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a b s t r a c t

This paper presents a novel approach to solve linear and nonlinear model predictive control (MPC)
problems that requires small memory footprint and throughput and is particularly suitable when
the model and/or controller parameters change at runtime. The contributions of the paper include:
(i) a formulation of the nonlinear MPC problem as a bounded-variable nonlinear least-squares
(BVNLS) problem, demonstrating that the use of an appropriate solver can outperform industry-
standard solvers; (ii) an easily-implementable library-free BVNLS solver with a novel proof of global
convergence; (iii) a matrix-free method for computing the products of vectors and Jacobians, required
by BVNLS; (iv) an efficient method for updating sparse QR factors when using active-set methods
to solve sparse BVNLS problems. Thanks to explicitly parameterizing the optimization algorithm in
terms of the model and MPC tuning parameters, the resulting approach is inherently and immediately
adaptive to any changes in the MPC formulation. The same algorithmic framework can cope with linear,
nonlinear, and adaptive MPC variants based on a broad class of prediction models and sum-of-squares
cost functions.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Model predictive control has evolved over the years from a
ethod developed for controlling slow processes (Qin & Badg-
ell, 2003; Rafal & Stevens, 1968) to an advanced multivariable
ontrol method that is applicable even to fast-sampling appli-
ations, such as in the automotive and aerospace domains (Be-
porad, Bernardini, Long, & Verdejo, 2018; Di Cairano & Kol-
anovsky, 2018). This evolution has been possible because of

he significant amount of research on computationally efficient
eal-time MPC algorithms. For an incomplete list of such efforts
nd tools the reader is referred to Cannon (2004), Diehl, Bock,
nd Schlöder (2005), Diehl, Ferreau, and Haverbeke (2009), Jerez
t al. (2014), Kouzoupis, Frison, Zanelli, and Diehl (2018), Ohtsuka
2004), Stella, Themelis, Sopasakis, and Patrinos (2017), Wang
nd Boyd (2010). Despite the success of MPC, demand for faster
lgorithms for a wider scope of applications has been reported
or instance in Di Cairano and Kolmanovsky (2018). A common
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approach to reduce computations is to solve the MPC problem
suboptimally, see for instance Diehl et al. (2005), Wang and Boyd
(2010). However, even such MPC approaches have limitations
that could be prohibitive in some resource-constrained appli-
cations, especially in the case of (parameter-varying) nonlinear
MPC (NMPC). This denotes that there is still a large scope of
improvement.

A usual practice in MPC is to first formulate an optimization
problem, for instance by computing the Hessian matrix in case of
QP formulations, or NLP sub-problems, based on the prediction
model and MPC tuning parameters, before passing it in a standard
form to an optimization solver. Such a problem construction step
can be performed offline when the prediction model is time-
invariant, e.g., a linear time-invariant (LTI) model, whereas it
needs to be repeated at each instance in case of parameter-
varying models, as in case of a nonlinear model linearized at the
current operating point, or changes in MPC tuning parameters
(such as prediction horizon, control horizon, tuning weights).
Often, constructing the optimization problem requires a compu-
tational effort comparable to that required for solving it. The same
occurs in the recently proposed data-driven MPC scheme (Piga,
Forgione, Formentin, & Bemporad, 2019) where, due to poten-
tially time-varying model and tuning parameters, re-constructing
the MPC optimization problem online becomes necessary, which
significantly increases the computational load. Notwithstanding
these limitations of MPC, scarcely any effort has been made to
date to design a real-time MPC approach which does not need
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re-)construction of the optimization problemwith varying model
nd/or MPC tuning parameters. Approaches which partially ad-
ress this aspect for a limited class of linear parameter-varying
LPV) models with a fixed MPC problem structure include Ca-
anini, Cimini, and Ippoliti (2018), Wang and Boyd (2010). The
ethods proposed in this paper aim at reducing the compu-

ational complexity of MPC while eliminating the optimization
roblem construction step, through algorithms that can adapt
o changes in the model and/or tuning parameters at runtime.
he main ideas employed for this purpose are: (1) a reformula-
ion of the MPC problem through a quadratic penalty function
n order to exploit fast solution methods, (2) replacing matrix
nstances via abstract operators that map the model and tuning
arameters to the result of the required matrix operations in
he optimization algorithm. Besides this, the contributions of this
aper include: (1) an overview on equality constraint elimination
n the considered (nonlinear) MPC problems, (2) a discussion
n alternative methods to implement MPC with resulting algo-
ithms having negligible memory scaling w.r.t. the number of de-
ision variables, (3) methods to exploit problem sparsity and ef-
iciently implement the active-set method proposed in Saraf and
emporad (2020) for MPC based on box-constrained (nonlinear)
east-squares.

Regarding the last contribution, we note that each iteration
f a primal active-set method (Nocedal & Wright, 2006) involves
he solution of a linear system, which in the case of the algo-
ithm in Saraf and Bemporad (2020) is a sparse unconstrained
inear least-squares (LS) problem. These LS problems between
uccessive iterations are related by a rank-one update. In Saraf
nd Bemporad (2020), it has been shown that for the numerically
ense case, as compared to solving an LS problem from scratch,
mploying a recursive QR factorization scheme that exploits the
elation between successive LS problems can significantly in-
rease computational speed without compromising numerical
obustness, even without using advanced linear algebra libraries.
n the sparse case, even though very efficient approaches exist
or solving a single LS problem using direct (Davis, 2006) or it-
rative (Saad, 2003) methods with sparse linear algebra libraries,
o the best of the authors’ knowledge no methods have been
eported for recursively updating the sparse QR factorization of a
atrix. A recursive approach for sparse LU factorization has been
escribed in Dongarra, Eijkhout, and Łuszczek (2001); however,
uch an approach not only needs to store the matrix and its
parsity pattern, which requires constructing the MPC problem
nd forming the normal equations that could be numerically
usceptible to ill-conditioning, but also relies on linear algebra
ackages that could be difficult to embed in a control platform.
n this paper, we present novel methods for numerically sta-
le sparse recursive QR factorizations based on Gram–Schmidt
rthogonalization, which are easy to implement and are very
fficient even for small-size problems, therefore extending the
ense approach of Saraf and Bemporad (2020). Although the
roposed methods are designed for the specific MPC application,
hey may be applicable for other LS problems having similar
pecial structures.
The paper is organized as follows. Section 2 describes the con-

idered general class of discrete-time models and MPC problem
ormulation. The proposed formulation based on eliminating the
quality constraints is reported in Section 3. In Section 4 we
escribe a solution algorithm for bound-constrained nonlinear
east-squares optimization with a theoretical analysis of its global
onvergence. A parameterized implementation of this algorithm
or solving MPC problems without the construction phase and
elying on the abstraction of matrix instances is described in
ection 5. Methods for sparse recursive thin QR factorization

re described in Section 6. Section 7 briefly reports numerical

2

results based on a nonlinear MPC (NMPC) benchmark example
that demonstrate the very good computational performance of
the proposed methods against other methods. Finally, Section 8
concludes the paper.

Excerpts of Sections 2–3, and Section 4.1 are based on the au-
thors’ conference papers (Saraf & Bemporad, 2017; Saraf, Zanon,
& Bemporad, 2018).

Notation. We denote the set of real vectors of dimension n as
Rn; a real matrix with m rows and n columns as A ∈ Rm×n; its
ranspose as A⊤, its inverse as A−1, and its pseudo-inverse as A†.
or a vector a ∈ Rm, its p-norm is ∥a∥p, its jth element is a(j),

and ∥a∥22 = a⊤a. A vector or matrix with all zero elements is
represented by 0. If F denotes a set of indices, AF denotes a ma-
trix formed from columns of A corresponding to the indices in F .
Given N square matrices A1, . . . , AN , of possible different orders,
blockdiag(A1, . . . , AN ) is the block diagonal matrix with diagonal
blocks A1, . . . , AN . For scalars a and b, min(a, b) and max(a, b)
denote, respectively, the minimum and maximum of the two
values. Depending on the context, (a, b] or [b, a) represent either
the set of real numbers or integers between a and b, excluding
a and including b. The gradient of a function f : Rn

→ R at a
point x̄ ∈ Rn is either denoted by ∇xf (x)|x̄ or ∇xf (x̄), the Hessian
matrix by ∇2

x f (x̄); the Jacobian of a vector function g : Rn
→ Rm

by Jxg(x)|x̄ or Jg(x̄).
Finite sets of elements are represented by curly braces con-

taining the elements; ∅ denotes the empty set. If a set A is a
subset of set B (i.e., if B is the superset ofA), it is written asA ⊆ B
(or alternatively B ⊇ A). The symbols ∪,∩, and \ between two
sets denote, respectively, set union, intersection, and difference.
The summation notation for sets is denoted by

⋃
. The cardinality

(number of elements) of a finite set A is denoted by |A|.

2. Preliminaries

For maximum generality, we describe the prediction model
for MPC by the discrete-time multivariable nonlinear parameter-
varying dynamical model equation

M(Yk, Uk, Sk) = 0, (1)

where Uk = (uk−nb , . . . , uk−1) with uk ∈ Rnu the input vector
at sampled time step k, and Yk = (yk−na , . . . , yk) with yk ∈
Rny the output vector at k. Vector Sk = (sk−nc , . . . , sk−1), where
sk ∈ Rns , ns ≥ 0, contains possible exogenous signals, such as
measured disturbances. We assume that function M : Rnany ×

Rnbnu ×Rncns → Rny is differentiable, where na, nb and nc denote
the model order. Special cases include deterministic nonlinear
parameter-varying auto-regressive exogenous (NLPV-ARX) mod-
els, state–space models (y = state vector, na = nb = nc = 1),
neural networks with a smooth activation function, discretized
first-principles models and differential algebraic equations. De-
signing the MPC controller based on (1) has several benefits such
as: 1) data-based black-box models which are often identified
in input–output form do not need a state–space realization, 2)
a state estimator is not required when all output and exoge-
nous variables are measured, 3) the number of variables to be
optimized does not scale linearly with the number of states
but outputs, which could be fewer in number, 4) input delays
can easily be incorporated in the model by simply shifting the
sequence in Uk backwards in time.

Linearizing (1) w.r.t. a sequence of inputs Û (that is, Uk =

Û +∆U) and outputs Ŷ (Yk = Ŷ +∆Y ) gives

M(Ŷ , Û, Sk)+
(
JYkM(Yk, Uk, Sk)

⏐⏐
Ŷ , Û

)
∆Y

+

(
J M(Y , U , S )

⏐⏐ )
∆U = 0,
Uk k k k Ŷ , Û
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hich is equivalently written as the following affine parameter-
arying input–output model, i.e.,

− A (Sk)0∆yk =
na∑
j=1

A (Sk)j∆yk−j +
nb∑
j=1

B (Sk)j∆uk−j

+ M(Ŷ , Û, Sk), (2)
where the Jacobian matrices
A(Sk)j = Jyk−jM(Yk, Uk, Sk)

⏐⏐
Ŷ , Û

∈ Rny×ny , ∀j ∈ [0, na],

B (Sk)j = Juk−jM(Yk, Uk, Sk)
⏐⏐
Ŷ , Û

∈ Rny×nu , ∀j ∈ [1, nb].

Note that for the special case of LTI models in ARX form, in (2)
A0 would be an identity matrix whereas Sk would be absent and

(Ŷ , Û) = 0, Ŷ = 0, Û = 0.
We consider a performance index (P) which is commonly

mployed for reference tracking in MPC:

k =

Np∑
j=1

1
2
∥Wyk+j (yk+j − ȳk+j)∥22 +

Nu−2∑
j=0

1
2
∥Wuk+j (uk+j − ūk+j)∥22

+
1
2
(Np − Nu + 1) · ∥Wuk+Nu−1 (uk+Nu−1 − ūk+Nu−1)∥

2
2, (3)

where Np and Nu denote the prediction and control horizon
respectively. Matrices Wy(·) ∈ Rny×ny , Wu(·) ∈ Rnu×nu denote
tuning weights, vectors ȳ, ū denote output and input references,
respectively.

The methods described later in this paper can straightfor-
wardly be extended to any performance index which is a sum of
squares of linear or differentiable nonlinear functions. The MPC
optimization problem is formulated based on the cost function (3)
subject to constraints on vector wk = (uk, . . . , uk+Nu−1, yk+1,
. . . , yk+Np ). We will consider equality constraints that arise from
the prediction model (1), and restrict inequality constraints to
only simple bounds on input and output variables. General in-
equality constraints g(wk) ≤ 0 can nevertheless be included as
equalities by softening them, i.e., by introducing non-negative
slack variables ν ∈ Rni

g(wk)+ νk = 0, νk ≥ 0, (4)

where zk = (wk, νk) and g : R(nz−ni) → Rni is assumed to be
differentiable, while the number of decision variables is nz and of
general inequality constraints is ni. In summary, the problem to
be solved at each step k is

min
zk

1
2
∥Wk(zk − z̄k)∥22 (5a)

s.t. hk(zk, φk) = 0, (5b)

pk ≤ zk ≤ qk, (5c)

here pk, qk are vectors defining bounds on the input and output
ariables, and possible non-negativity constraint on slack vari-
bles. Unbounded components of zk may be passed to the solver
e propose later as the largest negative or positive floating-
oint number in the computing platform, so that we can assume
k, qk ∈ Rnz . Vector φk = (uk−nb+1, . . . , uk−1, yk, . . . , yk−na+1)
enotes the initial condition whereas z̄ contains references on the
ecision variables. The block-sparse matrixWk is formed from the
uning weights (Wu(·) ,Wy(·) ) defined in (3).

. Eliminating equality constraints

Handling equality constraints via penalty functions, or an aug-
ented Lagrangian method, has proven to be effective for ef-

iciently solving constrained optimization problems (Bertsekas,
3

996; Nocedal & Wright, 2006),(Lawson & Hanson, 1995, Chapter
2). This section shows how similar methods can be applied to
fficiently solve MPC problems of the form (5). In order to employ
ast solution methods, the general constrained problem (5) can be
implified as a box-constrained nonlinear least-squares (BVNLS)
roblem by using a quadratic penalty function and consequently
liminating the equality constraints (5b) such that (5) becomes

min
pk≤zk≤qk

1
2

 1
√
ρ
Wk(zk − z̄k)
hk(zk, φk)

2
2

≡ min
pk≤zk≤qk

1
2
∥rk(zk)∥22, (6)

where the penalty parameter ρ is a positive scalar and r : Rnz →

Rnr denotes the vector of residuals. We propose the reformula-
tion (6) of problem (5) for the following reasons: i) penalizing
the violation of equality constraints makes problem (6) always
feasible; ii) no additional slack variables are needed for softening
output constraints, which would result in inequalities of general
type instead of box constraints; iii) while solving (6), since we do
not include additional slack variables to soften constraints, the
function hk does not need to be analytic beyond bounds, which is
discussed in further detail in Section 4 (cf. Remark 1); iv) no dual
variables need to be optimized to handle equality constraints; v)
problem (6) is simpler to solve as compared to (5), for instance,
when using SQP algorithms (cf. Section 4), initializing a feasible
guess is straightforward, the subproblems are feasible even with
inconsistent linearizations of hk, and convergence impeding phe-
nomena such as the Maratos effect (Nocedal & Wright, 2006) are
implicitly avoided.

Relaxing the equality constraints as above also has an engi-
neering justification (Saraf & Bemporad, 2017): As the prediction
model (1) is only an approximation of the true system dynamics,
(opportunistic) violations of the dynamic model equations will
only affect the quality of predictions, depending on the mag-
nitude of the violation. Instead of using the iterative quadratic
penalty method (QPM) (Nocedal & Wright, 2006, Framework
17.1) with increasing values of ρ in each iteration, we propose to
use a single iteration with a large value of ρ for solving (5), owing
to the fact that a good initial guess is often available in MPC. It has
been proven in Saraf and Bemporad (2017, Theorem 1) that for a
quadratic cost (5a) subject to only consistent linear equality con-
straints, a single QPM iteration with sufficiently large penalty ρ
may result in negligible solution inaccuracy. This has been clearly
demonstrated by numerical examples in Saraf and Bemporad
(2017), Saraf et al. (2018) for the general case. A practical upper
bound on ρ depends on the computation precision and numerical
robustness of the optimization solver such that the Jacobian of the
vector of residuals in (6) is numerically full-rank. The parameter
ρ is tuned (cf. Saraf (2019, Section 3.5.3)) based on the fact that
a higher value results in a lower solution inaccuracy at the cost
of problem scaling which may affect the convergence rate of
the adopted solution methods. A theoretical lower bound on ρ
exists and has been derived in Saraf and Bemporad (2017) for the
case of LTI systems based on closed-loop stability conditions. The
extension of such a result to the general case is not immediate
and thereby poses a risk given that the bound is not deterministic.
However, in practice, based on the arguments and details in the
references mentioned in this section, we expect a sufficiently low
value of the equality constraint violation.

An alternative approach to solve (5) without the equality
constraints (5b) is the bound-constrained Lagrangian method
(BLM) (Nocedal & Wright, 2006, Algorithm 17.4). The methods
described later may be applied to solve BLM too but since it is
not the focus here, a note discussing BLM in relevance to QPM is
included in Appendix.
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Algorithm 1 Bounded-Variable Nonlinear Least Squares (BVNLLS)
solver
Inputs: Bounds p, q ∈ Rnz , feasible initial guess z, b = r(z),

optimality tolerance γ ≥ 0, c ∈ (0, 0.5), τ ∈ (0, 1).

1: J ← Jzr (Linearization);
2: L← {j|z(j) ≤ p(j)}; U ← {j|z(j) ≥ q(j)};
3: d← J⊤b (Compute gradient of the cost function);
λp(j)← d(j),∀j ∈ L; λq(j)←−d(j),∀j ∈ U;

4: if λp(j) ≥ −γ ,∀j ∈ L and λq(j) ≥ −γ ,∀j ∈ U and |d(j)| ≤
γ ,∀j /∈ L ∪ U then go to Step 12 (Stop if converged to a
first-order optimal point);

5: ∆z ← argminp−z≤∆ẑ≤q−z ∥J∆ẑ + b∥22 (search direction);
6: α = 1; θ ← cαd⊤∆z; ψ ← b⊤b; b← r(z+∆z); Φ ← b⊤b;

7: while Φ > ψ + θ do (Backtracking line search)
8: α← τα; θ ← αθ ;
9: b← r(z + α∆z); Φ ← b⊤b;

10: end while
11: z ← z + α∆z; go to Step 1 (Update the iterate);
12: z⋆ ← z; λp(j)← 0,∀j /∈ L; λq(j)← 0,∀j /∈ U;
13: end.

Outputs: Local minimum z⋆ of (5), objective function value Φ at
z⋆, and Lagrange multiplier vectors λp and λq corresponding
to lower and upper bounds, respectively.

4. Optimization algorithm

4.1. Bounded-variable nonlinear least squares

In order to efficiently solve the MPC problem (6), it is desirable
o have a solution method that benefits from warm-starting in-
ormation, is robust to problem scaling, and exploits the structure
f the problem. The bounded-variable nonlinear least-squares
BVNLLS) method we propose in Algorithm 1 addresses such
eatures. It can be seen as either an ad hoc primal-feasible line-
earch SQP algorithm (Nocedal & Wright, 2006) or an extension of
he Gauss–Newton method (Björck, 1996, Section 9.2) to handle
ox-constraints. The Gauss–Newton approximation of the Hes-
ian is effective for nonlinear least-squares cost functions and
t only needs first-order information of the residual. Although
he global convergence property of Algorithm 1 follows that of
ine-search methods for problems with simple bounds (Bertsekas,
996), we provide below an alternative proof specific to BVNLLS
or an insightful overview, which also justifies the backtracking
ule (Steps 6–10 of Algorithm 1), that is analogous to the Armijo
ondition (Nocedal & Wright, 2006) for the choice of the step-size
α. We also note that the overview in this section is presented for
completeness whereas there exist other solvers which may solve
BVNLS problems (6), see, e.g., Agarwal, Mierle, and The Ceres
Solver Team.

4.2. Global convergence

At the ith iteration of Algorithm 1, the search direction ∆z(i)
s computed at Step 5 as

z(i) = argmin
p̄≤∆ẑ≤q̄

∥J∆ẑ + b∥22, (7)

here the Jacobian J = Jzr
(
z(i−1)

)
is assumed full rank, b =(

z(i−1)
)
, p̄ = p− z(i−1), q̄ = q− z(i−1), and p, q are the bounds on

. Since the bounds of any component of ∆z cannot all be active
4

imultaneously, the optimal set of active constraint gradients of
7) are always linearly independent. Hence, linear independence
onstraint qualification holds. Based on this and the fact that the
essian matrix J⊤J > 0, problem (7) always has a unique set of
ptimal primal and dual variables.

emma 1 (Primal feasibility). Consider z(i) = z(i−1) + α∆z(i) as in
tep 11 at the ith iteration of Algorithm 1 with any α ∈ (0, 1]. If
p ≤ z(0) ≤ q and p̄ ≤ ∆z(i) ≤ q̄, then p ≤ z(i) ≤ q at all iterations i.

Proof. We prove the lemma by induction. The lemma clearly
holds for i = 0, as by assumption the initial guess z0 is feasible,
p ≤ z(0) ≤ q. Consider the ith iteration of Algorithm 1. From
Step 5 we have that p−z(i−1) ≤ ∆z(i) ≤ q−z(i−1), which multiplied
by α, α > 0, gives

αp− αz(i−1) ≤ α∆z(i) ≤ αq− αz(i−1). (8)

By adding z(i−1) to each side of the inequalities in (8) we get

αp+ (1− α)z(i−1) ≤ z(i) ≤ αq+ (1− α)z(i−1). (9)

By induction, let us assume that p ≤ z(i−1) ≤ q. Since α ≤ 1, we
further get the inequalities

αp+ (1− α)p ≤ z(i) ≤ αq+ (1− α)q

i.e., p ≤ z(i) ≤ q. □

Lemma 2. The search direction (7) is a descent direction for the
cost function f (z) = 1

2∥r(z)∥
2
2 in (6).

roof. If D (f (z), ∆z) denotes the directional derivative of f (z) in
the direction∆z, then∆z(i) is a descent direction if D

(
f
(
z(i−1)

)
,

∆z(i)
)
< 0. By definition of directional derivative (Nocedal &

Wright, 2006, Appendix A),

D
(
f
(
z(i−1)

)
, ∆z(i)

)
= ∇z f

(
z(i−1)

)⊤
∆z(i). (10)

By substituting

∇z f
(
z(i−1)

)
= Jzr

(
z(i−1)

)⊤
r
(
z(i−1)

)
= J⊤b (11)

in (10) we get

D
(
f
(
z(i−1)

)
, ∆z(i)

)
= b⊤J∆z(i). (12)

Since ∆z(i) solves the convex subproblem (7), the
following Karush–Kuhn–Tucker (KKT) conditions (Borrelli, Bem-
porad, & Morari, 2017) hold:

J⊤
(
J∆z(i) + b

)
+Λq̄ −Λp̄ = 0 (13a)

∆z(i) ≥ p̄ (13b)

∆z(i) ≤ q̄ (13c)

Λq̄,Λp̄ ≥ 0 (13d)

Λq̄(j)
(
∆z(i)(j)− q̄(j)

)
= 0 ∀j (13e)

Λp̄(j)
(
p̄(j)−∆z(i)(j)

)
= 0 ∀j, (13f)

where Λq̄ and Λp̄ denote the optimal Lagrange multipliers of
subproblem (7). From (13a) we have,

b⊤J∆z(i) =
(
Λp̄ −Λq̄

)⊤
∆z(i) −∆z(i)

⊤
J⊤J∆z(i). (14)

By substituting p̄ = p − z(i−1) and q̄ = q − z(i−1) in the
complementarity conditions (13e)–(13f), we can write

Λ⊤q̄
(
∆z(i) − q+ z(i−1)

)
+Λ⊤p̄

(
p− z(i−1) −∆z(i)

)
= 0,

i.e., (Λ −Λ )⊤∆z(i) = Λ⊤(q− z(i−1))+Λ⊤(z(i−1) − p).
q̄ p̄ q̄ p̄
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rom (13b)–(13d) we have Λq̄,Λp̄ ≥ 0, and by Lemma 1 q −
z(i−1) ≥ 0 as well as z(i−1) − p ≥ 0, which implies that

(Λp̄ −Λq̄)⊤∆z(i) ≤ 0. (15)

ince J is full rank, J⊤J > 0. Using this fact and Lemma 4 along
with (15) in (14) gives

b⊤J∆z(i) < 0. (16)

onsidering (16) and (12), we have that the directional derivative
or the considered search direction is negative, which proves the
emma. □

emark 1. We infer from Lemma 1 and (13b)–(13c) that BVNLLS
s a primal-feasible method, which is an important property when
he function r(z) is not analytic beyond bounds (Bellavia, Macconi,
Morini, 2003).

emma 3. If the solution of (7) is ∆z(i) = 0, then z(i−1) is a
stationary point satisfying the first-order optimality conditions of
problem (6).

Proof. Given ∆z(i) = 0, we need to prove that z(i−1) satisfies the
following first-order optimality conditions for problem (6):

Jzr(z)⊤r(z)+ λq − λp = 0 (17a)

p ≤ z ≤ q (17b)

λq, λp ≥ 0 (17c)

λq(j)(z(j)− q(j)) = λp(j)(p(j)− z(j)) = 0, ∀j, (17d)

where the optimal Lagrange multipliers are denoted by λp and λq
for the lower and upper bounds, respectively.

By substituting ∆z(i) = 0 in (13), and recalling q̄ = q − z(i−1)
and p̄ = p− z(i−1), we obtain

J⊤b+Λq̄ −Λp̄ = 0, (18a)

p ≤ z(i−1) ≤ q, (18b)

Λq̄(j)(z(i−1)(j)− q(j)) = 0 ∀j, (18c)

Λp̄(j)(p(j)− z(i−1)(j)) = 0 ∀j. (18d)

Clearly, considering (13d) along with the definitions of J , b,
and (18), we conclude that z(i−1), Λq̄ and Λp̄ solve the KKT
system (17). □

Lemma 4. In Algorithm 1, ∆z(i) ̸= 0 at any iteration.

Proof. We prove this lemma by contradiction. Assume that
Algorithm 1 reaches an iteration i where Step 5 is executed and
returns ∆z(i) = 0. This implies that z(i−1) is a stationary point
satisfying the first-order optimality conditions of nonlinear prob-
lem (6), as shown in Lemma 3. Then, the termination criterion in
Step 4 would end the algorithm without further computations,
so that iteration i is never reached, a contradiction. Note that
in particular, if the initial guess z(0) is optimal, ∆z(i) is never
computed. □

Theorem 1 (Global convergence of BVNLLS). Consider the optimiza-
tion problem (6) and define the scalar cost function f (z) = 1

2∥r(z)∥
2
2.

t each iteration i of Algorithm 1, there exists a scalar α ∈ (0, 1]
5

such that

f
(
z(i−1) + α∆z(i)

)
− f

(
z(i−1)

)
< cα∇f

(
z(i−1)

)⊤
∆z(i) (19)

with 0 < α ≤ 1 and 0 < c < 1, where z(i) = z(i−1) + α∆z(i).

Proof. Consider the Taylor series expansion of f
(
z(i)
)

f
(
z(i−1) + α∆z(i)

)
= f

(
z(i−1)

)
+ α∇z f

(
z(i−1)

)⊤
∆z(i)

+
α2

2
∆z(i)

⊤
∇

2
z f
(
z(i−1)

)
∆z(i) + E(∥α∆z(i)∥3), (20)

where the term E∥ · ∥3 represents third order error. Also,

∇
2
z f
(
z(i−1)

)
=

nr∑
j=1

rj
(
z(i−1)

)
∇

2
z rj
(
z(i−1)

)
+ Jzr

(
z(i−1)

)⊤ Jzr
(
z(i−1)

)
= H + J⊤J, (21)

where rj denotes the jth element of the residual vector. By sub-
stituting the relations (11) and (21) in (20) we get

f
(
z(i−1) + α∆z(i)

)
− f

(
z(i−1)

)
= αb⊤J∆z(i)

+
α2

2
∆z(i)

⊤ (
H + J⊤J

)
∆z(i) + E

(α∆z(i)
3) . (22)

Using (14), Eq. (22) can be simplified as

f
(
z(i−1) + α∆z(i)

)
− f

(
z(i−1)

)
=

−
α(2− α)

2
∆z(i)

⊤
J⊤J∆z(i) + α(Λp̄ −Λq̄)⊤∆z(i)

+
α2

2
∆z(i)

⊤
H∆z(i) + E

(α∆z(i)
3) . (23)

Referring (11) and (14), on subtracting cα∇f (z(i−1))⊤∆z from
both sides of (23) we get

f
(
z(i−1) + α∆z(i)

)
− f

(
z(i−1)

)
− cα∇f

(
z(i−1)

)⊤
∆z(i)

= −
α(2− 2c − α)

2
∆z(i)

⊤
J⊤J∆z(i)

+α(1− c)(Λp̄ −Λq̄)⊤∆z(i)

+
α2

2
∆z(i)

⊤
H∆z(i) + E

(α∆z(i)
3) . (24)

Let

N̄ = − (2−2c−α)
2 ∆z(i)

⊤
J⊤J∆z(i) + (1− c)(Λp̄ −Λq̄)⊤∆z(i).

From (15), Lemma 4, and from the facts that α ∈ (0, 1], c ∈ (0, 1),
and that matrix J has full rank (J⊤J > 0), we infer that N̄ must be
negative for sufficiently small α. Let

¯ =
1
2
∆z(i)

⊤
H∆z(i) + E

(α∆z(i)
3)

hen (24) can be written as(
z(i−1) + α∆z(i)

)
− f

(
z(i−1)

)
− cα∇f

(
z(i−1)

)⊤
∆z(i)

= αN̄ + α2M̄. (25)

Let αN̄+α2M̄+ϵ = 0, or ϵ = α
(
−αM̄ − N̄

)
. Clearly, since N̄ < 0,

there exists a value of α > 0 such that ϵ > 0. This proves that
there exists a positive value of α such that αN̄+α2M̄ < 0. Hence
from (25), f

(
z(i−1) + α∆z(i)

)
−f

(
z(i−1)

)
−cα∇f

(
z(i−1)

)⊤
∆z(i) < 0,

for a sufficiently small positive value of α. □

Remark 2. In the case of linear MPC i.e., when hk(zk, φk) is linear
in (6), the bounded-variable least-squares (BVLS) problem (7) is
solved only once as the KKT conditions (17) coincide with (13).
Moreover, the backtracking steps are not required as the higher
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rder terms in (20) are zero and Theorem 1 holds with α = 1 for
ny c ∈ (0, 1).

emark 3. Referring to (24), the value of c is practically kept be-
ow 0.5 in Algorithm 1 in order to enforce fast convergence with
ull steps and is typically chosen to be as small as 10−4 (Nocedal
Wright, 2006). As seen in (24), since we only need the matrix
to be full rank for convergence of BVNLLS, the matrix Wk in (6)
ay be rank-deficient as long as J is full rank.

emark 4. Suboptimality in solving the BVLS subproblems may
esult in a smaller decrease in the cost between BVNLLS iterations
han the theoretical decrease indicated by Theorem 1. Hence, it
s essential to have an accurate BVLS solver in order to have fast
onvergence. For this reason, we advocate the use of active-set
ethods to solve BVLS problems.

Each iteration of BVNLLS corresponds to solving a linear MPC
roblem, a special case of (6). This allows one to have a common
ramework for linear and nonlinear MPC in our approach. The
VLS problem (7) can be solved efficiently and accurately by using
primal active-set algorithm as shown in Saraf and Bemporad

2020), which uses numerically robust recursive QR factorization
outines to solve the LS subproblems. Unlike most of the QP
olvers, in which the Hessian J⊤J would be constructed via a
atrix multiplication and then factorized, the BVLS solver (Saraf
Bemporad, 2020) only factorizes column subsets of J , whose

ondition number is square-root as compared to that of J⊤J ,
hich makes it numerically preferable. In applications with very
estrictive memory requirements, using the methods described
n Section 5 with the gradient-projection algorithm (Nesterov,
004) on the primal problem (7), one may employ a matrix-free
olver similar to Diamond and Boyd (2016) and its references.
owever, when using the gradient-projection algorithm, its low
emory usage may come at the cost of slow convergence due to

heir sensitivity to problem scaling. The following sections show
ow the Jacobian matrix J can be replaced by using parameter-
zed operators for saving memory and how its sparsity can be
xploited for faster execution of the proposed BVLS solver of Saraf
nd Bemporad (2020).

. Abstracting matrix instances

.1. Problem structure

The sparse structure of matrices Wk and ∇zhk(zk, φk)⊤, which
orm the Jacobian J of the residual in (6), completely depends on
he MPC tuning parameters, model order, and the ordering of the
ecision variables.
Assume that no slack variables due to non-box inequality con-

traints have been introduced as in (4). In case of slack variables,
he sparsity pattern will depend on the structure of Jacobian of
he inequality constraints, which is not discussed in further detail
ere for conciseness. By ordering the decision variables in vector
k as follows

zk =
[
u⊤k y⊤k+1 u⊤k+1 y⊤k+2 . . . u⊤k+Nu−1 y⊤k+Nu

|

y⊤k+Nu+1 . . . y⊤k+Np−1 y⊤k+Np

]⊤ (26)

we get the matrix structure described in 27, where the super-
script of matrices in parentheses denote the output prediction
step the matrices refer to. Note that we dropped the parentheses
(Sk) in 27 to simplify the notation and, as defined in (2), A(Sk)j =
0, ∀j > na, and B(Sk)j = 0, ∀j > nb. Clearly, the Jacobian matrix Jhk

of equality constraints only consists of entries from the sequence

6

Fig. 1. Sparsity pattern of Jhk for a random model with Np = 10, Nu = 4, na = 2,
nb = 4, nu = 2 and ny = 2.

of linear models of the form (2) linearized around the initial guess
trajectory.

Jhk(z) = ∇zhk(zk, φk)⊤

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B(1)
1 A(1)

0 0 0 · · · · · · 0
B(2)
2 A(2)

1 B(2)
1 A(2)

0 0 · · · · · · 0

...
. . .

. . .
...

B(Nu)
Nu

A(Nu)
Nu−1 · · · B(Nu)

1 A(Nu)
0 0 · · · 0

B(Nu+1)
Nu+1 A(Nu+1)

Nu
· · · B(Nu+1)

3 A(Nu+1)
2

2∑
i=1

B(Nu+1)
i A(Nu+1)

1 A(Nu+1)
0 0 · · · 0

B(Nu+2)
Nu+2 A(Nu+2)

Nu+1
. . . · · · B(Nu+2)

4 A(Nu+2)
3

3∑
i=1

B(Nu+2)
i A(Nu+2)

2 A(Nu+2)
1 A(Nu+2)

0 0 · · · 0

...
. . .

. . .
...

...
. . . 0

B(Np)
Np

A(Np)
Np−1 · · · B(Np)

Np−Nu+2 A(Np)
Np−Nu+1

Np−Nu+1∑
i=1

B(Np)
i A(Np)

Np−Nu
A(Np)
Np−Nu−1 · · · A(Np)

1 A(Np)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(27)

Considering the model parameters na, nb to be smaller than
p in 27, as illustrated in Fig. 1, we observe that the top-left part
f Jhk is block sparse, the bottom-right part has a block-banded
tructure, the bottom-left part has dense columns corresponding
o uk+Nu−1, whereas the top-right part is a zero matrix with nyNu
rows and ny ·(Np−Nu) columns. If na, nb are greater than Np, then
hk would instead have its bottom-left part to be dense with block
ower-triangular structure in its top-left and bottom-right parts.
ll in all, the sparsity pattern of Jhk is completely defined by the
odel parameters nu, ny, na, nb, and MPC horizons Nu, Np. Clearly,
valuating Jhk only requires the sequence of linear models and the
parsity pattern information. Note that in case the linear models
re computed by a linearization function, a memory/throughput
radeoff can be chosen here, as they can be either computed once
nd stored (lowest throughput), or evaluated by the linearization
ach time they are required (lowest memory allocation). Finally,
ecalling (6), we obtain the full Jacobian matrix

=

[
Wk
Jhk

]
equired in Algorithm 1, where Wk is the block diagonal matrix

k = blockdiag(Wuk ,Wyk+1 ,Wuk+1 ,Wyk+2 , . . . ,

Wuk+Nu−1 ,Wyk+Nu ,Wyk+Nu+1 , . . . ,Wyk+Np )

n the sequel we assume for simplicity that all matricesWu(·) ,Wy(·)
re diagonal, so that W is actually a diagonal matrix.
k
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Algorithm 2 Operator Jix

Inputs: Output memory v = 0 ∈ Rnz+Npny ; vector w storing diag-
onal elements of Wk; scalar x; column number i; parameters
na, nb, nu, ny, Nu and Np.

1: v(i)← w(i) · x;
2: Find integers β ∈ [0,Np) and η ∈ [1, nu + ny] such that

i = βny + nu ·min(β, Nu − 1)+ η;
3: n̄← Nunu + (Np + β)ny; m← Nunu + 2Npny; j← 0;
4: if β ̸= Nu − 1 or η > nu then
5: if η > nu, m̄← n̄+ nany + ny else m̄← n̄+ nbny;
6: for j′ ∈ {n̄, n̄+ ny, · · · ,min(m̄,m)− ny} do
7: if η > nu then ∀j′′ ∈ {1, · · · , ny},
8: v(j′ + j′′)← x · A(β+j+1)

j (j′′, η − nu);
9: else
0: v(j′ + j′′)← x · B(β+j+1)

j+1 (j′′, η);
1: end if
2: j← j+ 1;
3: end for
4: else
5: for j′ ∈ {n̄, n̄+ ny, · · · ,m− ny} do
6: j← j+ 1;

7: B̄(j′′)←
min(j, nb)∑

i′=1
Bβ+ji′ (j′′, η), ∀j′′ ∈ [1, ny];

8: v(j′ + j′′)← x · B̄(j′′), ∀j′′ ∈ [1, ny];
9: end for
0: end if
1: end.

Output: Vector v = ith column of J in (7) scaled by x.

5.2. Abstract operators

All matrix–vector operations involving J in Algorithm 1 and in
he BVLS solver (Saraf & Bemporad, 2020), including the matrix
actorization routines that will be described in Section 6, only
eed the product of a column subset of J or a row-subset of J⊤

with a vector. Hence, rather than explicitly forming and stor-
ing J , all the operations involving J can be represented by two
operators Jix (ith column of J times a scalar x) and JtiX (ith
column of J times a vector X) defined by Algorithms 2 and 3,
respectively.

The basic principle of both Algorithms 2 and 3 is to extract
nonzero entries indexed in J from the corresponding model co-
efficients based on the given model and MPC tuning parameters.
Since the top part Wk of J is a diagonal matrix, the first nonzero
entry in any column of J is obtained from the vector of weights
(cf. Step 1 of Jix and JtiX). The remaining steps only concern
evaluating Jhk as in 27, in which the coefficients in each column
match the corresponding element in zk as in (26). Referring to the
sparsity pattern of Jhk in 27, each of its columns only contains
either model coefficients related to the input or to the output,
and in the columns corresponding to the inputs uk+Nu−1 some
of the input coefficients are summed due to the finite control
horizon Nu < Np. The location of the first nonzero term in each
column of Jhk depends on the corresponding stage of the input
or output variable in prediction, whereas the last entry depends
on na or nb and Np. Hence, in Step 2 of Algorithm 2, the integer
β is computed such that βny+ 1 is the index of the first nonzero
entry in Jhk(z) (cf. Steps 3, 6 and 15). The integer η computed in
the same step denotes the input or output channel to which the
column corresponds, in order to accordingly index and extract
the coefficients to be scaled as shown in Steps 8, 10 and 17 of
7

Algorithm 3 Operator JtiX

Inputs: Vector w storing diagonal elements of Wk; vector X;
column number i; parameters na, nb, nu, ny, Nu and Np.

1: v′ ← w(i) · X(i);
2: Steps 2–3 of Algorithm 2;
3: if β ̸= Nu − 1 or η > nu then
4: if η > nu, m̄← n̄+ nany + ny else m̄← n̄+ nbny;
5: for j′ ∈ {n̄, n̄+ ny, · · · ,min(m̄,m)− ny} do
6: if η > nu then ∀j′′ ∈ {1, · · · , ny},
7: v′ ← v′ + X(j′ + j′′) · A(β+j+1)

j (j′′, η − nu);
8: else
9: v′ ← v′ + X(j′ + j′′) · B(β+j+1)

j+1 (j′′, η);
0: end if
1: j← j+ 1;
2: end for
3: else
4: for j′ ∈ {n̄, n̄+ ny, · · · ,m− ny} do
5: Steps 16–17 of Algorithm 2;
6: v′ ← v′ + X(j′ + j′′) · B̄(j′′), ∀j′′ ∈ [1, ny];
7: end for
8: end if
9: end.

Output: v′ = inner product of ith row of J⊤ in (7) and X .

Algorithm 2. Depending on the column index i of J , computing β
and η only needs a trivial number of integer operations including
at most one integer division, for instance, if i ≤ Nu(nu + ny),
β is obtained by an integer division of i by (nu + ny) and η =
i − β(nu + ny). The same computation is straightforward for the
nly other possible case in which i > Nu(nu + ny).
Clearly, since the rows of J⊤ are the columns of J , Algorithm 3

iffers from Algorithm 2 only in Steps 7, 9 and 16 in which the
caled coefficient is accumulated to the resulting inner product
nstead of a plain assignment operation. It is possible to easily
xtend Algorithm 3 for the special case in which X in JtiX is the
th column of J i.e., to efficiently compute the 2-norm of the ith
olumn of J , which may be required in the linear algebra routines.
eplacing the instances of J by Jix and JtiX in the BVNLLS and
n the inner BVLS solver has the following advantages:

(1) The problem (re-)construction step in MPC is eliminated, as
he entire optimization algorithm is parameterized in terms of the
pecified tuning parameters and the model coefficients, i.e., the
utput of the linearization step, that would comprise J .
(2) The code of the two operators does not change with any

hange in the required data or dimensions as all the indexing
teps are parameterized in terms of MPC tuning parameters,
.e., known data. Hence, the resulting optimization solver does not
eed to be code-generated with a change in problem dimensions
r data. The same fact also allows real-time changes in the MPC
roblem data and tuning parameters without any change in the
olver. A structural change in the BVNLLS optimization problem
ormulation, such as the type of performance index, is already de-
ided in the MPC design phase and can be simply accommodated
y only modifying Algorithms 2 and 3.
(3) Unlike basic sparse-matrix storage schemes (Saad, 2003)

hich would store the nonzeros of J along with indexing infor-
ation, we only store the sequence of linear models at most,

esulting in a significantly lower memory requirement. Alter-
atively, as mentioned earlier, even the coefficients A(∗)

∗ , B(∗)
∗

an be generated during the execution of Algorithms 2–3 using
inearization functions applied on the current trajectory.
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4) The number of floating-point operations (flops) involving in-
stances of J , both in the BVNLLS and the BVLS solvers, is minimal
and is reduced essentially to what sparse linear algebra routines
can achieve, assuming that A(∗)

∗ , B(∗)
∗ are not sparse.

(5) A matrix-free implementation can be achieved when using
the gradient-projection algorithm (Nesterov, 2004) to solve (7)
in BVNLLS, as the operators Jix and JtiX can be used for com-
puting the gradient. In addition, considering that even the model
coefficients are optional to store, the resulting NMPC algorithm
will have negligible increase in memory requirement w.r.t. the
prediction horizon.

6. Recursive thin QR factorization

The primal active-set method for solving BVLS problems de-
scribed in Saraf and Bemporad (2020) efficiently solves a se-
quence of related LS problems using recursive thin QR factor-
ization. The reader is referred to Daniel, Gragg, Kaufman, and
Stewart (1976), Golub and Loan (2013), Saraf and Bemporad
(2020) for an overview on thin QR factorization and the re-
cursive update routines in the context of the BVLS solver. This
section shows how the sparsity of matrix J can be exploited for
significantly reducing the computations involved in the recur-
sive updates of its QR factors, without the use of sparse-matrix
storage or conventional sparse linear algebra routines. The main
idea is to have the location of nonzeros in the matrix factors
expressed in terms of model and MPC tuning parameters, as
described above. We first analyze how the sparse structure of
column subsets of J is reflected in their thin QR factors based on
Gram–Schmidt orthogonalization, then characterize the recursive
update routines.

6.1. Gram–Schmidt orthogonalization

Recall that J ∈ Rm×n, where n = Nunu + Npny and m =
n + Npny, i.e., m > n (see (6), (7), 26). Let JF denote the
matrix formed from those columns of J with indices in the set
F . Then there exists a unique thin QR factorization (Golub &
Loan, 2013, Theorem 5.2.3) of JF which may be expressed via the
Gram–Schmidt orthonormalization procedure ∀i ∈ [1, |F|] as

Q ′i = JFi −

i−1∑
j=1

QjQ⊤j JFi , (28a)

Qi = Q ′i /
Q ′i 2 , (28b)

R(j, i) = Q⊤j JFi ,∀j ∈ [1, i− 1], (28c)

R(i, i) =
Q ′i 2 , (28d)

where Q ∈ Rm×|F |
:= [Q1,Q2, . . . ,Q|F |] has orthonormal

columns, R ∈ R|F |×|F | is upper triangular and JF = QR. In (28),
with a slight abuse of notation, the subscripts denote column
number, i.e., Qi denotes the ith column of Q , whereas Fi denotes
the ith index in F . As shown in (28a), starting from the first
column of JF , the procedure constructs an orthogonal basis by
sequentially orthogonalizing the subsequent columns w.r.t. the
basis. The orthogonalization procedure shown in (28a) is referred
to as the classical Gram–Schmidt (CGS) method (Golub & Loan,
2013, Section 5.2.7). Since the CGS method is practically prone
to numerical cancellation due to finite-precision arithmetic, we
use the modified Gram–Schmidt (MGS) method (Golub & Loan,
2013, Section 5.2.8) in which the orthogonalization is performed
using the working value of Q ′i instead of JFi in each iteration of
the procedure. When applying MGS to solve the linear system
before recursive updates, we also orthogonalize the right hand
side (RHS) of the equations, i.e., we use an augmented system
8

of equations in order to compensate the orthogonalization er-
ror (cf. Trefethen and Bau (1997, Chapter 19)). Moreover, for
numerical robustness in limited precision, in the proposed MGS
procedure a reorthogonalization step is automatically performed
which iteratively refines the QR factors for reducing the orthog-
onalization error in case it exceeds a given threshold (cf. Saraf &
Bemporad, 2020, Algorithm 2, Daniel et al., 1976).

6.2. Sparsity analysis

In order to avoid redundant flops due to multiplying zero
entries while solving the LS problems without sparse storage
schemes, we first determine the sparsity pattern of Q and R
approximately, based on the relations described in (28). While
doing so, the following notions will be used.

Definition 1 (Nonzero structure). We define the nonzero structure
of a vector x to be the set of indices S(x) such that x(i) ̸= 0,
∀i ∈ S(x), and x(j) = 0, ∀j /∈ S(x).

Definition 2 (Predicted nonzero structure). If Ŝ(x) denotes the
predicted nonzero structure of a vector x, then x(j) = 0 ∀j /∈ Ŝ(x)
.e., Ŝ(x) ⊇ S(x).

Based on Definition 1, x = x′ implies

(x) = S(x′). (29)

(x′ + x′′) ⊆
{
S(x′) ∪ S(x′′)

}
, (30)

hich holds with equality, i.e., S(x′+x′′) =
{
S(x′) ∪ S(x′′)

}
, if and

only if the set
{i|x′(i)+ x′′(i) = 0, x′(i) ̸= 0, x′′(i) ̸= 0} = ∅. Likewise,

(κx) ⊆ S(x), κ ∈ R,

ecause S(κx) = ∅ for κ = 0, whereas

(κx) = S(x),∀κ ∈ R \ {0}. (31)

Theorem 2. Consider an arbitrary sparse matrix M ∈ Rn1×n2 of
full rank such that n1 ≥ n2 and let Q̃ denote the Q-factor from its
thin QR factorization i.e., M = Q̃ R̃. The nonzero structure of each
column Q̃i of Q̃ satisfies

S
(
Q̃i

)
⊆

i⋃
j=1

S
(
Mj
)
,∀i ∈ [1, n2], (32a)

and S
(
Q̃1

)
= S (M1) . (32b)

Proof. We consider the Gram–Schmidt orthogonalization pro-
cedure described in (28) applied to M with F = [1, n2] (this
simplifies the notation, i.e., Fi = i). Referring to (28b), since Q̃ ′
represents an orthogonal basis of the full rank matrix M with real
numbers, 1/

Q̃ ′i  ̸= 0 ∀i, and hence from (31),

S
(
Q̃i

)
= S

(
Q̃ ′i
)
,∀i. (33)

From (28a),

Q̃ ′1 = M1. (34)

Thus, considering (34) with (29) and (33) proves (32b). Again,
considering (28a) with (29) and (33),

S
(
Q̃i

)
= S

⎛⎝Mi −

i−1∑
Q̃jQ̃⊤j Mi

⎞⎠ = S

⎛⎝Mi +

i−1∑
Q̃jκj

⎞⎠ (35)

j=1 j=1
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here κj = −Q̃⊤j Mi ∈ R,∀j ∈ [1, i−1], as κj represents the result
f an inner product of two real vectors. From (30) and (35),(
Q̃i

)
⊆

⎧⎨⎩S (Mi) ∪

⎧⎨⎩
i−1⋃
j=1

S
(
Q̃j

)⎫⎬⎭
⎫⎬⎭ . (36)

pplying (36) recursively,(
Q̃i

)
⊆

⎧⎨⎩
⎧⎨⎩

i⋃
j=2

S
(
Mj
)⎫⎬⎭ ∪ S

(
Q̃1

)⎫⎬⎭ . (37)

Thus, substituting (32b) in (37) completes the proof. □

Corollary 1. Given i ∈ [1, n2] and j′ ∈ [1, n2],

if

⎧⎨⎩
j′⋃

j=1

S
(
Mj
)⎫⎬⎭ ∩ S (Mi) = ∅, then R̃(j, i) = 0 ∀j ∈ [1, j′]. (38)

Proof. Based on result (32a) of Theorem 2, we can say that⋃i
j=1 S

(
Mj
)
is a predicted nonzero structure of Q̃i i.e.,

i⋃
j=1

S
(
Mj
)
= Ŝ

(
Q̃i

)
, (39)

and hence

Ŝ
(
Q̃i

)
= S (Mi) ∪ Ŝ

(
Q̃i−1

)
,∀i ∈ [1, n2]. (40)

If S
(
Q̃j

)
∩ S (Mi) = ∅, then Q̃j and Mi have disjoint nonzero

structures and hence, referring to (28c),

S
(
Q̃j

)
∩ S (Mi) = ∅ H⇒ R(j, i) = Q̃⊤j Mi = 0. (41)

From (40) we have that

Ŝ
(
Q̃i

)
⊇ Ŝ

(
Q̃i′

)
,∀i′ < i. (42)

From (39), (42) and Definition 2, i.e., Ŝ
(
Q̃i

)
⊇ S

(
Q̃i

)
, it follows

that
{⋃j′

j=1 S
(
Mj
)}
∩ S (Mi) = ∅ implies

Ŝ
(
Q̃j

)
∩ S (Mi) = ∅, ∀j < j′. The corollary result is then

immediate given (41). □

Theorem 2 and Corollary 1 establish rigorous upper bounds
on the nonzero structure of the QR factors based on the nonzero
structure of the factorized matrix.

Since the nonzero structure of JF is completely determined in
terms of model and tuning parameters as shown in Section 5.2,
the predicted nonzero structure of its QR factors consequently
depends only on them, as will be shown in the remaining part
of this section.

Corollary 2. Consider the matrix J ∈ Rm×n whose first n rows form
a diagonal matrix and the last m− n rows contain Jhk(z) as shown
in 27. Let JF denote the matrix formed from the columns of J indexed
in the index set F such that Fi+1 > Fi,∀i ∈ [1, |F|]. If Q ∈ Rm×|F |

denotes the Q-factor from the thin QR factorization of JF , then ∀i ∈
[2, |F|],

{⋃i
j=1

{
Fj
}}
∪
(
n̄F1 ,max

(
Bi−1,min

(
m̄Fi ,m

))]
= Ŝ (Qi),

where the positive integers n̄j′ , m̄j′ respectively denote the values of
n̄, m̄ computed in Steps 2–5 of Algorithm 2 for j′th column of J , and
B is an index set such that its ith element stores the largest index of
Ŝ (Qi).

Proof. Considering the structure of matrix J , Definition 1 and the(
¯

)
¯
fact that min mj,m > nj ≥ n ≥ |F|, ∀j by construction, we have

9

that

S
(
JFi

)
= {Fi} ∪

(
n̄Fi ,min

(
m̄Fi ,m

)]
. (43)

From (39) we note that
⋃i

j=1 S
(
JFj

)
= Ŝ (Qi), and using (43) we

can rewrite

Ŝ (Qi) =

i⋃
j=1

S
(
JFj

)
=

⎧⎨⎩
i⋃

j=1

{
Fj
}⎫⎬⎭ ∪

⎧⎨⎩
i⋃

j=1

(
n̄Fj ,min

(
m̄Fj ,m

)]⎫⎬⎭ ,
=

⎧⎨⎩
i⋃

j=1

{
Fj
}⎫⎬⎭ ∪ (n̄F1 ,Bi

]
, (44)

because observing (27), Fj+1 > Fj implies n̄Fj ≤ n̄Fj+1 . From
result (40), (43) and definition of set B,

Bi = max
(
Bi−1,min

(
m̄Fi ,m

))
, (45)

which on substitution in (44) completes the proof. □

Note that from (43) and result (32b),

S (Q1) = S
(
JF1

)
=
{
F1,

(
n̄F1 ,min

(
m̄F1 ,m

)]}
. (46)

By definition of set B we have B1 = min
(
m̄F1 ,m

)
from (46), and

hence Bi can be determined ∀i by using (45).

Corollary 3. Q (i, j) = 0 ∀i ∈ [1, n] \ F,∀j ∈ [1, |F|]. Also,
∀j′ ∈ [1, |F|], Q (i, j) = 0 ∀j ∈ [1, j′) such that i = Fj′ .

Proof. Let Q ′′ denote the submatrix formed from the first n rows
of Q . Since n̄F1 > n, from Corollary 2 we can write

⋃i
j=1

{
Fj
}
=

Ŝ
(
Q ′′i
)
. Thus, referring this relation and Definition 2, if an index

is not in the set F , the corresponding row of Q ′′ and hence Q has
no nonzero element. The latter part is proved by (40) considering
the facts that J is diagonal and Fi+1 > Fi. □

From Corollaries 2 and 3 we infer that the nonzero structure of
all the |F| columns of Q can be stored using a scalar for n̄F1 and
two integer vectors of dimension |F| containing the index sets
F and B, where Bi = max (min (m̄i,m) , m̄i−1). In order to only
compute the nonzeros of R, while constructing each of its column,
we need to find and store a scalar j′ as shown in Corollary 1. This
is done by using the relations described in Theorem 2, Corollary 1
and (44). Specifically, when computing the ith column of R (i >
1), j′ is found by counting the number of times Bj < n̄Fi for
increasing values of j ∈

(
ĵ, i
)
until the condition is not satisfied,

where ĵ denotes the value of j′ for the (i− 1)th column of R.

6.3. Recursive updates

In the primal active-set method, a change in the active-set
corresponds to an index inserted in or deleted from the set F .
We exploit the uniqueness of thin QR factorization in order to
update the structure indicating sets F and B. When an index
t is inserted in the active-set of bounds, the last column of Q
and the ith column of R are deleted such that t = Fi, and the
QR factorization is updated by applying Givens rotations that
triangularize R. In this case F is simply updated to F ′ = F \ {t}
and B is updated such that (45) is satisfied after removing its
ith index. Moreover, using Corollary 3, the Givens rotations are
not applied on the tth row of Q which is simply zeroed. On the
other hand, when an index t is removed from the active-set of
bounds, F is updated to F ∪ {t} such that Fj+1 > Fj, ∀j. If t is

inserted in F in the jth position, an index is inserted in the jth
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osition of B using (45) and the elements with position greater
han j are updated to satisfy (45). Since the sparse structure of the
pdated QR factors is known during recursive updates, using F ,
and Corollary 3, the flops for applying Givens rotations on rows
f Q and matrix–vector multiplications in the Gram–Schmidt
re)orthogonalization procedure are performed only on nonzero
lements. This makes the QR update routines significantly faster
s is reflected in the numerical results described in Section 7.

.4. Advantages and limitations

The predicted nonzero structure of the Q-factor via (40) is
xact if and only if the set relation (32a) holds with equality.
or (32a) to hold with equality for Q , Q⊤j JFi must be nonzero
or all pairs of indices i and j referring the CGS orthogonalization
n (28a) and moreover the summation of nonzeros in the RHS
f (28a) must result in a nonzero . Even though theoretically this
ay not be the case for the matrices that we consider, due to fi-
ite precision computations which disallow perfect orthogonality,
nd the use of MGS with potentially multiple orthogonalizations
o compute columns of Q , the predicted nonzero structure of
olumns of Q via Corollary 2 rarely contains indices of zero
lements, i.e., numerically it is an accurate estimate and often
he exact nonzero structure. Referring to Corollary 1 and Saraf
nd Bemporad (2020, Algorithm 2), the same fact leads to the
onclusion that if multiple orthogonalizations (for numerical ro-
ustness) are performed, in the worst case, the upper-triangular
art of the R factor may have no zero elements. Nevertheless, the
nitial sparsity in R before reorthogonalization is still exploited
n its construction but the worst-case fill-in makes it necessary
o use R as a dense upper-triangular matrix when solving the
riangular system by back-substitution to compute the solution
f the underlying LS problem.
From Theorem 2, we observe that the predicted nonzero struc-

ure of columns Qj,∀j ≥ i, would contain at least the indices
f nonzero elements in the ith column of JF . Hence, in case
u < Np, referring the analysis in Section 6.2, the fill-in of Q

can be reduced by a re-ordering of the decision variable vector
in (26) such that the columns of J corresponding to the variables
uk+Nu−1 are moved to become its last columns. Note that even
though this re-ordering does not optimize the fill-in of Q , for
hich dedicated routines exist in literature (cf. Davis (2006)), it
till allows a relatively simple and a computationally effective
mplementation of recursive thin QR factorization for the matrix
f interest through a straightforward extension of the methods
escribed in Section 6.3.
In order to benefit computationally by exploiting sparsity

hile performing the recursive updates, the thin QR factors are
tored in numerically dense format. This causes greater memory
equirement beyond a certain large problem size where a sparse-
torage scheme would need smaller memory considering that
ith conventional sparse linear algebra, one would only compute
nd store the R factor while always solving the LS problem from
cratch instead. However, the latter approach could turn out to
e computationally much more expensive. Using the techniques
iscussed in Sections 6.2 and 6.3 with a sparse-storage scheme
ould address this limitation specific to large-scale problems for
emory-constrained applications but it needs a much more intri-
ate implementation with cumbersome indexing, that is beyond
he scope of this paper.

. Numerical results

.1. Software framework

In order to implement the (nonlinear) MPC controller based

n formulation (6) or (A.2) one only needs the code for c

10
Algorithm 1. The inner BVLS solver of Saraf and Bemporad (2020)
could be replaced by another algorithm that exploits sparsity
via the abstract operators, such as the gradient-projection algo-
rithm of Nesterov (2004) we mentioned earlier. Besides, routines
that evaluate the model (1) and the Jacobian matrices, i.e., the
model coefficients in (2), are required from the user in order to
evaluate the residual and perform the linearization step (or al-
ternatively finite-differences) in BVNLLS. Note that an optimized
self-contained code for these routines can easily be generated
or derived by using symbolic tools such as those of MATLAB or
the excellent open-source software CasADi (Andersson, Gillis,
Horn, Rawlings, & Diehl, 2019). This means that, except for the
user-defined model and tuning parameters, the software does not
need any code-generation, as for a given class of performance
indices the code for Algorithms 1–3 does not change with the
application. The user is only required to provide the MPC tuning
parameters and a symbolic expression for the model (1), which
eases the deployment of the proposed MPC solution algorithm in
embedded control hardware.

7.2. Computational performance

The results presented in this section are based on a library-
free C implementation of BVNLLS based on Algorithms 2 and 3,
and the BVLS solver based on the recursive thin QR factorization
routines discussed in Section 6. The reader is referred to Saraf
et al. (2018, Section 5) for complete details on simulation settings,
tuning parameters, constraints, and benchmark solvers related to
the following discussion on the example problem, which consists
of NMPC applied to a CSTR (continuous stirred tank reactor). All
the optimization problems in the MATLAB simulations referred
below were solved until convergence,1 on a Macbook Pro 2013
equipped with 8 GB RAM and 2.6 GHz Intel Core i5 processor.
The sparse NLP solver IPOPT (Wächter & Biegler, 2006) referred
below was compiled in MATLAB with the MA57 linear system
solver and was provided with exact sparse Jacobian evaluation
functions including sparsity patterns, and an initial guess for the
primal and dual variables in order to incorporate all benefits of
the tool. The fmincon SQP solver of MATLAB was also provided
with gradient evaluation functions and warmstarts for faster con-
vergence. Fig. 2 illustrates the specific simulation scenario for
which the execution time of the solvers were compared for in-
creasing values of the prediction horizon. Fig. 3 shows that the
equality constraints were satisfied with sufficient accuracy by
BVNLLS. Hence, as also demonstrated in Saraf et al. (2018, Section
5, Figure 2), all the solvers including the proposed one yield the
same control performance.

Fig. 4 shows that the proposed methods (custom-sparse) al-
low BVNLLS to outperform its dense variant even on small-sized
test problems by almost an order of magnitude on average. For
comparison, fmincon and IPOPT are applied to the benchmark
formulation (5). The computation time of BVNLLS is about two
orders of magnitude smaller on the considered small-sized test
problems. This reduction can be credited to the fact that IPOPT,
which is based on sparse linear algebra routines, is more effective
for large-sized problems, and that BVNLLS exploits warmstarts
based on the previously computed solution, which is provided
from the second instance onwards. The main reason for com-
paring to fmincon and IPOPT is that they are widely used and
therefore provide a baseline that is easy to reproduce. Regarding
comparisons with other embedded nonlinear MPC solvers, we
refer the reader to the recent paper (Verschueren et al., 2021),

1 The optimality and feasibility tolerances for all solvers are 10−6 and 10−8 ,
espectively, to achieve the same quality of solution at convergence for a fair
omparison.
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Fig. 2. Closed-loop NMPC simulation trajectories of CSTR variables with Np =

u = 160 (16 min).

Fig. 3. Worst-case equality constraint residuals (Np = Nu = 160) for BVNLLS
ith
√
ρ = 104 during the simulation described by Fig. 2.

in which thorough comparisons between IPOPT and other state-
of-the-art-solvers are reported. While computation performance
clearly depends on the particular control problem solved, the
time-ratio with respect to IPOPT is a good indicator for com-
paring different methods. Finally, Fig. 5 suggests that, despite
being based on an active-set algorithm, the proposed sparsity-
exploiting methods empower BVNLLS to perform significantly
faster than the baseline fmincon/IPOPT solvers even for large
problems.

8. Conclusions

This paper has presented a new approach to solving con-
strained linear and nonlinear MPC problems that, by relaxing
the equality constraints generated by the prediction model into
quadratic penalties, allows the use of a very efficient bounded-
variable nonlinear least squares solver. The linear algebra behind
the latter has been specialized in detail to take into account
the particular structure of the MPC problem, so that the result-
ing required memory footprint and throughput are minimized
for efficient real-time implementation, without the need of any
external advanced linear algebra library.
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Fig. 4. Computation time spent by each solver during NMPC simulation of
CSTR (Saraf et al., 2018) for increasing values of Np = Nu = n/3, n set of
ox-constraints and 2Np equality constraints.

Fig. 5. Computation time spent by each solver during NMPC simulation of CSTR
for large values of Np = Nu = n/3 with n set of box-constraints and 2Np equality
constraints.

Appendix. Bound-constrained Lagrangian method

This section compares the Bound-constrained Lagrangian
method (BLM) with the quadratic penalty method (QPM)) dis-
cussed in Section 3 and shows that the same tools discussed in
the paper can be applied to solve problems formulated as they
are in BLM. At each iteration (i) of the BLM, one solves

z(i+1)k = arg min
pk≤zk≤qk

1
2

 Wk(zk − z̄k)√
ρ(i)hk(zk, φk)

2
2
+Λ⊤k

(i)
hk(zk, φk) (A.1)
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here Λ denotes the vector of Lagrange multipliers correspond-
ing to the equality constraints, and updates the estimatesΛ(i) and
(i), until convergence (cf. Nocedal and Wright (2006, Algorithm
7.4)).

roposition 1. The optimization problem (A.1) is equivalent to the
VNLS problem

(i+1)
k = argmin

pk≤zk≤qk

1
2


1√
ρ(i)

Wk(zk − z̄k)

hk(zk, φk)+
Λ

(i)
k
ρ(i)


2

2

(A.2)

roof. We have that problem

rgmin
pk≤zk≤qk

1
2

 Wk(zk − z̄k)√
ρ(i)hk(zk, φk)

2
2
+Λ⊤k

(i)
hk(zk, φk)

and argmin
pk≤zk≤qk

1
2
∥Wk(zk − z̄k)∥22 +H(zk), where H(zk)

=
ρ(i)

2
∥hk(zk, φk)∥22 +Λ

⊤

k
(i)
hk(zk, φk)+

Λ(i)
k

2
2

2ρ(i)

=
ρ(i)

2

⎛⎝∥hk(zk, φk)∥22 +
2Λ⊤k

(i)hk(zk, φk)
ρ(i) +

Λ(i)
k

ρ(i)


2

2

⎞⎠
=
ρ(i)

2

(
hk(zk, φk)+

Λ
(i)
k

ρ(i)

)⊤ (
hk(zk, φk)+

Λ
(i)
k

ρ(i)

)

=
ρ(i)

2

hk(zk, φk)+
Λ

(i)
k

ρ(i)


2

2

, are equivalent.

Scaling by the constant 1/ρ(i) yields the result. □

emark 5. Proposition 1 holds for any sum-of-squares cost
unction with (5a) as the special case, for instance ∥S(zk)∥22, where
S is any vector-valued function.

Proposition 1 shows that we can employ the same BVNLS
solvers to solve (A.1), which may be more efficient and numeri-
cally robust (cf. Section 4) as compared to the use of other NLP
solvers. When using BLM, sequences of z(i)k and Λ(i)

k respectively
converge to their optimal values z⋆k and Λ⋆k whereas hk(z⋆k , φk) ≈
0, numerically. Then via Proposition 1, we note that for a fixed
value of ρ ≫

Λ⋆k∞ in the equality-constrained case, we obtain

hk

(
z(i+1)k , φk

)
≈ Λ

(i+1)
k /ρ ≈ 0 (Nocedal & Wright, 2006,

Chapter 17), which is simply the solution obtained using a single
iteration of QPM for the same ρ and is consistent with the special
case described by Saraf and Bemporad (2017, Theorem 1).

Although with BLM it is possible to initialize ρ to arbitrarily
low values and solve numerically easier problems, which is its
main advantage over QPM, the final value of ρ is not guaranteed
to remain low. A main disadvantage of BLM over QPM is that it
needs problem (5) to be feasible, otherwise the problem must
be formulated with soft constraints on output variables (Kerri-
gan & Maciejowski, 2000), which typically results in the use of
penalty functions with large values of the penalty parameter and
non-box inequality constraints, making the problems relatively
more difficult to solve. Moreover, even if the feasibility of (5)
is given, it may take significantly longer to solve multiple in-
12
stances of (A.1) as compared to a single iteration of QPM with
a large penalty, which is more suitable for MPC problems where
slight suboptimality may be preferable to a longer computation
time. However, in the presence of hard general (nonlinear) in-
equality constraints where QPM might not be applicable, using
BLM for feasible problems with the proposed solver and sparsity
exploiting methods described in the following sections may be
an efficient alternative. BLM is not discussed further as the scope
of this paper is limited to MPC problems with box constraints on
decision variables.
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