
class linear separation methods, either performed in a batch way
via a Newton-like method, or online (recursively) via an averaged
stochastic gradient descent algorithm. Overall, the PWA regression
algorithm is computationally very effective for offline learning
and suitable for online learning, as shown in the example. The
application of the proposed PWA regression algorithm to the
identification of linear parameter-varying and hybrid dynamical
models is discussed in Breschi, Bemporad, and Piga (2016).

The paper is organized as follows. The PWA regression problem
is described in Section 2. Section 3 describes the algorithm used
to simultaneously cluster the observed regressors and update
the model parameters, and the multi-category discrimination
algorithms used to compute the polyhedral partition of the
regressor domain. A simulation example is reported in Section 4
to show the effectiveness of the proposed approach.

1.1. Notation

Let Rn be the set of real vectors of dimension n. Let I ⇢
{1, 2, . . . , } be a finite set of integers and denote by |I| the car-
dinality of I . Given a vector a 2 Rn, let ai denote the ith entry
of a, aI the subvector obtained by collecting the entries ai for all
i 2 I , kak2 the Euclidean norm of a, a+ a vector whose ith element
is max{ai, 0}. Given two vectors a, b 2 Rn, max(a, b) is the vec-
tor whose ith component is max{ai, bi}. Given a matrix A 2 Rn⇥m,
A0 denotes the transpose of A, Ai the ith row of A, AI the subma-
trix of A obtained by collecting the rows Ai for all i 2 I , AI,J the
submatrix of A obtained by collecting the rows and columns of A
indexed by i 2 I and j 2 J , respectively. Let In be the identity
matrix of size n, and 1n and 0n be the n-dimensional column vec-
tor of ones and zeros, respectively. The symbol ‘‘/’’ denotes linear
proportionality.

2. Problem statement

Consider a vector-valued PWA function f : X ! Rny defined
as

f (x) =

8

>

<

>

:

A1[1 x0]0 if x 2 X1,
...
As[1 x0]0 if x 2 Xs,

(1)

where x 2 Rnx , X ✓ Rnx , s 2 N denotes the number of affine
local models defining f , Ai 2 Rny⇥(nx+1) are parameter matrices,
and the sets Xi, i = 1, . . . , s are polyhedra, that form a complete
polyhedral partition1 of the space X. Function f is not assumed to
be continuous over the boundaries of the polyhedra {Xi}si=1. There-
fore, to avoid that f might takemultiple values at the boundaries of
{Xi}si=1, some inequalities can be replaced by strict inequalities in
the definition of the sets Xi to avoid ambiguities when evaluating
f on the boundary between neighboring polyhedra.

We address a PWA regression problem, which aims at com-
puting a PWA map f fitting a given set of N input/output pairs
{x(k), y(k)}Nk=1. Computing the PWA map f requires (i) choosing
the number of affine submodels s, (ii) computing the parameter
matrices {Ai}si=1 that characterize the affine local models of the
PWA map f and (iii) finding the polyhedral partitioning {Xi}si=1 of
the regressor space X where those local models are defined.

When choosing s one must take into account the tradeoff be-
tween fitting the data and avoiding model complexity and over-
fit, with consequent poor generalization on unseen data. This is
related to one of the most crucial aspects in function learning,
known as bias–variance tradeoff (Vapnik, 1998). In this work, we
assume that s is fixed by the user. The value of s can be chosen
through cross-validation, with a possible upper-bound dictated by
the maximum tolerable complexity of the estimated model.

3. PWA regression algorithm

As mentioned in Section 1, we tackle the PWA regression prob-
lem in two stages: S1 (iterative clustering and parameter estima-
tion) and S2 (polyhedral partition of the regressor space).

3.1. Recursive clustering and parameter estimation

Stage S1 is carried out as described in Algorithm 1. The algo-
rithm is an extension to the case of multiple linear regressions and
clustering of the (computationally very efficient) approach pro-
posed in Alexander and Ghirnikar (1993) for solving recursive least
squares problems using inverse QR decomposition. Algorithm 1
updates the clusters and themodel parameters iteratively and thus
it is also suitable for online applications, when data are acquired in
real-time.

The algorithm requires an initial guess for the parameter
matrices Ai and cluster centroids ci, i = 1, . . . , s. Because of the
greedy nature of Algorithm 1, the final estimate depends on the
chosen initial conditions, and no fit criterion to minimize {ky(k)�
f (x(k))k}Nk=1 is optimized. Zero matrices Ai, randomly chosen
centroids ci, and identity covariance matrices Ri are a possible
initialization. In alternative, if Algorithm 1 can be executed in a
batch mode, one can initialize the parameter matrices A1, . . . , As
all equal to the best linear model

Ai ⌘ argmin
A

N
X

k=1

�

�

�

y(k)� A
h

1
x(k)

i

�

�

�

2

2
, 8i = 1, . . . , s (2)

1 A collection {Xi}si=1 is a complete partition of the regressor domain X if
Ss

i=1 Xi = X and
�

Xi \ �
Xj = ;, 8i 6= j, with

�
Xi denoting the interior of Xi .
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Algorithm 1 Recursive clustering and parameter estimation
algorithm
Input: Observations {x(k), y(k)}Nk=1, desired number s of affine

submodels, noise covariance matrix ⇤e, forgetting factor  , 0 <
  1, inverse matrix init parameter �, � � 1; initial condition
for matrices Ai, cluster centroids ci, and covariance matrices Ri,
i = 1, . . . , s.

1. let Ci  ;, i = 1, . . . , s;
2. let T i,j(0) �Inx+1, j = 1, . . . , ny, i = 1, . . . , s;
3. for k = 1, . . . ,N do
3.1. let ei(k) y(k)� Ai

⇥ 1
x(k)

⇤

, i = 1, . . . , s;
3.2. let

i(k) arg min
i=1,...,s

(x(k)�ci)0R�1i (x(k)�ci)+ei(k)0⇤�1e ei(k); (A1.1)

3.3. let Ci(k)  Ci(k) [ {x(k)};
3.4. for j = 1, . . . , ny do
3.4.1. let u 0nx+1, b 1;
3.4.2. for ` = 1, . . . , nx + 1 do
3.3.4.1. a 1p



P`
h=1[T i(k),j]`,hxh(k);

3.3.4.2. b1  b; b pb2 + a2;
3.3.4.3. �  a

b , ⇢  b1
b ;

3.3.4.4. for t = 1, . . . , i do
d [T i(k),j]`,t ; [T i(k),j]`,t 1p


⇢d��ut ;

ut ⇢ut + 1p

�d;

3.3.4.5. end for;
3.4.3. end for;
3.4.4. update [Ai(k)]j,:  [Ai(k)]j,: + ei(k)

b u0;
3.5. end for;
3.6. let �ci(k)  1|Ci(k)| (x(k)� ci(k));
3.7. update the centroid ci(k) of cluster Ci(k)

ci(k)  ci(k) + �ci(k);
3.8. update the inverse of the cluster covariance matrix Ri(k) for

cluster Ci(k) through the Matrix Inversion Lemma:

Q  R�1i(k) �
R�1i(k)

⇥

x(k)� ci(k)
⇤ ⇥

x(k)� ci(k)
⇤0 R�1i(k)

�

�Ci(k)
�

�� 2 + ⇥

x(k)� ci(k)
⇤0 R�1i(k)

⇥

x(k)� ci(k)
⇤

;

R�1i(k)  
�

�Ci(k)
�

�� 1
�

�Ci(k)
�

�� 2

0

B

@

Q � Q �ci(k)�c 0i(k)Q
|Ci(k)|�2|Ci(k)|�1 + �c 0i(k)Q �ci(k)

1

C

A

;

4. end for;
5. end.

Output: Estimated matrices {Ai}si=1, centroids {ci}si=1, clusters{Ci}si=1, covariance matrices {Ri}si=1.

that fits all data, classify the regressors {x(k)}Nk=1 through k-means
clustering, compute the cluster centroids ci = 1

|Ci|
P

x(k)2Ci
x(k)

and the inverse of the cluster covariance matrices Ri =
1

|Ci|�1
P

x(k)2Ci
[x(k)� ci]

[x(k)� ci]0. When working in a batch mode, estimation quality
may be improved by repeating Algorithm 1 iteratively, using its
output as initial condition for its following execution. It is worth
remarking that a prior knowledge of the noise covariance matrix
⇤e is barely available in practice. A possible choice for ⇤e can be,
for instance, ⇤e = Iny (i.e., the regression errors are not weighted
in Eq. (A1.1)). Alternatively, if Algorithm 1 is executed in a batch
mode and iteratively repeated by using the output as initial condi-
tion for the next execution, an estimate ⇤̂e of ⇤e can be computed

at the end of each execution as the sample covariance matrix

⇤̂e = 1
N

s
X

i=1

N
X

k=1
x(k)2Ci

⇣

y(k)� Ai

h

1
x(k)

i⌘ ⇣

y(k)� Ai

h

1
x(k)

i⌘0
.

Step 2 initializes the inverse matrices T i,j needed by the recursive
least squares updates at a (large) value �Inx+1, where � is a large
number, for all output components j = 1, . . . , ny and for all local
linear models i = 1, . . . , s.

After computing the estimation error ei(k) for all models i at
Step 3.1, Step 3.2 picks up the ‘‘best’’ submodel i(k) to which
the current sample x(k) must be associated with, based on a
tradeoff between reducing the prediction error ei(k) andpenalizing
the distance (weighted by matrix R�1i ) between x(k) and the
corresponding centroid ci. This is motivated by the stochastic
interpretation described in Section 3.1.1. The clustering rule in
Eq. (A1.1) is similar to the clustering criterion used in Bako et al.
(2011) for online PWA regression. However, Bako et al. (2011) does
not provide guidance to properly weight the prediction error and
the distance from the cluster centroids. Instead, we motivate the
use of the chosen weighting parameters in Section 3.1.1.

Steps 3.4.1–3.4.4 are derived from the inverse QR factorization
algorithm of Alexander and Ghirnikar (1993) and recursively up-
date each row ` of matrix Ai(k) only for the selected submodel i(k),
for all ` = 1, . . . , ny. Step 3.6 updates recursively the correspond-
ing centroid ci(k) and the corresponding cluster covariance matrix
Ri(k). Note that the remaining clusters’ centroids and covariance
matrices are not updated.

3.1.1. Cluster selection: a stochastic interpretation
In Eq. (A1.1) each vector x(k) is assigned to a cluster Ci(k)

by trading off between minimizing the (weighted) regression
error and the (weighted) distance between x(k) and the clusters’
centroids. This criterion is justified by the following stochastic
interpretation. Assume that the conditional probability density
function fx of x(k) given that x(k) belongs to the cluster Ci is
a Gaussian function centered at the centroid ci with covariance
matrix Ri, i.e.,

fx(x(k)|x(k) 2 Ci) / exp
⇢

�1
2

(x(k)� ci)0R�1i (x(k)� ci)
�

.

Further suppose that the residual e(k) = y(k) � Ai

h

1
x(k)

i

given
that x(k) belongs to the cluster Ci follows a Gaussian distribution
with zero mean and covariance matrix ⇤e. Thus, the conditional
probability density function fy of the observed output y(k) given the
regressor x(k) and the information that x(k) belongs to the cluster
Ci is:

fy(y(k)|x(k), x(k) 2 Ci) = fy
⇣

y(k)� Ai

h

1
x(k)

i⌘

/ exp
⇢

�1
2

⇣

y(k)� Ai

h

1
x(k)

i⌘0
⇤�1e

⇣

y(k)� Ai

h

1
x(k)

i⌘

�

.

The criterion in Eq. (A1.1) thus maximizes over i = 1, . . . , s the
conditional posterior probability fxy(x(k), y(k)|x(k) 2 Ci), which is
given by:

fxy(x(k), y(k)|x(k) 2 Ci)

= fy(y(k)|x(k), x(k) 2 Ci)fx(x(k)|x(k) 2 Ci)

/ exp
⇢

�1
2

⇣

y(k)� Ai

h

1
x(k)

i⌘0
⇤�1e

⇣

y(k)� Ai

h

1
x(k)

i⌘

+ �1
2

(x(k)� ci)0 R�1i (x(k)� ci)
�

.
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3.2. Partitioning the regressor space

We propose here a variation of the multicategory discrimina-
tion technique of Bennett and Mangasarian (1994) to separate
the clusters {Ci}si=1 that partition the regressor space in a much
more computationally efficient way, especially when dealing with
a large number N of data points.

For i = 1, . . . , s, let Mi be a mi ⇥ nx dimensional matrix
(with mi denoting the cardinality of cluster Ci) obtained by
stacking the regressors x(k)0 belonging to Ci in its rows. The
linear multicategory discrimination problem aims at computing a
piecewise affine separator function � : Rnx ! R discriminating
between the clusters C1, . . . , Cs. The piecewise affine separator �
is defined as the maximum of s affine functions {�i(x)}si=1, i.e.,

�(x) = max
i=1,...,s

�i(x), (3)

and, based on the definition of �, each polyhedron Xi turns out to
be described by:

Xi = �

x 2 Rnx : �i(x) = �(x)
 

. (4)

The affine functions�i(x) are described by the parameters!i 2 Rnx

and � i 2 R, namely:

�i(x) = ⇥

x0 � 1
⇤



!i

� i

�

. (5)

In case of linearly separable clusters, the affine functions �i(x)
satisfy the inequality constraints

⇥

Mi �1mi

⇤



!i

� i

�

>
⇥

Mi �1mi

⇤



!j

� j

�

, i, j = 1, . . . , s, i 6= j,

or, equivalently,

⇥

Mi � 1mi

⇤



!i

� i

�

� ⇥

Mi �1mi

⇤



!j

� j

�

+ 1mi ,

i, j = 1, . . . , s, i 6= j, (6)

where the constant vector 1mi on the right side of Eq. (6) is used
only for normalization purposes.

A piecewise-affine separator � thus satisfies the conditions:
8

>

>

<

>

>

:

�(x) = ⇥

x0 � 1
⇤



!i

� i

�

, 8x 2 Ci, i = 1, . . . , s

�(x) � ⇥

x0 � 1
⇤



!j

� j

�

+ 1, 8x 2 Ci, i 6= j.
(7)

Remark 1. According to the definition of� (Eq. (3)) and�i (Eq. (5)),
and the conditions in (7), the polyhedra {Xi}si=1 are defined as

Xi =
⇢

x 2 Rnx : ⇥x0 �1
⇤



!i � !j

� i � � j

�

�1,

j = 1, . . . , s, j 6= i
�

. ⌅

Rather than solving a linear program as in Bennett and Man-
gasarian (1994), we determine {!i, � i}si=1 by solving the convex
unconstrained optimization problem

min
{!i,� i}si=1

�

2

s
X

i=1

�k!ik22 + (� i)2
�

+
s

X

i=1

s
X

j=1
j6=i

1
mi

�

�

�

�

✓

⇥

Mi �1mi

⇤



!j � !i

� j � � i

�

+ 1mi

◆

+

�

�

�

�

2

2
, (8)

where �
2

Ps
i=1

�k!ik22 + (� i)2
�

, with � > 0, is an `2-regularization
term introduced to better conditioning problem (8) and to guar-
antee that (8) has a unique solution. Furthermore, by tuning the
hyper-parameter � through cross-validation, the `2-regularization
term may lead to an improvement of the generalization perfor-
mance of the final separator �.

Problem (8) generates a piecewise-affine function that min-
imizes the (averaged) squared 2-norm of the violation of the
inequalities (6). The problem is solved by using a regularized
piecewise-smooth Newton method with Armijo’s line search sim-
ilar to the one proposed in Bemporad, Bernardini, and Patrinos
(2015) for functions g : Rn⇠ ! R of the form

g(⇠) = �

2
k⇠k22 +

ng
X

j=1

kgj(⇠)+k22, (9)

where gj : Rn⇠ ! R are convex and twice continuously differ-
entiable functions. In particular, we exploit the linearity of func-
tions gj’s. In fact, for the special case of solving Problem (8), the
optimization vector is ⇠ = [(!1)0 . . . (!s)0 � 1 . . . � s]0 2 Rn⇠ ,
n⇠ = s(nx + 1), and gj’s are affine functions:

gj(⇠) = a0j⇠ � bj, j = 1, . . . , ng , (10)

where ng = N(s � 1) and aj 2 Rn⇠ , bj 2 R are easily obtained
from (8) as a function of matrices {Mi}si=1 and coefficients {mi}si=1.
By letting

A = [a1 . . . ang ]0, B = [b1 . . . bng ]0, (11)

given a vector ⇠ 2 Rn⇠ , let I(⇠) = {i 2 {1, . . . , ng} : Ai⇠�Bi > 0}.
Then,

g(⇠) = �

2
⇠ 0⇠ +

X

i2I(⇠)

(Ai⇠ �Bi)
2 (12a)

rg(⇠) = �⇠ + A0I(⇠)(AI(⇠)⇠ �BI(⇠)) (12b)

r2g(⇠) = �I + A0I(⇠)AI(⇠) = �I +
X

i2I(⇠)

A0iAi (12c)

are, respectively, the function tominimize, its gradient, and its gen-
eralized Hessian at ⇠ .

The proposed approach to solve (8) is summarized in Algorithm
2. The algorithm uses the solution d of the linear system

(r2g(⇠) + �(⇠)I)d = �rg(⇠) (13)

at the current ⇠ as a search direction, where �(⇠) = ⇣krg(⇠)k and
⇣ 2 (0, 1). Due to the special structure of r2g in (12c), the linear
system (13) is solved at Steps 5.1–5.2 as the least squares problem

min
d

1
2

�

�

�

�

�

�



AI(⇠)
p

� + �(⇠)In⇠

�

d +
2

4

AI(⇠)⇠ �BI(⇠)

�p
� + �(⇠)

⇠

3

5

�

�

�

�

�

�

2

2

(14)

using the QR factorization of


AI(⇠)
p

� + �(⇠)In⇠

�

.

Note that since rg(⇠) > 0 during iterations, �(⇠) is also
positive, and therefore R is full column rank, so that the upper-
triangular linear system in Step 5.2 is always solvable.

A good initial guess for ⇠ 2 Rn can be obtained by running
Algorithm 2 first on decimated clusters, then use the result as the
new initial condition in Algorithm 2 for the full problem with N
regressors.

Numerical experiments have shown that allowing a varying
⇣ = ⇣0

min{1,krgk}
krgk , where 0 < ⇣0 ⌧ 1, reduces the number of

iterations and prevents excessive regularization in (13) when
krgk is large. Moreover, while setting � > 0 complicates the
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Algorithm 2 Piecewise-smooth Newton method for solving the
multicategory discrimination problem (8)
Input: Regressors {x(k)}Nk=1, clusters Ci, i = 1, . . . , s; scalars � 2

(0, 1/2), ⇣ 2 (0, 1); `2-regularization hyper-parameter � � 0;
initial guess ⇠ 2 Rn; maximum number K of iterations; tolerances
gtol > 0 and �tol > 0.

1. InitializematricesMi 2 Rmi⇥nx , whose rows are the transposed
regressors x(k) 2 Ci, i = 1, . . . , s; n⇠  s(nx + 1), ng  
N(s� 1); define A, B as in (10)–(11), j = 1, . . . , ng ;

2. k 0;
3. c  A⇠ �B; I  {i 2 {1, . . . , ng} : ci � 0};
4. g  c 0I cI + �

2 ⇠ 0⇠ ; rg  A0I cI + �⇠ ; � ⇣krgk;
5. while g > gtol and � > �tol and k < K do
5.1. (Q , R) QR factorization of

h

AIp
�+�In⇠

i

;
5.2. solve the upper-triangular linear system

R{1,...,n⇠ }d =� (Q{1,...,|I|},{1,...,n⇠ })0cI

� �

� + �
(Q{|I|+1,...,|I|+n⇠ },{1,...,n⇠ })0⇠ ; (A2.1)

5.3. ↵ 1; q Ad; ⇠↵  ⇠ + d;
5.4. I↵  {i 2 {1, . . . , ng} : c + q � 0};
5.5. g↵  (cI↵ + qI↵ )0(cI↵ + qI↵ ) + �

2 ⇠ 0↵⇠↵;
5.6. while g↵ > g + ↵�rg 0d do
5.6.1. ↵ 1

2↵; ⇠↵  ⇠ + ↵d
5.6.2. c↵  c + ↵q;
5.6.3. I↵  {i 2 {1, . . . , ng} : c↵

i � 0};
5.6.4. g↵  (c↵

I↵ )0c↵
I↵ + �

2 ⇠ 0↵⇠↵;
5.7. end while;
5.8. ⇠  ⇠↵; g  g↵; I  I↵; c  c↵;
5.9. rg  A0I↵ c

↵
I↵ + �⇠ ; � ⇣krgk;

5.10. k k + 1;
6. retrieve !i, � i, i = 1, . . . , s, from the solution ⇠ ;
7. end.

Output: Coefficients !i, � i, i = 1, . . . , s defining the piecewise
affine separator � in (3)–(5).

number of operations required by the algorithm at each iteration
(in particular to compute the solution of Eq. (A2.1)) and bias
the solution with respect to the piecewise affine multicategory
discrimination function minimizing only the squared 2-norm of
the violation of the inequalities (6), it leads to a smaller number
k of iterations, and overall to a reduced computation time.

3.3. Recursive multicategory discrimination via online convex pro-
gramming

As an alternative to Algorithm 2, or in addition to it for refining
the partition � online based on streaming data, we introduce a
recursive approach to solve problem (8) based on techniques of
online convex programming.

Let us treat the data-points x 2 Rnx as random vectors and
assume that an oracle function i : Rnx :! {1, . . . , s} exists that
to any x 2 Rnx assigns the corresponding mode i(x) 2 {1, . . . , s}.
Function i implicitly defines clusters in the data-point space Rnx .
Let us also assume that the following values

⇡i = Prob[i(x) = i] =
Z

Rnx
�(i, i(x))p(x)dx

are known for all i = 1, . . . , s, where �(i, j) = 1 if i = j or zero
otherwise, i, j 2 {1, . . . , s}. Each value ⇡i represents the relative

‘‘volume’’ of cluster i, where clearly
s

X

i=1

⇡i =
Z

Rnx

s
X

i=1

�(i, i(x))p(x)dx =
Z

Rnx
p(x)dx = 1.

Problem (8)–(9) can be generalized to the following uncon-
strained convex stochastic optimization problem

⇠ ⇤ = argmin
⇠

Ex2Rnx [`(x, ⇠)] + �

2
k⇠k22 (15)

`(x, ⇠) =
s

X

j=1
j6=i(x)

1
⇡i(x)

�

x0(!j � !i(x))� � j + � i(x) + 1
�2
+

with Ex[·]denoting the expected valuew.r.t. x. The solution of prob-
lem (15) provides a piecewise affine multicategory discrimination
function satisfying (3)–(5). This aims at violating the least, on av-
erage over x, the condition in (6) for i = i(x). We assume that the
`2-regularization hyper-parameter � is such that � > 0, so that the
objective function in (15) is strongly convex.2

When learning the discrimination function � online, the data-
points xk are acquired in real-time and one would like to update
� recursively, without the need of storing all past data-points
x0, . . . , xk�1. We achieve this by solving problem (15) by online
convex optimization and, in particular, by the averaged stochastic
gradient descent method of Ruppert (1988) as proposed in Bottou
(2012) (cf. also Xu, 2011), whose application to the linearmulticat-
egory discrimination problem (15) is described in Algorithm 3.

Algorithm 3 Averaged stochastic gradient descent algorithm for
solving the linear multicategory discrimination problem (15)
Input: Regressor flow x(0), x(1), . . .; cluster assignment function
i : Rnx ! {1, . . . , s}; `2-regularization parameter � � 0; scalar
⌫0 � 0; initial guess ⇠ 2 Rn.

1. for k = 0, 1, . . . do:
1.1. compute the gradient r⇠ `(⇠k, xk) as follows:
1.1.1. Ik  {j 2 {1, . . . , s}, j 6= i(xk) : x0k(!

j
k � !

i(xk)
k ) � �

j
k +

�
i(xk)
k � �1};

1.1.2. set
@`(⇠k, xk)

@
h

!j

� j

i  �



!
j
k

�
j
k

�

+ 1
⇡i(xk)
⇥

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

X

j2Ik

⇣

x0k(!
j
k � !

i(xk)
k )� �

j
k + �

i(xk)
k + 1

⌘

⇥ �xk
1

⇤

if j = i(xk)
⇣

x0k(!
j
k � !

i(xk)
k )� �

j
k + �

i(xk)
k + 1

⌘

⇥ xk�1
⇤

if j 6= i(xk), j 2 Ik
0 otherwise.

1.2. compute

⌫k ⌫0(1+⌫0�k)�
3
4 ; µk 1/max{1, k�nx, k�n⇠};

⇠k+1 ⇠k�⌫kr⇠ `(⇠k, xk); ⇠̄k+1 ⇠̄k+µk(⇠k+1�⇠̄k);
1.3. retrieve !i

k, �
i
k , i = 1, . . . , s, from ⇠̄k;

2. end.

Output: Coefficients {!i
k, �

i
k}si=1, defining the separator � in (3)–

(5) at each step k = 0, 1, . . ..

The initial estimate ⇠0 can be either zero (or any other value), or
the result of the execution of the batch Algorithm 2 on a subset of

2 A differentiable function f is strongly convex if, for all points x, y in its domain,
9m > 0 such that f (y) � f (x) + rf (x)>(y� x) + mkx� yk22.
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data preprocessed offline. The coefficients ⇡i can also be estimated
from offline data, namely ⇡i = mi

N , and possibly updated while
Algorithm 3 is running. Numerical experiments have shown that
constant and uniform coefficients ⇡ = 1

s work equally well.

4. Simulation example

In this section, we show the effectiveness of the proposed PWA
regression algorithm in a simulation example. Further applications
of the proposed method, including the identification of linear
parameter-varying and hybrid dynamical models, can be found
in Bemporad, Breschi, and Piga (2016) and Breschi et al. (2016).

All computations are carried out on an i7 2.40-GHz Intel core
processorwith 4GB of RAM runningMATLAB R2014b. In validating
the obtained models on a data sequence not used for training,
we will denote by yo and ŷ the vector stacking the measured
and estimated outputs, respectively, and by ȳo the vector staking
the sample mean of the measured output. The Best Fit Rate (BFR)
indicator BFR = max

n

1� kyo�ŷk2
kyo�ȳok2 , 0

o

· 100% is used to assess
model quality.

The data are generated by the (unknown) function

fo(x) =
8

<

:

h(x) if � 0.5  h(x)  0.5,
0.5 if h(x) � 0.5,
�0.5 if h(x)  �0.5,

(16)

with h : R3 ! R, h(x) = 0.6 sin
�

x1 + x22 � x3
�

. The regressor
x(k) 2 R3 is a white noise sequence with uniform distribution on
the box [�1 1]3 and length N = 1250. The output of the function
fo is corrupted by an additive zero-mean white noise eo(k) 2 R,
with Gaussian distribution and variance ⇤e = 0.022 (i.e., y(k) =
fo(x(k)) + eo(k)). This corresponds to a Signal-to-Noise Ratio (SNR)
of 25 dB, where SNR = 10 log

PN
k=1(y(k)�eo(k))2
PN

k=1 e2o(k)
.

4.1. Estimation results

We run Algorithm 1 not considering the forgetting factor
(i.e.,  = 1) andwith � set equal to 103. The initial guess for the pa-
rameters Ai, the cluster centroids and covariance matrices {Ri}si=1
are computed by running an instance of Algorithm 1 without the
first term in Eq. (A1.1), with ⇤e = 1 and Ai initialized as in (2). Al-
gorithm 1 is then run again 25 times, with the full criterion (A1.1),
by initializing Ai, ci and Ri with the output of the previous run. The
clusters generated by Algorithm 1 are then separated by solving
problem (8) via the Piecewise-smooth Newton method described
in Algorithm 2, with parameters K = 300, � = 0.4, � = 10�5,
⇣ = 10�5, gtol = �tol = 10�6, and ⇠ = 0 as initial guess. A sen-
sitivity analysis with respect to the tuning parameters � and ⇣ is
also performed. Fig. 1 shows the BFRs computed on 250 samples
(not used for training) for different values of the tuning parameters.
We observe that Algorithm 2 is basically not sensitive to � and ⇣ .

The number s of local affine submodels is chosen by means of
cross validation. Specifically, the quality of the estimated function
is assessed on a calibration dataset with 250 samples not used
for training. For each value of s, the BFR is computed and, among
the estimated PWA functions, we selected the one providing the
largest BFR. This is achieved for s = 12.

The quality of the estimated PWA model is assessed on a
validation dataset with NV = 200 samples. The obtained BFR is
85.19%. The total CPU time for solving the regression problem is
3 s, of which 0.257 s are taken to compute the polyhedral partition
throughAlgorithm2. For comparison, the same regressionproblem
is solved through the regression algorithm of Ferrari-Trecate et al.

Fig. 1. BFR vs tuning parameters � and ⇣ .
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140 160 180
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Fig. 2. Output signal (left panel): black = true, red = proposed PWA regression
method, green = method in Fung andMangasarian (2005). Estimation error (right
panel): red = proposed PWA regression method, green = method in Fung and
Mangasarian (2005). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. BFR vs number of runs of Algorithm 1. N = 1250 (blue); N = 12,500 (red);
N = 125,000 (black). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

(2003),3 using the Proximal Support Vector Classifier (PSVC) (Fung
& Mangasarian, 2005) to compute the partition.4 The CPU time
needed to solve the regression problem is around 149 s (i.e. 49⇥
slower than the method proposed in this paper). The obtained BFR
is 53.40%. To provide another element of comparison, Fig. 2 shows
the true output yo and the output ŷ of the functions estimatedwith
the method proposed in this paper and the approach in Fung and
Mangasarian (2005). The error yo(k) � ŷ(k) is also plotted. For a
better visualization, only the samples from time 141 to 180 are
reported.

4.2. Convergence properties

As the accuracy of the final model estimate and the total CPU
time is influenced by the number M of runs of Algorithm 1, the
performance of the proposed learning approach has been tested
with respect to both M and the dimension N of the considered
training set. The obtained BFR as a function of iterations of
Algorithm 1 is plotted in Fig. 3 for different lengths of the training
dataset. Algorithm 1 converges after 15 runs.

4.3. Performance of multicategory discrimination algorithms

We compare the following four multicategory discrimination
algorithms used to generate the partition of the regressor space
against the 200-length validation dataset previously used in
Section 4.1:

3 The Hybrid Identification Toolbox (Ferrari-Trecate, 2005) has been used.
4 Among all the classifiers available in HIT, the PSVC is the one which provided

the best results.
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Table 1
CPU time required to partition the regressor space vs length N of the training set.

N = 1250 N = 12,500 N = 125,000

RLP (Bennett & Mangasarian, 1994) 1.336 s 125 s 8541 s
RPSN (Algorithm 2) 0.257 s 1.762 s 18.8 s
ASGD (Algorithm 3) 0.0014 s 0.018 s 0.131 s
MSVM (Lee et al., 2004) 6.545 s 3870 s –

Table 2
BFR vs length N of the training set.

N = 1250 N = 12,500 N = 125,000

RLP (Bennett & Mangasarian, 1994) 86.56% 87.41% 93.88%
RPSN (Algorithm 2) 85.19% 86.47% 91.86%
ASGD (Algorithm 3) 84.78% 82.30% 92.99%
MSVM (Lee et al., 2004) 80.91% 80.02% –
Voronoi 81.75% 83.96% 86.60%

Fig. 4. BFR vs tuning parameter ⌫0.

Fig. 5. Algorithm 2. BFR vs regularization parameter �.

• robust linear programming (RLP) (Bennett & Mangasarian,
1994)5;

• regularized piecewise-smooth Newton (RPSN) method (Algo-
rithm 2), using the same parameters reported in Section 4.1;

• averaged stochastic gradient descent (ASGD) method (Algorithm
3), with � = 10�5 and ⌫0 = 0.01. The weights ⇡i and the initial
estimate ⇠0 are computed by executing the batch Algorithm
2 on the first 50 training samples. The remaining training
samples are processed recursively. A sensitivity analysis w.r.t.
the parameter ⌫0 is also performed. Fig. 4 shows the BFRs
computed for different values of ⌫0, pointing out that the
performance of Algorithm 3 decreases as ⌫0 increases. This is a
typical behavior of stochastic gradient descendmethods, where
convergence to the global optimum improves as the parameter
⌫0 decreases, at the price of a lower convergence speed.

• multicategory support vector machines (MSVM) with linear
kernels (Crammer & Singer, 2002), implemented in the
MSVMpack 1.5 toolbox (Lauer & Guermeur, 2011).6

A sensitivity analysis w.r.t. the regularization parameter � is
also performed. Figs. 5 and 6 show the BFRs obtained for different
values of � by Algorithms 2 and 3, respectively. Note that, for
�  0.1, the final estimate is fairly insensitive to the regularization
parameter �.

The CPU time required to generate the polyhedral partition of
the regressor space is given in Table 1. The performance of the
MSVM approach is evaluated only in relation to small/medium
training sets, as large datasets take too long to be processed. Notice
that, for a large training set (i.e., N = 125,000), Algorithms 2 and 3
are about 454⇥ and 65,200⇥ faster, respectively, than the robust
linear programming method of Bennett and Mangasarian (1994).

5 The solver Gurobi is used to compute the solution of the formulated linear
programming problem.
6 The default parameters are used.

Fig. 6. Algorithm 3. BFR vs regularization parameter �.

Table 3
Monte Carlo simulation: BFR (mean ± std).

RPSN (Algorithm 2) ASGD (Algorithm 3)

BFR (87.01 ± 3.07) % (86.88 ± 2.59) %

The obtained BFRs are reported in Table 2, along with the
BFR obtained when the Voronoi diagram induced by the clusters’
centroids (given as an output by Algorithm 1) is used to partition
the regressor space. Results in Table 2 show that the employed
algorithms lead to an accurate estimate of the true function in
terms of output prediction, with BFRs larger than 80% also in
the case of small training set (N = 1250). This aspect indicates
that the training samples are accurately clustered by Algorithm 1.
Furthermore, the first three discrimination algorithms lead to BFRs
larger than 90% for a large training set (N = 125,000). In the latter
case, the Voronoi diagram does not achieve similar performance.
This suggests that the Voronoi diagram induced by the clusters’
centroids is not flexible enough in partitioning the regressor space.
As a matter of fact, the Voronoi diagram only depends on the
clusters’ centroids, and it does not take into account how the points
are spread around the centroids.

4.4. Monte-Carlo simulation

A Monte Carlo simulation with 100 runs, with new realizations
of both the input u and the measurement noise eo at each run, is
carried out to assess the robustness of the estimation algorithm
w.r.t. different realizations of the training data. The obtained
results are reported in Table 3, which shows the mean and the
standard deviation of the BFR over the Monte Carlo simulation for
training datasets of length N = 12,500.

5. Conclusions

The strengths of the PWA regression approach of this paper
are (i) its computational efficiency, (ii) the ability to be run
both in a batch and in a recursive way, and (iii) the quality
of fit that can be achieved. Future research will be devoted to
generalize the approach to piecewise-nonlinear models (such as
piecewise polynomial) by feeding regression data manipulated
through nonlinear basis functions to Algorithms 1, 2 and 3.
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